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HIGHLIGHTS

e This work customizes network service Neutron on OpenStack.

e The traditional managed switch is replaced by using Open vSwitch and a real-time traffic monitoring function is implemented with an IP-table filter.
o Since a NetFlow collector is built, there is no need to use hardware port mirrors to collect NetFlow data.

e This service integrates with OpenFlow to manage networking.

e The proposed network monitoring service in this work can be implemented in any kind of networking environments.
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The Network Functions Virtualization (NFV) extends the functionality provided by Software-Defined
Networking (SDN). It is a virtualization technology that aims to replace the functionality provided
by traditional networking hardware using software solutions. Thereby, enabling cheaper and efficient
network deployment and management. The use of NFV and SDN is anticipated to enhance the perfor-
mance of Infrastructure-as-a-Service (IaaS) clouds. However, due to the presence of a large number of
network devices in laaS clouds offering a plethora of networked services, there is need to develop a
traffic monitoring system for the efficient network. This paper proposes and validates an extensible SDN
and NFV-enabled network traffic monitoring system. Using extensive experiments, we show that the
proposed system can closely match the performance of traditional networks at cheaper costs and by
adding more flexibility to network management tasks.

© 2018 Published by Elsevier B.V.

1. Introduction

The Network Functions Virtualization (NFV) extends the func-
tionality provided by Software-Defined Networking [1] (SDN). It
is a virtualization technology [2] that aims to replace the func-
tionality provided by traditional networking hardware using soft-
ware solutions [3-11]. Both NFV and SDN can be implemented
using the OpenFlow technology [12,13]. On the one hand, SDN
divides the traditional network hardware into two parts: the data
plane and the control plane for efficient network configuration
and management. On the other hand, NFV moves the services
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like firewall, WAN acceleration, load balancing and intrusion pre-
vention system away from dedicated hardware into a virtualized
environment. Thereby enabling, service providers to dynamically
offer these services to their customers, with the ability to set up
on-demand. Infrastructure-as-a-service (IaaS) is the most common
service model in cloud computing, and network management is
crucial in a large [aaS cloud computing environments. It is ex-
pected that the implementation of NFV can significantly enhance
the performance of IaaS clouds [14]. By using virtualized network
devices to replace traditional hardware, it becomes more conve-
nient for network management in IaaS clouds. Besides the cloud
environment, network virtualization can also be implemented in
the traditional network environment. With the aim to enhance
traditional network functionality, several studies on network vir-
tualization [4-11] targeted the traditional networking hardware,
such as firewalls, load balancers, routers, and managed switches.
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Fig. 1. Traditional network architecture mapping to a software defined network.

OpenStack, a well known open source cloud operating system
that has become very popular in recent years [ 15-18]. OpenStack
contains a core network service called Neutron that provides net-
work services for the instances running on OpenStack. Neutron
is based on Open vSwitch and supports several applications and
plugins. In this paper, we raise the following question: “if Neutron
can be used to provide network services for virtual machines, why not
to use it to provide same services for traditional physical machines?”
Therefore, in this paper we used Neutron to implement a real-time
traffic monitoring system and compared its performance with a
similar hardware system.

Our system aims to provide network administrators an easy-
to-build network traffic monitoring system without additional
hardware costs such as those related to routers and switches. This
is achieved by providing routing functions to replace traditional
layer 3 (L3) network hardware devices. In particular, in the Neutron
architecture, we set an iptable filter in network namespace to
implement a real-time network traffic calculator. Also, NetFlow
configuration in Open vSwitch is set to send NetFlow data that is
used for network analysis. Further, the OpenFlow controller is used
to manage the entire service. We also implement a virtual switch
and establish a traffic monitoring system with OpenFlow to man-
age networks. We used the SDN to build a system that has a traffic
monitoring functionality as well as functions of a physical switch.
In other words, we focus on virtualization of essential functions
of a physical switch to implement a network traffic monitoring
system. The proposed system is extensible to various other net-
work environments that can assist the network administrators to
monitor and manage networks. The proposed system can be easily
combined with conventional computers, thereby eliminating the
need to buy additional network hardware.

2. Background
2.1. NetFlow

The NetFlow [ 19] functionality incorporated in the Cisco router
is used to analyze network traffic and generate data. The network
administrators can use the data provided by NetFlow to determine
network usage. The NetFlow version 5 data consists of network
packets that define seven values: 1. Ingress interface, 2. Source IP
address, 3. Destination IP address, 4. IP protocol, 5. Source port,
6. Destination port, 7. IP type. The classic NetFlow architecture
incorporates three elements to monitor the network. These include
Flow exporter, Flow collector, and Analysis application. The Flow
exporter generates the flow data; this data is sent to the Flow
collector for storage and analysis.

2.2. Open vSwitch

In this paper, we choose the Open vSwitch [20] which is a virtual
switch based on open source technology [21,22]. Open vSwitch
provides protocols to communicate with OpenFlow controller, so
it is an essential element to implement the SDN. Running virtual
switches can provide OSI Layer 2 network communication for the
virtual machine in laaS clouds as it can be treated as a software
switch by network administrators.

2.3. OpenFlow

OpenFlow [23] is an open standard protocol to control the
packet flow over the network. It divides traditional switch into two
parts, i.e., data plane and control plane. In the traditional network-
ing devices, the forwarding plane (data plane) and routing plane
(control plane) are on the same device. The network administrators
must learn to control different devices as these are sold by several
vendors, each having their own rules and standards. Therefore, it
is complicated and inconvenient to set up a configuration success-
fully. A network administrator will, therefore, need considerable
knowledge of most of the present device types. In comparison
to traditional network devices, OpenFlow gives a new way for
network administrators to manage networks: using a controller
to control routing rules, and hardware only does packet forward-
ing. OpenFlow Controller has many distribution versions. In this
paper we consider the OpenDayLight [24] version, OpenDayLight
provides several plugins that can cater to several requirements
posed by the network administrator. For instance, in this paper,
we incorporate OpenDayLight plugin with OpenStack Neutron.

2.4. OpenStack

OpenStack [25] is a popular cloud operating system that com-
prises three main components: computing, networking and stor-
age. The compute component offers service like deploying virtual
machines and managing images. Networking component helps
each component and virtual machine to communicate. Storage
component offers users or virtual machines different type of stor-
age space to manage. These components in conjunction are used to
build an IaaS cloud. OpenStack provides an easy-to-use dashboard
and APIs to manage the laaS components.
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2.4.1. Neutron

Neutron [26] is a network service that provides OpenStack
instances network capabilities. It is based on Open vSwitch and
is combined with three components: ML2 plugin, L3 agent, and
the DHCP agent. The ML2 plugin provides network VLAN and
network tunnel for compute nodes. L3 agent builds a virtual router
in network service and DHCP agent acts as a virtual DHCP server.

3. System design and implementation

In this section, our system design and architecture are first
presented. Next, the implementation of the proposed system is
introduced.

3.1. System architecture

In the traditional network environment, the traffic monitoring
system usually uses the physical switch as shown in Fig. 1. In this
environment, to retrieve NetFlow data for analysis, the physical
switch should be able to support the NetFlow protocol. Our goal
is to re-model this system architecture by using the virtualization
technology, since this approach can greatly improve flexibility for
network management. In this article, we describe the design of
a network traffic monitoring system that incorporates a virtual
switch, an OpenFlow controller, and a traffic measuring service.

The system consists of three nodes: one data node, one network
node and one network node backup to enable high availability
(HA) of the system. Network traffic is entered using the virtual
switch. The measuring service calculates the traffic, and then the
collected data are sent by a message service to the data node.
A data input service sends the data to database. When the data
input service detects problems such as malware activity, policy
violation, protocol anomaly, virus detection, bandwidth anomaly,
etc. in data, it uses an application program interface (API) in the
OpenFlow controller to control the virtual switch. Fig. 3 illustrates
the system architecture. The network node uses the message ser-
vice to examine each other. If the master node is offline or fails,
then a slave node replaces it. This ensures that the Internet usage
through the network node will not be interrupted. The network
administrator can use a web interface to assess the state of the
network (see Fig. 2).

3.2. Design flow

3.2.1. Network node

To implement virtualization of the network function, we design
anetwork node (Fig. 4) that is used to control the virtual switch and
calculate network traffic. This system is based on the concept of
SDN using OpenDayLight architecture. The network node is used to
perform four services. When the network traffic enters the virtual
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Table 1

Data collections format.
Title LastUpdate CheckTime Datal Data2
Unit timestamp Seconds Bytes Packets

router, the first service initially manages it, i.e., Open vSwitch, and
subsequently detected by the controller rules of OpenFlow (Open-
Daylight), i.e., the second service. When no problem is detected,
traffic is allowed to go through Open vSwitch and transferred to
a gateway in a physical network environment. The third service
involves calculating network traffic in the process by using defined
rules. The filter table of iptables is used to calculate the number of
network bytes and whether the packet is for input or output. All
data are then sent to the fourth service, i.e., the message service.
Each statistical data item is stored in a data node by the mes-
sage service according to the Advanced Message Queuing Protocol
(AMQP). To calculate traffic amount, the amount of data through-
put in the filter table at a check time is assessed. The measuring
service defines the check time. Different times may give rise to
varied results, which we will discuss in the experimental section.

3.2.2. Data node

The data node is used to process data collected from the net-
work nodes and to perform four services: the web service, data
processing service, message service, and database service (Fig. 5).
The data processing service is employed to format data. Data sent
by the message service are obtained according to the AMQP. Table 1
shows the data collection format. The data processing service is
also used to detect problems in data. When detecting data with
problems, the data processing service notifies the OpenFlow con-
troller API, which manages Open vSwitch. The OpenFlow controller
can then limit source data traffic to prevent malicious intrusions.
Then the processed data are sent to database. These data are used to
display or analyze in the web interface. The data processing service
is coded in Python. In this process, data must be frequently writ-
ten and read. Therefore, we use the NoSQL database architecture
(MongoDB).

Web Interface

Message Service

Traffic Data Input

@ Data Process Service

©) Database

@

Fig. 5. Data node architecture.

3.2.3. Network node

We use the OpenStack Neutron L3 solution to back up the
network. The primary technology used is the Virtual Router Redun-
dancy Protocol (VRRP). The system architecture is shown in Fig. 6.
Two nodes using the message service maintain the connection,
each ensuring that the other is alive. When the network traffic
enters, it is first assessed by the master node. When the message
service nodes cannot detect each other, the network traffic is trans-
ferred to the slave node. Using VRRP ensures that the service is not
interrupted when a user uses the network service. Implementation
of VRRP can be divided into two parts: creating a virtual router
between two nodes and replacing a failed master node with a slave
node.

The first part of the VRRP solution is to create a virtual router
between two nodes, as shown in Fig. 7. The master node uses Open
vSwitch to create the virtual router, high availability (HA) network,
and HA port. The Network agent builds interface and HA configu-
ration file, and then sends messages to the slave node. The slave
node gets the message and is set with the same configuration as the
master node and then keeps the connection with the master node.

The second part of the VRRP solution is to enable the slave
node to replace the master node when it fails, as shown in Fig. 8.
When the virtual router in the master node fails or is offline, the
network agent will send the message to the slave node. The slave
node starts up a virtual router according to configuration files. If
the network agent in the master node fails or is offline, the slave
node will automatically start up the virtual router when it cannot
detect connection of the master node.

3.3. Monitoring mechanism

The traffic monitoring mechanism in the proposed system is di-
vided into two parts: real-time monitoring function and statistical
data analysis. The real-time monitoring function combines with
the OpenFlow controller so that the system will able to use APIs
to manage traffic entering into the system. Statistical analysis of
traffic data is displayed by NetFlow. Network administrators can
use these real-time monitoring function to detect network behav-
ior anomaly and statistical data to analyze the network traffics.

3.3.1. Real-time traffic monitoring function

One way to implement a real-time traffic monitoring function
is to use the network namespace as shown in Fig. 9. OpenFlow
System uses ip netns to create a network namespace so that
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namespace inherits configuration from the host. The traffic will
come into specific namespace when the namespace is used to
create a virtual router.

Namespace creates rules in the iptable filter. If the source IP
of coming traffic is matched with rules then this traffic data will
be collected. Collected data will be periodically sent to the data
node for administrators to analyze. The work flow of the filter table
calculation mechanism is shown in Fig. 10

3.3.2. Statistical data analysis

The statistical data analysis is implemented in the way simi-
lar to that of implementing real-time traffic monitoring function.
The system uses the ip netns command to create the network
namespace and virtual router. Open vSwitch supports the NetFlow

protocol to collect all packet information through virtual routers.
This packet information will be translated as NetFlow data and sent
to the data node that periodically collects data by means of flow-
capture as shown in Fig. 11.

3.3.3. Calculate mechanism

In the proposed system, network monitoring and traffic mea-
surement are the two most important functions. For network ad-
ministrators to easily manage networks, a limit value of K is set for
reference in real-time traffic monitoring. When real-time traffic is
bigger than K, the OpenFlow controller will perform some actions
on this traffic flow.

Limit = K (1)
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The real-time traffic monitoring unit calculates the data
throughput within a checking time interval which is defined based
on measuring service. However, different checking time may ob-
tain different results. Eq. (2) is used to calculate number of traffic
bytes statistically (i.e., traffic flow) and Eq. (3) is used to calculate
statistical packets. Datay, is traffic flow data in bytes, T}, is packets
bytes, T, is packets time and T, is checking time.

Ty
Datay, = —
c

(2)

After receiving real-time data, the data node formats the data
to help network administrators easily monitor the network envi-
ronment. The used format is shown in Table 1. The table includes
last-updating time, checking time, bytes, and packet information.

For statistical analysis, we use the NetFlow data format. The
used version of NetFlow data is version 5, which has been widely
adopted. As shown in Table 2, the format includes source IP, des-
tination IP, protocol type, source port, destination port, bytes, and
packets.

We can set K according to statistical data in real-time traffic
service. For example, K can be set according to statistics of a single-
day data. We can treat single-day statistical data as a normal
distribution, and after getting rid of outliers, calculate its mean
to set K. In the real-time traffic monitoring unit, two values are
collected: bytes and packets. When network traffic has abnormal
events, it may cause exception values in bytes or packets. So K can
be set according to statistics of either one of them.

We considered the “68—95—99.7” rule where 68.27%, 95.45%
and 99.73% of the values lie within one, two and three standard
deviations of the mean, respectively. Assuming that the data in our

_{
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]_r CALCULATION
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RULE

_{
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Fig. 10. Filter table calculation mechanism.
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Fig. 12. Web management—flow state.

data set are normally distributed, 99.7% of the data will be within
+/3 standard deviations from the mean for outlier value [27].

1
o =EXp) = n;‘xn (4)
1 N
mp =EOp) = > X (5)
n=1

First, we suppose set X, and set X, represent statistics of bytes
and packets, respectively. Based on these two sets, we obtain two
means: up and pp.

N

1
Var(Xy) = El(x — '] = ;(xn — ) (6)
o = +/Var(Xy) (7
outlier = Op, = Xn — Mo (8)

(e

1 N
Var(X,) = E[(x — up)*] = N ;(xn — 11p)? 9)
o = ,/Var(Xp) (10)
outlier = Oy, = Xn = Mo (11)

o

We further obtain values of the variance, standard deviation
and outlier. The purpose is to get an accurate mean, which can be
used to set K for the real-time traffic monitoring system.

Algorithm 3.1: ESTABLISH NEW STATISTICAL DATA SET(BYTES)(X}, O)

comment: Remove outliers value from Statistical Data Array Xp[i]
comment: Oyli] is a outliers array

for n < 1 to length of X,
do [if =3 = 0pli] <3
then {Xy[i] < X[i].val.del

Algorithm 3.2: ESTABLISH NEW STATISTICAL DATA SET(PACKETS)(X,, O)

comment: Remove outliers value from Statistical Data Array X,[i]
comment: O,[i] is a outliers array

for n < 1to length of X,
d if —3<0p[i]<3
then {X,[i] < X,[il.val.del

We drop two outlier values Op; and Oy, and recalculate means
for the two data sets X;, and X;,. Now we obtain two means that can
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Fig. 13. Web management—flow data.
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be used to set K, i.e., two values of K are decided, one according to
bytes data Eq. (12), the other according to packets data Eq. (13).

N
1
o =EXp) = 1 ) xn =Ko (12)
n=1
1 N
Hp = EOXp) = ;xn =K, (13)

3.4. Web management

To help the network administrator efficiently manage the net-
work, we design a web management page. This web page consists
of three functions: the real-time flow state monitoring, statistical
data query, and virtual router status. The web management page in
default shows real-time traffic data on the index page, which will
automatically load real-time traffic data collected on the current
day. According to configuration settings, data will be written into
the database every minute. The network administrator can obtain
those data from this page. The network administrator can also
select the date by using the calendar function. The observing time,
shown in the x-axis, can be zoomed in or out as required.

Table 3

Hardware specification.
Host name CPU Memory NIC
Data node Intel(R) Xeon(R) E5645 8 GB 1Gb
Network node Intel(R) Xeon(R) E5645 8 GB 1Gb
Network backup Intel(R) Xeon(R) E5645 8GB 1Gb

Table 4

Software specification.
Software OpenDayLight Open vSwitch OpenStack Python
Versopm Helium 2.0.2 Juno 2.76

As shown in Fig. 12, the statistics data query page offers infor-
mation collected from NetFlow capture over the day. Every day the
captured data are sent to database at 12.00 am. And those data can
be queried by using this query page, which automatically displays
top 20 sources IPs on this page after sorting all data. The network
administrator can reference this information to adaptively set the
value of K for the monitoring system.

The router status page displays states of routers: indicating
which router providing network services, and showing the other
router being at work, standby, or off-line as shown in Fig. 14.
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The network administrator can use this page to quickly tell the
operation status of the whole network.

4. Experimental environment and results analysis

This section first presents the experimental environment for the
proposed system design. Then, we implement the proposed system
and obtain several useful results based on this experimental envi-
ronment.

4.1. Experimental environment

4.1.1. Hardware

The experimental environment consists of three computers
with same hardware specifications: 12-core CPU, 8 GB memory,
and 1 Gb Network interface cards, as listed in Table 3.

4.1.2. Software

Table 4 list the software used in our experiments. We used
Helium version as the OpenFlow controller. We used Open vSwitch
ver. 2.0.1, and used OpenStack with ver. Juno. Lastly, we used
Python ver. 2.7.6.

We have built the proposed system in a real network envi-
ronment. This system captures traffic of computers connecting
to the Internet and manages IPs of computers. The experimental
architecture is shown in Fig. 15.

4.2. Experimental results

We designed and conducted several experiments to test the
performance of our proposed system. First, we tested the virtual
router loading capacity as shown in Fig. 13. Then the perfor-
mance comparison between the virtual and physical routers was
conducted. Various TCP/UDP packet sizes were used as input to
test its performance. The network response times were measured.
Later we tested the accuracy of the monitoring system, consisting
of real-time measurement and statistical data analysis. We used
different database architectures to store data and compared their
data processing speeds. Finally, we tested the performance of the
high availability (HA) mechanism in this system.

4.2.1. Virtual router experiments

We used network testing software iperf for performance mea-
surement of the virtual routers. Our experimental testbed consists
of the client and server. A large number of packets were sent by
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£ 400
% 300 :
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mvswitch ®switch

Fig. 16. TCP input testing.

the client to perform the stress test of the network. We used two
protocols, i.e., TCP and UDP and considered six packet sizes of:
64 bytes, 128 bytes, 256 bytes, 512 bytes, 1024 bytes, and 2048
bytes as shown in Figs. 17 and 18, to compare performance of the
virtual router and physical router as shown in Fig. 14. Fig. 16 shows
results of the TCP experiment. From the bar chart, we observe that
when the packet size increases, the network speed increases. The
maximum speed appears with the packet size of 2048 bytes.

As mentioned previously, the hardware specification of the
network interface is 1 Gb per second. From the line chart, we can
find the maximum speed of the physical router is nearly 90% of 1
Gb, and that of the virtual router speed is nearly 85% of 1 Gb. We
conclude that performance of hardware router is better than that
of the virtual one. However, since performance of virtual router is
nearly 85% of the network interface, we consider it sufficient if the
network usage is not significant.

Fig. 18 shows results of the UDP experiment. From the bar
chart, we observe that the maximum speed appears in packets with
the size of 1024 bytes. When the packet size increases to 2048
bytes, speeds of the physical and virtual router are slowed down.
It may be caused due to the maximum transfer unit (MTU). UDP is
simpler protocol than TCP, and it we cannot record lots of packet
information.
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From the line chart, we observe that in case of UDP, the speeds
of both virtual and physical routers have little difference, approx-
imately 5%. This result means that when UDP is used to transfer
packets, the user cannot tell the difference between the virtual and
physical routers (see Fig. 19).

Besides testing transmission speed of TCP and UDP, we also
tested latency of the network, as shown in Fig. 20. This experiment
lasted 5 min. We pinged to test network latency time per second;
the target was the Chunghwa Telecom Domain name server. We
observe that the trend of the latency of the virtual or physical
network was similar, and long latency times have been spotted in
both of them.

4.2.2. Real-Time measuring experiments

To test the accuracy of the real-time measurement system, we
considered three time periods: 10 s, 30 s, and 60 s to write the
same file to the database. The results are shown in Fig. 21. From our
results, we found that when the data write frequency is higher, the
accuracy is higher as well. However, writing database with high
frequency may cause high traffic loading. From the line chart in
Fig. 22, we observe the accuracy is almost 99.64% when measured

Packets Size: Bytes

=—=vswitch switch

Fig. 19. UDP Input Limit.

once per minute; and 99.82% measured once per 10 s. We decide to
use the minute period in our measurement system configuration.

4.2.3. Database experiments

Because lots of data are written into the database in our sys-
tem, the performance evaluation of database system is critical.
We compared two databases of different architecture: relational
database and NoSQL. To test their performance, we used raw data
of large amount: 240,000 bytes, 1,620,000 bytes, 6,370,000 bytes,
26,100,000 bytes, and 38,650,000 bytes. Each raw data set was
written into both databases and its processing time was observed.
The experimental results are plotted in Fig. 23. We observe that
the processing time of NoSQL is longer than that of the relational
database when the data size is more than 1,620,000 bytes. From the
line chart, where y-axis represents amount of processed raw data
per second, we observe that when the amount of data is 240,000
bytes, the processing speed of NoSQL is faster than that of relational
database; but when the size of raw data increases to 1,620,000, the
processing speed of relational database is faster than that of NoSQL.
Moreover, as the size of data increases, the growth rate of process-
ing speed of relational database slows down, and processing speed
NoSQL almost remains constant. We chose NoSQL to implement
the database in our system since, in our network environment, the
amount of data in a day is close to 240,000 bytes (see Fig. 24).
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Fig. 22. Real-time measurement testing.

4.2.4. NetFlow data experiments

We conducted experiments to verify the accuracy of the Net-
Flow data collected from the virtual router. We compared these
data with the data collected from the Cisco router. Fig. 25 shows
the results. We observe that data collected from the Cisco router
are similar to raw data, whereas data collected from the virtual
router show difference. As shown in Fig. 26, the relative error in
the Cisco router is less than —1%, but that in the virtual router is
almost 12%.

The data collected by the NetFlow can be used to set the limit
value K. Fig. 27 shows 7 days statistics data from the virtual router
for our department. The unit of the y-axis is amount, and the x-axis
is Mbps. We observe that most flow is between 4 and 7 Mbps. We
may set limit K as 15 Mbps for this statistics data. When an IP’s
flow is greater than this value, there is some abnormal activity in
it. Then network administrator can treat this IP as an observation
target.

4.2.5. Network high availability experiments

We performed experiments to test the availability and response
time of the high availability (HA) function of the network system.
We used iperf to test the network. We stopped the master network
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node and observed the reaction of the network flow. Figs. 28 and
29 shows the experimental results. We repeated this experiment
several times, for which we observed the best response time of
3 s and the worst response time of 13 s. From the figure, we
observe that the network flow reaches 0 at time 5 s of time of
the experiment because the master network node was shut-down
at that time. In the best case scenario, the network flow came
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Fig. 26. NetFlow data measurement testing.

up to the normal value at time 8 s, which means network HA
was working successfully. In the worst case scenario, the master
network node was stopped at time 4 s. Later, the network flow
comes up to the normal value at time 17 s, thus, the response time
of HA was 13 s.

4.2.6. OpenFlow controller experiments
We performed experiments to verify the effectiveness of the
network management mechanism. Fig. 30 shows the experimental

M vswitch netflow size

Fig. 25. NetFlow data measuring testing.
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results. A personal computer was used to download a file from Web controller to deny IP of this PC. From the figure, we observe that the
via the virtual router; when download speed is greater than the peak speed is about 50 Mbps. We set K as 50 Mbps at time 6 s. We
limit value K, the real-time monitoring system called the OpenFlow observed that the flow decreases at time 7 s, and it comes down



700

C-T. Yang, S.-T. Chen, ].-C. Liu et al. / Future Generation Computer Systems 93 (2019) 687-701

OpenFlow Controller Reaction Time

60

50

40

30

Mbs

20

10

7

8

—speed

Fig. 30. OpenFlow controller reaction time.

to 0 at time 9 s. We canceled K and deleted the IP from the denial
list at time 11 s, and observed that the flow comes up to 50 Mbps
again. The experimental result shows that the OpenFlow controller
is effective in managing the virtual router and its response time is
very fast as shown in Fig. 30.

5. Conclusion and future work

This work uses software-defined networks and network func-
tions virtualization to implement a network traffic monitoring
system and compares its performance with that of the system with
traditional hardware architecture. From the experimental results,
we find that although the proposed system cannot out-perform
the system with traditional hardware architecture, the proposed
system can closely match the performance of traditional networks
at cheaper costs and adds more flexibility to the network man-
agement tasks. The implemented system fulfills our initial goals:
to use concepts of network functions virtualization and software-
defined network to build a network traffic monitoring system and
make it easy for network administrators to manage networks. As
the future work, we aim to test the proposed system in the broader
network environment. We also intend to test our system with a
large number of cloud application workloads.
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