Future Generation Computer Systems 93 (2019) 687-701

Contents lists available at ScienceDirect a =
FIBICIS!
Future Generation Computer Systems
journal homepage: www.elsevier.com/locate/fgcs =
Implementation of a real-time network traffic monitoring service]

with network functions virtualization

Check for
updates

Chao-Tung Yang?, Shuo-Tsung Chen "¢, Jung-Chun Liu?, Yao-Yu Yang?, Karan Mitra ¢,

e,f,*

Rajiv Ranjan

2 Department of Computer Science, Tunghai University, Taichung City, 40704, Taiwan, ROC

b Intelligence Recognition Industry Service Research Center (AIR-IS Research Center), National Yunlin University of Science and Technology, Yunlin

64002, Taiwan, ROC

¢ College of Future, Bachelor Program in Interdisciplinary Studies, National Yunlin University of Science and Technology, 64002, Taiwan, ROC
d Department of Computer Science, Electrical and Space Engineering, Luled University of Technology, Sweden

€ School of Computer, China University of Geosciences, China
fSchool of Computing Science, Newcastle University, United Kingdom

HIGHLIGHTS

e This work customizes network service Neutron on OpenStack.

e The traditional managed switch is replaced by using Open vSwitch and a real-time traffic monitoring function is implemented with an IP-table filter.
o Since a NetFlow collector is built, there is no need to use hardware port mirrors to collect NetFlow data.

e This service integrates with OpenFlow to manage networking.

e The proposed network monitoring service in this work can be implemented in any kind of networking environments.

ARTICLE INFO ABSTRACT

Article history:

Received 19 February 2018

Received in revised form 11 July 2018
Accepted 29 August 2018

Available online 24 September 2018

Keywords:

Software-defined networking
Network functions virtualization
OpenFlow

Virtualized switch

Network traffic monitoring

The Network Functions Virtualization (NFV) extends the functionality provided by Software-Defined
Networking (SDN). It is a virtualization technology that aims to replace the functionality provided
by traditional networking hardware using software solutions. Thereby, enabling cheaper and efficient
network deployment and management. The use of NFV and SDN is anticipated to enhance the perfor-
mance of Infrastructure-as-a-Service (IaaS) clouds. However, due to the presence of a large number of
network devices in laaS clouds offering a plethora of networked services, there is need to develop a
traffic monitoring system for the efficient network. This paper proposes and validates an extensible SDN
and NFV-enabled network traffic monitoring system. Using extensive experiments, we show that the
proposed system can closely match the performance of traditional networks at cheaper costs and by
adding more flexibility to network management tasks.

© 2018 Published by Elsevier B.V.

1. Introduction

The Network Functions Virtualization (NFV) extends the func-
tionality provided by Software-Defined Networking [1] (SDN). It
is a virtualization technology [2] that aims to replace the func-
tionality provided by traditional networking hardware using soft-
ware solutions [3-11]. Both NFV and SDN can be implemented
using the OpenFlow technology [12,13]. On the one hand, SDN
divides the traditional network hardware into two parts: the data
plane and the control plane for efficient network configuration
and management. On the other hand, NFV moves the services

* Corresponding author at: School of Computing Science, Newcastle

University, United Kingdom.
E-mail addresses: ctyang@thu.edu.tw (C.-T. Yang), raj.ranjan@ncl.ac.uk
(R. Ranjan).

https://doi.org/10.1016/j.future.2018.08.050
0167-739X/© 2018 Published by Elsevier B.V.

like firewall, WAN acceleration, load balancing and intrusion pre-
vention system away from dedicated hardware into a virtualized
environment. Thereby enabling, service providers to dynamically
offer these services to their customers, with the ability to set up
on-demand. Infrastructure-as-a-service (IaaS) is the most common
service model in cloud computing, and network management is
crucial in a large [aaS cloud computing environments. It is ex-
pected that the implementation of NFV can significantly enhance
the performance of IaaS clouds [14]. By using virtualized network
devices to replace traditional hardware, it becomes more conve-
nient for network management in IaaS clouds. Besides the cloud
environment, network virtualization can also be implemented in
the traditional network environment. With the aim to enhance
traditional network functionality, several studies on network vir-
tualization [4-11] targeted the traditional networking hardware,
such as firewalls, load balancers, routers, and managed switches.

https://doi.org/10.1016/j.future.2018.08.050
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2018.08.050&domain=pdf
mailto:ctyang@thu.edu.tw
mailto:raj.ranjan@ncl.ac.uk
https://doi.org/10.1016/j.future.2018.08.050

688 C-T. Yang, S.-T. Chen,].-C. Liu et al. / Future Generation Computer Systems 93 (2019) 687-701

Traditional Network Architecture

Network Management
Software

Packet Forwarding

<— OpenFlow Protocol
Software-Defined Network

Qos Virtual IP Access

S Management Control

: : Control
Plane

OpenFlow Controller

Data

OpenFlow OpenFlow

switch switch P l ane

Packet Forwarding)

Fig. 1. Traditional network architecture mapping to a software defined network.

OpenStack, a well known open source cloud operating system
that has become very popular in recent years [15-18]. OpenStack
contains a core network service called Neutron that provides net-
work services for the instances running on OpenStack. Neutron
is based on Open vSwitch and supports several applications and
plugins. In this paper, we raise the following question: “if Neutron
can be used to provide network services for virtual machines, why not
to use it to provide same services for traditional physical machines?”
Therefore, in this paper we used Neutron to implement a real-time
traffic monitoring system and compared its performance with a
similar hardware system.

Our system aims to provide network administrators an easy-
to-build network traffic monitoring system without additional
hardware costs such as those related to routers and switches. This
is achieved by providing routing functions to replace traditional
layer 3 (L3) network hardware devices. In particular, in the Neutron
architecture, we set an iptable filter in network namespace to
implement a real-time network traffic calculator. Also, NetFlow
configuration in Open vSwitch is set to send NetFlow data that is
used for network analysis. Further, the OpenFlow controller is used
to manage the entire service. We also implement a virtual switch
and establish a traffic monitoring system with OpenFlow to man-
age networks. We used the SDN to build a system that has a traffic
monitoring functionality as well as functions of a physical switch.
In other words, we focus on virtualization of essential functions
of a physical switch to implement a network traffic monitoring
system. The proposed system is extensible to various other net-
work environments that can assist the network administrators to
monitor and manage networks. The proposed system can be easily
combined with conventional computers, thereby eliminating the
need to buy additional network hardware.

2. Background
2.1. NetFlow

The NetFlow [19] functionality incorporated in the Cisco router
is used to analyze network traffic and generate data. The network
administrators can use the data provided by NetFlow to determine
network usage. The NetFlow version 5 data consists of network
packets that define seven values: 1. Ingress interface, 2. Source IP
address, 3. Destination IP address, 4. IP protocol, 5. Source port,
6. Destination port, 7. IP type. The classic NetFlow architecture
incorporates three elements to monitor the network. These include
Flow exporter, Flow collector, and Analysis application. The Flow
exporter generates the flow data; this data is sent to the Flow
collector for storage and analysis.

2.2. Open vSwitch

In this paper, we choose the Open vSwitch [20] which is a virtual
switch based on open source technology [21,22]. Open vSwitch
provides protocols to communicate with OpenFlow controller, so
it is an essential element to implement the SDN. Running virtual
switches can provide OSI Layer 2 network communication for the
virtual machine in laaS clouds as it can be treated as a software
switch by network administrators.

2.3. OpenFlow

OpenFlow [23] is an open standard protocol to control the
packet flow over the network. It divides traditional switch into two
parts, i.e., data plane and control plane. In the traditional network-
ing devices, the forwarding plane (data plane) and routing plane
(control plane) are on the same device. The network administrators
must learn to control different devices as these are sold by several
vendors, each having their own rules and standards. Therefore, it
is complicated and inconvenient to set up a configuration success-
fully. A network administrator will, therefore, need considerable
knowledge of most of the present device types. In comparison
to traditional network devices, OpenFlow gives a new way for
network administrators to manage networks: using a controller
to control routing rules, and hardware only does packet forward-
ing. OpenFlow Controller has many distribution versions. In this
paper we consider the OpenDayLight [24] version, OpenDayLight
provides several plugins that can cater to several requirements
posed by the network administrator. For instance, in this paper,
we incorporate OpenDayLight plugin with OpenStack Neutron.

2.4. OpenStack

OpenStack [25] is a popular cloud operating system that com-
prises three main components: computing, networking and stor-
age. The compute component offers service like deploying virtual
machines and managing images. Networking component helps
each component and virtual machine to communicate. Storage
component offers users or virtual machines different type of stor-
age space to manage. These components in conjunction are used to
build an IaaS cloud. OpenStack provides an easy-to-use dashboard
and APIs to manage the laaS components.

C-T. Yang, S.-T. Chen,].-C. Liu et al. / Future Generation Computer Systems 93 (2019) 687-701 689

Internet

Network Traffic

Monitor System

User User User

Fig. 2. New network environment.

Network Traffic Monitor System

Web Interface

Network node
OpenFlow

Network Backup
OpenFlow

Controller Controller
Message Message Message
Service Service Service
Data Process Measure Measure
Service Service Service
Database Open vSwitch Open vSwitch

Fig. 3. System architecture.

2.4.1. Neutron

Neutron [26] is a network service that provides OpenStack
instances network capabilities. It is based on Open vSwitch and
is combined with three components: ML2 plugin, L3 agent, and
the DHCP agent. The ML2 plugin provides network VLAN and
network tunnel for compute nodes. L3 agent builds a virtual router
in network service and DHCP agent acts as a virtual DHCP server.

3. System design and implementation

In this section, our system design and architecture are first
presented. Next, the implementation of the proposed system is
introduced.

3.1. System architecture

In the traditional network environment, the traffic monitoring
system usually uses the physical switch as shown in Fig. 1. In this
environment, to retrieve NetFlow data for analysis, the physical
switch should be able to support the NetFlow protocol. Our goal
is to re-model this system architecture by using the virtualization
technology, since this approach can greatly improve flexibility for
network management. In this article, we describe the design of
a network traffic monitoring system that incorporates a virtual
switch, an OpenFlow controller, and a traffic measuring service.

The system consists of three nodes: one data node, one network
node and one network node backup to enable high availability
(HA) of the system. Network traffic is entered using the virtual
switch. The measuring service calculates the traffic, and then the
collected data are sent by a message service to the data node.
A data input service sends the data to database. When the data
input service detects problems such as malware activity, policy
violation, protocol anomaly, virus detection, bandwidth anomaly,
etc. in data, it uses an application program interface (API) in the
OpenFlow controller to control the virtual switch. Fig. 3 illustrates
the system architecture. The network node uses the message ser-
vice to examine each other. If the master node is offline or fails,
then a slave node replaces it. This ensures that the Internet usage
through the network node will not be interrupted. The network
administrator can use a web interface to assess the state of the
network (see Fig. 2).

3.2. Design flow

3.2.1. Network node

To implement virtualization of the network function, we design
anetwork node (Fig. 4) that is used to control the virtual switch and
calculate network traffic. This system is based on the concept of
SDN using OpenDayLight architecture. The network node is used to
perform four services. When the network traffic enters the virtual

690 C-T. Yang, S.-T. Chen,].-C. Liu et al. / Future Generation Computer Systems 93 (2019) 687-701

Network node
OpenFlow Controller

OpenDayLight

Message Service

Measure Service

Iptables Filter

Virtual Router

Network Traffic Input

Fig. 4. Network node architecture.

Table 1

Data collections format.
Title LastUpdate CheckTime Datal Data2
Unit timestamp Seconds Bytes Packets

router, the first service initially manages it, i.e., Open vSwitch, and
subsequently detected by the controller rules of OpenFlow (Open-
Daylight), i.e., the second service. When no problem is detected,
traffic is allowed to go through Open vSwitch and transferred to
a gateway in a physical network environment. The third service
involves calculating network traffic in the process by using defined
rules. The filter table of iptables is used to calculate the number of
network bytes and whether the packet is for input or output. All
data are then sent to the fourth service, i.e., the message service.
Each statistical data item is stored in a data node by the mes-
sage service according to the Advanced Message Queuing Protocol
(AMQP). To calculate traffic amount, the amount of data through-
put in the filter table at a check time is assessed. The measuring
service defines the check time. Different times may give rise to
varied results, which we will discuss in the experimental section.

3.2.2. Data node

The data node is used to process data collected from the net-
work nodes and to perform four services: the web service, data
processing service, message service, and database service (Fig. 5).
The data processing service is employed to format data. Data sent
by the message service are obtained according to the AMQP. Table 1
shows the data collection format. The data processing service is
also used to detect problems in data. When detecting data with
problems, the data processing service notifies the OpenFlow con-
troller API, which manages Open vSwitch. The OpenFlow controller
can then limit source data traffic to prevent malicious intrusions.
Then the processed data are sent to database. These data are used to
display or analyze in the web interface. The data processing service
is coded in Python. In this process, data must be frequently writ-
ten and read. Therefore, we use the NoSQL database architecture
(MongoDB).

Web Interface

Message Service

Traffic Data Input

@ Data Process Service

©) Database

@

Fig. 5. Data node architecture.

3.2.3. Network node

We use the OpenStack Neutron L3 solution to back up the
network. The primary technology used is the Virtual Router Redun-
dancy Protocol (VRRP). The system architecture is shown in Fig. 6.
Two nodes using the message service maintain the connection,
each ensuring that the other is alive. When the network traffic
enters, it is first assessed by the master node. When the message
service nodes cannot detect each other, the network traffic is trans-
ferred to the slave node. Using VRRP ensures that the service is not
interrupted when a user uses the network service. Implementation
of VRRP can be divided into two parts: creating a virtual router
between two nodes and replacing a failed master node with a slave
node.

The first part of the VRRP solution is to create a virtual router
between two nodes, as shown in Fig. 7. The master node uses Open
vSwitch to create the virtual router, high availability (HA) network,
and HA port. The Network agent builds interface and HA configu-
ration file, and then sends messages to the slave node. The slave
node gets the message and is set with the same configuration as the
master node and then keeps the connection with the master node.

The second part of the VRRP solution is to enable the slave
node to replace the master node when it fails, as shown in Fig. 8.
When the virtual router in the master node fails or is offline, the
network agent will send the message to the slave node. The slave
node starts up a virtual router according to configuration files. If
the network agent in the master node fails or is offline, the slave
node will automatically start up the virtual router when it cannot
detect connection of the master node.

3.3. Monitoring mechanism

The traffic monitoring mechanism in the proposed system is di-
vided into two parts: real-time monitoring function and statistical
data analysis. The real-time monitoring function combines with
the OpenFlow controller so that the system will able to use APIs
to manage traffic entering into the system. Statistical analysis of
traffic data is displayed by NetFlow. Network administrators can
use these real-time monitoring function to detect network behav-
ior anomaly and statistical data to analyze the network traffics.

3.3.1. Real-time traffic monitoring function

One way to implement a real-time traffic monitoring function
is to use the network namespace as shown in Fig. 9. OpenFlow
System uses ip netns to create a network namespace so that

C-T. Yang, S.-T. Chen,].-C. Liu et al. / Future Generation Computer Systems 93 (2019) 687-701 691

External Network

Network Traffic

Network node

Message Service

Open vSwitch
Virtual Router |

Keep alive
Connection

Output

Network Backup

Message Service

Virtual Router

Network Traffic Input

Fig. 6. Network backup architecture.

router create

] create ha_network
] create ha_port

create
] ha_master_interface

create ha_cofnig_files
keep alive connection

spawn in

True/False

Fig. 7. Virtual router creation.

namespace inherits configuration from the host. The traffic will
come into specific namespace when the namespace is used to
create a virtual router.

Namespace creates rules in the iptable filter. If the source IP
of coming traffic is matched with rules then this traffic data will
be collected. Collected data will be periodically sent to the data
node for administrators to analyze. The work flow of the filter table
calculation mechanism is shown in Fig. 10

3.3.2. Statistical data analysis

The statistical data analysis is implemented in the way simi-
lar to that of implementing real-time traffic monitoring function.
The system uses the ip netns command to create the network
namespace and virtual router. Open vSwitch supports the NetFlow

protocol to collect all packet information through virtual routers.
This packet information will be translated as NetFlow data and sent
to the data node that periodically collects data by means of flow-
capture as shown in Fig. 11.

3.3.3. Calculate mechanism

In the proposed system, network monitoring and traffic mea-
surement are the two most important functions. For network ad-
ministrators to easily manage networks, a limit value of K is set for
reference in real-time traffic monitoring. When real-time traffic is
bigger than K, the OpenFlow controller will perform some actions
on this traffic flow.

Limit = K (1)

692

C-T. Yang, S.-T. Chen,].-C. Liu et al. / Future Generation Computer Systems 93 (2019) 687-701

Network
(0] Switch M
| pen vSwitcl b essage
set fail ! I
| 1
1 1
| |
L 1
router_fail 1
1
i failover
I
| True/False
I
| : failure
: 1 detection
switchy to slave
1
' | '
I | 1
1 | 1
Fig. 8. Network node failure.
Table 2
Network Node ‘ Data collections format.
Physical Network Traffic Title Src_ip Dest_ip Prot Src_port Dest_port Octets Packets
I NICs Unit ip ip protocol port_number port_number Bytes Packet
_
T,
) Data, = £ (3)
Real-time data PTT

Send to data node
P>

Iptable

Open vSwitch

Virtual Router

Fig. 9. Network namespace in network node.

The real-time traffic monitoring unit calculates the data
throughput within a checking time interval which is defined based
on measuring service. However, different checking time may ob-
tain different results. Eq. (2) is used to calculate number of traffic
bytes statistically (i.e., traffic flow) and Eq. (3) is used to calculate
statistical packets. Datay, is traffic flow data in bytes, T}, is packets
bytes, T, is packets time and T, is checking time.

Ty
Datay, = —
c

(2)

After receiving real-time data, the data node formats the data
to help network administrators easily monitor the network envi-
ronment. The used format is shown in Table 1. The table includes
last-updating time, checking time, bytes, and packet information.

For statistical analysis, we use the NetFlow data format. The
used version of NetFlow data is version 5, which has been widely
adopted. As shown in Table 2, the format includes source IP, des-
tination IP, protocol type, source port, destination port, bytes, and
packets.

We can set K according to statistical data in real-time traffic
service. For example, K can be set according to statistics of a single-
day data. We can treat single-day statistical data as a normal
distribution, and after getting rid of outliers, calculate its mean
to set K. In the real-time traffic monitoring unit, two values are
collected: bytes and packets. When network traffic has abnormal
events, it may cause exception values in bytes or packets. So K can
be set according to statistics of either one of them.

We considered the “68—95—99.7” rule where 68.27%, 95.45%
and 99.73% of the values lie within one, two and three standard
deviations of the mean, respectively. Assuming that the data in our

_{

Prot Source
All 10.0.0.1/32 anywhere

Destination

]_r CALCULATION

ACCESS RULE A
ACCESS RULE B

RULE
RULE

_{

Prot Source
All 10.0.0.2/32 anywhere

Destination

CALCULATION

Fig. 10. Filter table calculation mechanism.

C-T. Yang, S.-T. Chen,].-C. Liu et al. / Future Generation Computer Systems 93 (2019) 687-701 693

Network Node
Physical
NICs

Iptable
Open vSwitch

Network Traffic

Data node

NetFlow data
Send to data node

Data Process Service

Virtual Router

=== Flow-Caputre

Fig. 11. NetFlow data collect mechanism.

Fig. 12. Web management—flow state.

data set are normally distributed, 99.7% of the data will be within
+/3 standard deviations from the mean for outlier value [27].

1
o =EXp) = n;‘xn (4)
1 N
mp =EOp) = > X (5)
n=1

First, we suppose set X, and set X, represent statistics of bytes
and packets, respectively. Based on these two sets, we obtain two
means: up and pp.

N

1
Var(Xy) = El(x — '] = ;(xn —) (6)
o = +/Var(Xy) (7
outlier = Op, = Xn — Mo (8)

(e

1 N
Var(X,) = E[(x — up)*] = N ;(xn — 11p)? 9)
o = ,/Var(Xp) (10)
outlier = Oy, = Xn = Mo (11)

o

We further obtain values of the variance, standard deviation
and outlier. The purpose is to get an accurate mean, which can be
used to set K for the real-time traffic monitoring system.

Algorithm 3.1: ESTABLISH NEW STATISTICAL DATA SET(BYTES)(X}, O)

comment: Remove outliers value from Statistical Data Array Xp[i]
comment: Oyli] is a outliers array

for n < 1 to length of X,
do [if =3 = 0pli] <3
then {Xy[i] < X[i].val.del

Algorithm 3.2: ESTABLISH NEW STATISTICAL DATA SET(PACKETS)(X,, O)

comment: Remove outliers value from Statistical Data Array X,[i]
comment: O,[i] is a outliers array

for n < 1to length of X,
d if —3<0p[i]<3
then {X,[i] < X,[il.val.del

We drop two outlier values Op; and Oy, and recalculate means
for the two data sets X;, and X;,. Now we obtain two means that can

694 C-T. Yang, S.-T. Chen,].-C. Liu et al. / Future Generation Computer Systems 93 (2019) 687-701

Fig. 13. Web management—flow data.

Router1 State:
Router2 State: Working

Fig. 14. Web management—router state.

be used to set K, i.e., two values of K are decided, one according to
bytes data Eq. (12), the other according to packets data Eq. (13).

N
1
o =EXp) = 1) xn =Ko (12)
n=1
1 N
Hp = EOXp) = ;xn =K, (13)

3.4. Web management

To help the network administrator efficiently manage the net-
work, we design a web management page. This web page consists
of three functions: the real-time flow state monitoring, statistical
data query, and virtual router status. The web management page in
default shows real-time traffic data on the index page, which will
automatically load real-time traffic data collected on the current
day. According to configuration settings, data will be written into
the database every minute. The network administrator can obtain
those data from this page. The network administrator can also
select the date by using the calendar function. The observing time,
shown in the x-axis, can be zoomed in or out as required.

Table 3

Hardware specification.
Host name CPU Memory NIC
Data node Intel(R) Xeon(R) E5645 8 GB 1Gb
Network node Intel(R) Xeon(R) E5645 8 GB 1Gb
Network backup Intel(R) Xeon(R) E5645 8GB 1Gb

Table 4

Software specification.
Software OpenDayLight Open vSwitch OpenStack Python
Versopm Helium 2.0.2 Juno 2.76

As shown in Fig. 12, the statistics data query page offers infor-
mation collected from NetFlow capture over the day. Every day the
captured data are sent to database at 12.00 am. And those data can
be queried by using this query page, which automatically displays
top 20 sources IPs on this page after sorting all data. The network
administrator can reference this information to adaptively set the
value of K for the monitoring system.

The router status page displays states of routers: indicating
which router providing network services, and showing the other
router being at work, standby, or off-line as shown in Fig. 14.

C-T. Yang, S.-T. Chen,].-C. Liu et al. / Future Generation Computer Systems 93 (2019) 687-701 695

Network Traffic
Monitor System

g

Computers in lab

NAT Server

Other Computers in CSIE

Fig. 15. Experimental architecture.

The network administrator can use this page to quickly tell the
operation status of the whole network.

4. Experimental environment and results analysis

This section first presents the experimental environment for the
proposed system design. Then, we implement the proposed system
and obtain several useful results based on this experimental envi-
ronment.

4.1. Experimental environment

4.1.1. Hardware

The experimental environment consists of three computers
with same hardware specifications: 12-core CPU, 8 GB memory,
and 1 Gb Network interface cards, as listed in Table 3.

4.1.2. Software

Table 4 list the software used in our experiments. We used
Helium version as the OpenFlow controller. We used Open vSwitch
ver. 2.0.1, and used OpenStack with ver. Juno. Lastly, we used
Python ver. 2.7.6.

We have built the proposed system in a real network envi-
ronment. This system captures traffic of computers connecting
to the Internet and manages IPs of computers. The experimental
architecture is shown in Fig. 15.

4.2. Experimental results

We designed and conducted several experiments to test the
performance of our proposed system. First, we tested the virtual
router loading capacity as shown in Fig. 13. Then the perfor-
mance comparison between the virtual and physical routers was
conducted. Various TCP/UDP packet sizes were used as input to
test its performance. The network response times were measured.
Later we tested the accuracy of the monitoring system, consisting
of real-time measurement and statistical data analysis. We used
different database architectures to store data and compared their
data processing speeds. Finally, we tested the performance of the
high availability (HA) mechanism in this system.

4.2.1. Virtual router experiments

We used network testing software iperf for performance mea-
surement of the virtual routers. Our experimental testbed consists
of the client and server. A large number of packets were sent by

TCP Input Testing
1,000
900
3 800
=
5 700
§ 600
& 500
-
£ 400
% 300 :
Z 200 I
100
64 128 256 512 1024 2048

Packets Size: Bytes

mvswitch ®switch

Fig. 16. TCP input testing.

the client to perform the stress test of the network. We used two
protocols, i.e., TCP and UDP and considered six packet sizes of:
64 bytes, 128 bytes, 256 bytes, 512 bytes, 1024 bytes, and 2048
bytes as shown in Figs. 17 and 18, to compare performance of the
virtual router and physical router as shown in Fig. 14. Fig. 16 shows
results of the TCP experiment. From the bar chart, we observe that
when the packet size increases, the network speed increases. The
maximum speed appears with the packet size of 2048 bytes.

As mentioned previously, the hardware specification of the
network interface is 1 Gb per second. From the line chart, we can
find the maximum speed of the physical router is nearly 90% of 1
Gb, and that of the virtual router speed is nearly 85% of 1 Gb. We
conclude that performance of hardware router is better than that
of the virtual one. However, since performance of virtual router is
nearly 85% of the network interface, we consider it sufficient if the
network usage is not significant.

Fig. 18 shows results of the UDP experiment. From the bar
chart, we observe that the maximum speed appears in packets with
the size of 1024 bytes. When the packet size increases to 2048
bytes, speeds of the physical and virtual router are slowed down.
It may be caused due to the maximum transfer unit (MTU). UDP is
simpler protocol than TCP, and it we cannot record lots of packet
information.

696 C-T. Yang, S.-T. Chen,].-C. Liu et al. / Future Generation Computer Systems 93 (2019) 687-701

TCP Input Limit
e
§ 100.00%
» 90.00%
¥ 80.00%
= 70.00%
2 60.00%
Q 3 o
8 50.00%
< 40.00% ,
5 30.00% y
& 20.00%
< 10.00%
8 0.00%
2 64 128 256 512 1024 2048
Packets Size: Bytes
=——=yswitch switch
Fig. 17. TCP input limit.
UDP Input Testing UDP Input Limit
500 50.00%
B 45000
450 I Q 45.00%
é 400 "%’40.0000 .
= 350 M g o
B 2 30.00% /
300
a 8 2500% /
2 250 5 20.00%
g 200 % 15.00%
ko 150 E 10.00%
=z 100 g 5.00%
- i & 0.00%
N ‘ ‘ 64 128 256 512 1024 2048
O r’

64 128 256 512 1024 2048
Packets Size: Bytes

mvswitch ®switch

Fig. 18. UDP input testing.

From the line chart, we observe that in case of UDP, the speeds
of both virtual and physical routers have little difference, approx-
imately 5%. This result means that when UDP is used to transfer
packets, the user cannot tell the difference between the virtual and
physical routers (see Fig. 19).

Besides testing transmission speed of TCP and UDP, we also
tested latency of the network, as shown in Fig. 20. This experiment
lasted 5 min. We pinged to test network latency time per second;
the target was the Chunghwa Telecom Domain name server. We
observe that the trend of the latency of the virtual or physical
network was similar, and long latency times have been spotted in
both of them.

4.2.2. Real-Time measuring experiments

To test the accuracy of the real-time measurement system, we
considered three time periods: 10 s, 30 s, and 60 s to write the
same file to the database. The results are shown in Fig. 21. From our
results, we found that when the data write frequency is higher, the
accuracy is higher as well. However, writing database with high
frequency may cause high traffic loading. From the line chart in
Fig. 22, we observe the accuracy is almost 99.64% when measured

Packets Size: Bytes

=—=vswitch switch

Fig. 19. UDP Input Limit.

once per minute; and 99.82% measured once per 10 s. We decide to
use the minute period in our measurement system configuration.

4.2.3. Database experiments

Because lots of data are written into the database in our sys-
tem, the performance evaluation of database system is critical.
We compared two databases of different architecture: relational
database and NoSQL. To test their performance, we used raw data
of large amount: 240,000 bytes, 1,620,000 bytes, 6,370,000 bytes,
26,100,000 bytes, and 38,650,000 bytes. Each raw data set was
written into both databases and its processing time was observed.
The experimental results are plotted in Fig. 23. We observe that
the processing time of NoSQL is longer than that of the relational
database when the data size is more than 1,620,000 bytes. From the
line chart, where y-axis represents amount of processed raw data
per second, we observe that when the amount of data is 240,000
bytes, the processing speed of NoSQL is faster than that of relational
database; but when the size of raw data increases to 1,620,000, the
processing speed of relational database is faster than that of NoSQL.
Moreover, as the size of data increases, the growth rate of process-
ing speed of relational database slows down, and processing speed
NoSQL almost remains constant. We chose NoSQL to implement
the database in our system since, in our network environment, the
amount of data in a day is close to 240,000 bytes (see Fig. 24).

99.85%

99.80%

99.75%

99.70%

99.65%

99.60%
99.55%

99.50%

10

Sec

MBytes

C-T. Yang, S.-T. Chen,].-C. Liu et al. / Future Generation Computer Systems 93 (2019) 687-701 697

22
29
36
43
50

3300

3298

3296

3294

3292

3290

3288

3286

3284

3282

3280

, "‘V\A‘MN\L A."l\h\hﬁu‘

57
64

71
78
85
92
99

106

ﬂ AA\PM‘A ;\‘,,‘M\ /WM’A,A”,/\MNMM NM W\,M V‘/'A.\, Mo,

N O N A 0N NODWLMOMNT =H00W!LNODWOWUMOTNMNSS = 00 W

- NN N WO ONO0O00O0 e = NMMST LW W WIN 00 O

™o A A A NN ANANNNNNNNNNNN
Sec

——vswitch

switch

Fig. 20. Response time testing.

=60 =30 =10

H mysgl

B mongodb

Checking Time:Sec

Fig. 21. Real-time measuring testing.

The Accuracy of Database Writing Time

99.64%

=60

t=30

99,82%

t=10

Fig. 22. Real-time measurement testing.

4.2.4. NetFlow data experiments

We conducted experiments to verify the accuracy of the Net-
Flow data collected from the virtual router. We compared these
data with the data collected from the Cisco router. Fig. 25 shows
the results. We observe that data collected from the Cisco router
are similar to raw data, whereas data collected from the virtual
router show difference. As shown in Fig. 26, the relative error in
the Cisco router is less than —1%, but that in the virtual router is
almost 12%.

The data collected by the NetFlow can be used to set the limit
value K. Fig. 27 shows 7 days statistics data from the virtual router
for our department. The unit of the y-axis is amount, and the x-axis
is Mbps. We observe that most flow is between 4 and 7 Mbps. We
may set limit K as 15 Mbps for this statistics data. When an IP’s
flow is greater than this value, there is some abnormal activity in
it. Then network administrator can treat this IP as an observation
target.

4.2.5. Network high availability experiments

We performed experiments to test the availability and response
time of the high availability (HA) function of the network system.
We used iperf to test the network. We stopped the master network

698 C-T. Yang, S.-T. Chen,].-C. Liu et al. / Future Generation Computer Systems 93 (2019) 687-701

1000

900

800

700

Sec

240000 1620000

600
500
400
300
200
100 I
o e M

6370000 26100000 38650000

Amounts of Data

H mysql

B mongodb

Fig. 23. Database testing.

70000

60000

50000

40000

30000

rawdata/s

20000

10000

240000 1620000

Amounts of Data

6370000 26100000 38650000

e mysql mongodb

Fig. 24. Database input testing.

node and observed the reaction of the network flow. Figs. 28 and
29 shows the experimental results. We repeated this experiment
several times, for which we observed the best response time of
3 s and the worst response time of 13 s. From the figure, we
observe that the network flow reaches 0 at time 5 s of time of
the experiment because the master network node was shut-down
at that time. In the best case scenario, the network flow came

3500
3400
3300
3200

MBytes

3100
3000
2900
2800

M real size

M switch netflow size

14.00%

12.00%

10.00%

8.00%

6.00%

4.00%

2.00%

0.00%
!e ative Error

-2.00%

Fig. 26. NetFlow data measurement testing.

up to the normal value at time 8 s, which means network HA
was working successfully. In the worst case scenario, the master
network node was stopped at time 4 s. Later, the network flow
comes up to the normal value at time 17 s, thus, the response time
of HA was 13 s.

4.2.6. OpenFlow controller experiments
We performed experiments to verify the effectiveness of the
network management mechanism. Fig. 30 shows the experimental

M vswitch netflow size

Fig. 25. NetFlow data measuring testing.

C-T. Yang, S.-T. Chen,].-C. Liu et al. / Future Generation Computer Systems 93 (2019) 687-701 699

7day
30

25
20

15

10
) IlIII.||||| 1 11

12 3 45 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
Mb/h

Fig. 27. NetFlow statistics data.

Network HA Packet Loss Time

1000
900
800
700
600
500
400
300
200
100

Mbps

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Sec

—speed

Fig. 28. Network high availability.

Network HA Packet Loss Time

1000
900
800
700
600
500
400
300
200
100

Mbps

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Sec

s speed

Fig. 29. Network high availability.

results. A personal computer was used to download a file from Web controller to deny IP of this PC. From the figure, we observe that the
via the virtual router; when download speed is greater than the peak speed is about 50 Mbps. We set K as 50 Mbps at time 6 s. We
limit value K, the real-time monitoring system called the OpenFlow observed that the flow decreases at time 7 s, and it comes down

700

C-T. Yang, S.-T. Chen,].-C. Liu et al. / Future Generation Computer Systems 93 (2019) 687-701

OpenFlow Controller Reaction Time

60

50

40

30

Mbs

20

10

7

8

—speed

Fig. 30. OpenFlow controller reaction time.

to 0 at time 9 s. We canceled K and deleted the IP from the denial
list at time 11 s, and observed that the flow comes up to 50 Mbps
again. The experimental result shows that the OpenFlow controller
is effective in managing the virtual router and its response time is
very fast as shown in Fig. 30.

5. Conclusion and future work

This work uses software-defined networks and network func-
tions virtualization to implement a network traffic monitoring
system and compares its performance with that of the system with
traditional hardware architecture. From the experimental results,
we find that although the proposed system cannot out-perform
the system with traditional hardware architecture, the proposed
system can closely match the performance of traditional networks
at cheaper costs and adds more flexibility to the network man-
agement tasks. The implemented system fulfills our initial goals:
to use concepts of network functions virtualization and software-
defined network to build a network traffic monitoring system and
make it easy for network administrators to manage networks. As
the future work, we aim to test the proposed system in the broader
network environment. We also intend to test our system with a
large number of cloud application workloads.

Acknowledgments

This work was supported in part by the Ministry of Science
and Technology, Taiwan, under Grant MOST 104-2221-E-029-010-
MY3 and MOST 106-3114-E-029-003. This work was also finan-
cially supported by the Intelligence Recognition Industry Service
Research Center (AIR-IS Research Center) from The Featured Areas
Research Center Program within the framework of the Higher
Education Sprout Project by the Ministry of Education (MOE) in
Taiwan.

References

[1] A.Hakiria, A. Gokhale, P. Berthou, D.C. Schmidt, T. Gayraud, Software-defined
networking: Challenges and research opportunities for future internet, Com-
put. Netw. 75 (2014) 453-471.

F. Rodrguez-Haro, F. Freitag, L. Navarro, E. Hernnchez-snchez, N. Faras-
Mendoza, J.A. Guerrero-Ibez, A. Gonzlez-Potes, A summary of virtualization
techniques, Procedia Technol. 3 (2012) 267-272.

(2]

3]

4

[5

6

[7

(8]

[9

[10]

[11]

[12]

[13]

[14]

[15]

[16]
[17]
(18]
[19]
[20]
[21]
(22]
(23]
[24]
[25]

[26]
[27]

R.S. Couto, M.E.M. Campista, L.H.M. Costa, Network resource control for xen-
based virtualized software routers, Comput. Netw. 64 (2014) 71-88.
S.Huang,]. Griffioen, K.L. Calvert, Network hypervisors: Enhancing sdn infras-
tructure, Comput. Commun. 46 (2014) 87-96.

T. Voith, K. Oberle, M. Stein, Software defined networking for security en-
hancement in wireless mobile networks, Comput. Netw. 66 (2014) 94-101.
P. Qin, B. Dai, B. Huang, G. Xu, Bandwidth-aware scheduling with sdn in
hadoop: A new trend for big data, CoRR abs/1403.2800 (2014).

M.H. Raza, S.C. Sivakumar, A. Nafarieh, B. Robertson, A comparison of software
defined network (sdn) implementation strategies, in: ANT/SEIT, pp. 1050-
1055.

G. Yi, S. Lee, Fully distributed handover based on sdn in heterogeneous
wireless networks, in: ICUIMC, p. 70.

P. Smith, A.E.S. Filho, D. Hutchison, A. Mauthe, Management patterns: Sdn-
enabled network resilience management, in: NOMS, pp. 1-9.

AF. Trajano, M.P. Fernandez, Two-phase load balancing of in-memory key-
value storages using network functions virtualization (nfv),]. Netw. Comput.
Appl. 69 (2016) 1-13.

S. Ayoubi, C. Assi, Y. Chen, T. Khalifa, K.B. Shaban, Restoration methods for
cloud multicast virtual networks, 78 (2017) 180-190.

H. Yang, L. Cheng, J. Yuan,]. Zhang, Y. Zhao, Y. Lee, Multipath protection
for data center services in openflow-based software defined elastic optical
networks, Opt. Fiber Technol., Mater. Devices Syst. (2015).

J. Matias, A. Mendiola, N. Toledo, B. Tornero, E. Jacob, The ehu-oef: An
openflow-based layer-2 experimental facility, Comput. Netw. 63 (2014) 101-
127.

Rashi Mijumbi, Joan Serrat, Juan-Luis Gorricho, Niels Bouten, Filip De Turck,
R. Boutaba, Network Function Virtualization: State-of-the-Art and Research
Challenges, Vol. 18, IEEE, 2016, pp. 236-262.

J.ML.A. Calero, J.G. Aguado, Comparative analysis of architectures for monitor-
ing cloud computing infrastructures, Future Gener. Comput. Syst. 47 (2015)
16-30.

A. Corradi, M. Fanelli, L. Foschini, Vm consolidation: A real case based on
openstack cloud, Future Gener. Comput. Syst. 32 (2014) 118-127.

0. Litvinski, A. Gherbi, Experimental evaluation of openstack compute sched-
uler, Procedia Comput. Sci. 19 (2013) 116-123.

Z.1i, H. Li, X. Wang, K. Li, A generic cloud platform for engineering optimiza-
tion based on openstack, Adv. Eng. Softw. 75 (2014) 42-57.

Netflow, http://en.wikipedia.org/wiki/NetFlow, (1996).

Openvswitch, http://openvswitch.org/, [2014].

]. Pettit, J. Gross, B. Pfaff, M. Casado, Virtual Switching in an Era of Advanced
Edges, Data Center - Converged and Virtual Ethernet Switching, 2010.

B. Pfaff, J. Pettit, T. Koponen, K. Amidon, M. Casado, Extending Networking
into the Virtualization Layer, Hot Topics in Networks, 2009.

N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, . Rexford,
S. Shenker, J. Turner, Openflow: enabling innovation in campus networks,
Comput. Commun. Rev. 38 (2008) 69-74.

Opendaylight, http://www.opendaylight.org/, 2018.

Openstack, https://www.openstack.org/, 2018.

Neutron, https://wiki.openstack.org/wiki/Neutron/, 2018.

The Standard Normal Distribution, The Standard Normal Distribution http:
//www.oswego.edu/~srp/stats/z.htm/, 2018.

http://refhub.elsevier.com/S0167-739X(18)30311-X/sb1
http://refhub.elsevier.com/S0167-739X(18)30311-X/sb1
http://refhub.elsevier.com/S0167-739X(18)30311-X/sb1
http://refhub.elsevier.com/S0167-739X(18)30311-X/sb1
http://refhub.elsevier.com/S0167-739X(18)30311-X/sb1
http://refhub.elsevier.com/S0167-739X(18)30311-X/sb2
http://refhub.elsevier.com/S0167-739X(18)30311-X/sb2
http://refhub.elsevier.com/S0167-739X(18)30311-X/sb2
http://refhub.elsevier.com/S0167-739X(18)30311-X/sb2
http://refhub.elsevier.com/S0167-739X(18)30311-X/sb2
http://refhub.elsevier.com/S0167-739X(18)30311-X/sb3
http://refhub.elsevier.com/S0167-739X(18)30311-X/sb3
http://refhub.elsevier.com/S0167-739X(18)30311-X/sb3
http://refhub.elsevier.com/S0167-739X(18)30311-X/sb4
http://refhub.elsevier.com/S0167-739X(18)30311-X/sb4
http://refhub.elsevier.com/S0167-739X(18)30311-X/sb4
http://refhub.elsevier.com/S0167-739X(18)30311-X/sb5
http://refhub.elsevier.com/S0167-739X(18)30311-X/sb5
http://refhub.elsevier.com/S0167-739X(18)30311-X/sb5
http://refhub.elsevier.com/S0167-739X(18)30311-X/sb10
http://refhub.elsevier.com/S0167-739X(18)30311-X/sb10
http://refhub.elsevier.com/S0167-739X(18)30311-X/sb10
http://refhub.elsevier.com/S0167-739X(18)30311-X/sb10
http://refhub.elsevier.com/S0167-739X(18)30311-X/sb10
http://refhub.elsevier.com/S0167-739X(18)30311-X/sb11
http://refhub.elsevier.com/S0167-739X(18)30311-X/sb11
http://refhub.elsevier.com/S0167-739X(18)30311-X/sb11
http://refhub.elsevier.com/S0167-739X(18)30311-X/sb12
http://refhub.elsevier.com/S0167-739X(18)30311-X/sb12
http://refhub.elsevier.com/S0167-739X(18)30311-X/sb12
http://refhub.elsevier.com/S0167-739X(18)30311-X/sb12
http://refhub.elsevier.com/S0167-739X(18)30311-X/sb12
http://refhub.elsevier.com/S0167-739X(18)30311-X/sb13
http://refhub.elsevier.com/S0167-739X(18)30311-X/sb13
http://refhub.elsevier.com/S0167-739X(18)30311-X/sb13
http://refhub.elsevier.com/S0167-739X(18)30311-X/sb13
http://refhub.elsevier.com/S0167-739X(18)30311-X/sb13
http://refhub.elsevier.com/S0167-739X(18)30311-X/sb14
http://refhub.elsevier.com/S0167-739X(18)30311-X/sb14
http://refhub.elsevier.com/S0167-739X(18)30311-X/sb14
http://refhub.elsevier.com/S0167-739X(18)30311-X/sb14
http://refhub.elsevier.com/S0167-739X(18)30311-X/sb14
http://refhub.elsevier.com/S0167-739X(18)30311-X/sb15
http://refhub.elsevier.com/S0167-739X(18)30311-X/sb15
http://refhub.elsevier.com/S0167-739X(18)30311-X/sb15
http://refhub.elsevier.com/S0167-739X(18)30311-X/sb15
http://refhub.elsevier.com/S0167-739X(18)30311-X/sb15
http://refhub.elsevier.com/S0167-739X(18)30311-X/sb16
http://refhub.elsevier.com/S0167-739X(18)30311-X/sb16
http://refhub.elsevier.com/S0167-739X(18)30311-X/sb16
http://refhub.elsevier.com/S0167-739X(18)30311-X/sb17
http://refhub.elsevier.com/S0167-739X(18)30311-X/sb17
http://refhub.elsevier.com/S0167-739X(18)30311-X/sb17
http://refhub.elsevier.com/S0167-739X(18)30311-X/sb18
http://refhub.elsevier.com/S0167-739X(18)30311-X/sb18
http://refhub.elsevier.com/S0167-739X(18)30311-X/sb18
http://en.wikipedia.org/wiki/NetFlow
http://openvswitch.org/
http://refhub.elsevier.com/S0167-739X(18)30311-X/sb23
http://refhub.elsevier.com/S0167-739X(18)30311-X/sb23
http://refhub.elsevier.com/S0167-739X(18)30311-X/sb23
http://refhub.elsevier.com/S0167-739X(18)30311-X/sb23
http://refhub.elsevier.com/S0167-739X(18)30311-X/sb23
http://www.opendaylight.org/
https://www.openstack.org/
https://wiki.openstack.org/wiki/Neutron/
http://www.oswego.edu/~srp/stats/z.htm/
http://www.oswego.edu/~srp/stats/z.htm/
http://www.oswego.edu/~srp/stats/z.htm/

C-T. Yang, S.-T. Chen,].-C. Liu et al. / Future Generation Computer Systems 93 (2019) 687-701 701

Chao-Tung Yang received a B.Sc. degree in Computer
Science from Tunghai University, Taichung, Taiwan, in

1990, and the M.Sc. degree in Computer Science from Na-
—~9 tional Chiao Tung University, Hsinchu, Taiwan, in 1992.
\ He received the Ph.D. degree in Computer Science from
. National Chiao Tung University in July 1996. In August
\v 2001, he joined the Faculty of the Department of Com-

/ puter Science at Tunghai University as an Associate Pro-
VAN / ~ fessor. He is a full Professor started in August 2007 and as

a Distinguished Professor in August 2015. He is serving

in a number of journal editorial boards, including Future

Generation Computer Systems, International Journal of Communication Systems,
KSII Transactions on Internet and Information Systems, Journal of Cloud Computing,
IJ-CLOSER, International Journal of Next-Generation Computing (IJNGC), Dr. Yang
has published more than 300 papers in journals, book chapters and conference
proceedings. His present research interests are in Cloud computing and Big data,
Parallel and multicore computing, and Web-based applications. He is both a mem-
ber of the IEEE Computer Society and ACM. He is also both a member of IICM and
TACC in Taiwan.

Shuo-Tsung Chen received the B.S. degree in Mathemat-
ics from National Cheng Kung University, Tainan in 1996
and M.S. degree in Applied Mathematics from Tunghai
University, Taichung in 2003, Taiwan. In 2010, he re-
ceived the Ph.D. degree in Electrical Engineering from
National Chinan University, Nantou, Taiwan. Now he is
an Assistant Professor in National Yunlin University of
Science and Technology, Taiwan.

Jung-Chun Liu received his B.S. degree in Electrical En-
gineering from National Taiwan University in 1990. He
received his M.S. and Ph.D. degrees from the Department
of Electrical and Computer Engineering at the University
of Texas at Austin, in 1996 and 2004, respectively. He
is currently an Assistant Professor in the Department of
Computer Science at the Tunghai University, Taiwan. His
research interests include cloud computing, embedded
systems, big data, network security, artificial intelligence,
and wireless sensor networks.

Yao-Yu Yang received the B.S. degree in 2013 and M.S.
degree in 2015 in Computer Science from Tunghai Uni-
versity, Taichung, Taiwan. Now he is a Computer Engineer
in inwinSTACK Co., Ltd.

Karan Mitra is an Assistant Professor at Lulea University
of Technology, Sweden. He received his Dual-badge Ph.D.
from Monash University, Australia and Luled University
of Technology in 2013. He received his MIT (MT) and
a PGradDipDigComm from Monash University in 2008
and 2006, respectively. He received his BIS (Hons.) from
Guru Gobind Singh Indraprastha University, Delhi, India
in 2004. His research interests include quality of experi-
ence modeling and prediction, context-aware computing,
cloud computing and mobile and pervasive computing
systems. He is a member of the IEEE and ACM.

Dr. Rajiv Ranjan is a Reader in the School of Comput-
ing Science at Newcastle University, UK; chair profes-
sor in the School of Computer, Chinese University of
Geosciences, Wuhan, China; and a visiting scientist at
Data61, CSIRO, Australia. His research interests include
grid computing, peer-to-peer networks, cloud comput-
ing, Internet of Things, and big data analytics. He has
published about 200 research papers (including 120+
journal papers). His papers have received 7770+ Google
Scholar citations in total, he has an h-index and i10-index
of 36 and 74 respectively. His papers have also received
1700+ citations and h-index of 16; according to Thomson Reuters Journal Citation
Report (goo.gl/mJVphW). He also has an Scopus (Author ID:22980683700) h-index
of 19 and total citations >2900. Ranjan has a Ph.D. in Computer Science and Software
Engineering from the University of Melbourne (2009). Contact him at raj.ranjan@
ncl.ac.uk or http://rajivranjan.net.

mailto:raj.ranjan@ncl.ac.uk
mailto:raj.ranjan@ncl.ac.uk
mailto:raj.ranjan@ncl.ac.uk
http://rajivranjan.net

	Implementation of a real-time network traffic monitoring service with network functions virtualization
	Introduction
	Background
	NetFlow
	Open vSwitch
	OpenFlow
	OpenStack
	Neutron

	System Design and Implementation
	System Architecture
	Design Flow
	Network Node
	Data Node
	Network Node

	Monitoring Mechanism
	Real-time Traffic Monitoring function
	Statistical Data Analysis
	Calculate Mechanism

	Web Management

	Experimental Environment and Results Analysis
	Experimental Environment
	Hardware
	Software

	Experimental Results
	Virtual Router Experiments
	Real-Time Measuring Experiments
	Database Experiments
	NetFlow Data Experiments
	Network High Availability Experiments
	OpenFlow Controller Experiments

	Conclusion and Future Work
	Acknowledgments
	References

