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• We address the heavy noise removing problem faced in visual Internet of Things by using the hierarchical extreme learning machine. The proposed
framework contains a sparse auto-encoder and a supervised regression and a non-local aggregation.

• We provide an effective patch-to-patch image denoising networks which are robust for dealing with various noise levels in both clipped and unclipped
noisy model. The key advantage of this denoising network is fast training.

• Experimental studies on images including both hand-written digits and natural scenes have shown that our method achieves excellent performance
both in quality and efficiency. The nice performance can improve the compression ratio for data interactions in the visual Internet of Things.
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a b s t r a c t

In the visual Internet of Things (VIoT), imaging sensorsmust achieve a balance between limited bandwidth
and useful information when images contain heavy noise. In this paper, we address the problem of
removing heavy noise and propose a novel hierarchical extreme learningmachine-based image denoising
network, which comprises a sparse auto-encoder and a supervised regression. Due to the fast training of
a hierarchical extreme learning machine, an effective image denoising system that is robust for various
noise levels can be trained more efficiently than other denoising methods, using a deep neural network.
Our proposed framework also contains a non-local aggregation procedure that aims to fine-tune noise
reduction according to structural similarity. Compared to the compression ratio in noisy images, the
compression ratio of denoised images can be dramatically improved. Therefore, the method can achieve
a low communication cost for data interactions in the VIoT. Experimental studies on images, including
both hand-written digits and natural scenes, have demonstrated that the proposed technique achieves
excellent performance in suppressing heavy noise. Further, it greatly reduces the training time, and
outperforms other state-of-the-art approaches in terms of denoising indexes for the peak signal-to-noise
ratio (PSNR) or the structural similarity index (SSIM).

© 2018 Published by Elsevier B.V.

1. Introduction

In today’s digitalworld, smart cameras are ubiquitously adopted
in various areas such as security surveillance, automotives, and
industry. Cameras have been widely connected to the Internet
and managed by the infrastructure of the visual Internet of Things
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(VIoT). In recent years, the quality of imaging sensors has im-
proved significantly, such that high-resolution cameras have be-
come mainstream. The constant pursuit of more pixels integrated
in a small chip results in low signal-to-noise ratio (SNR), which
is related to the number of photons that are incident on a chip
per unit area. A higher gain in signal amplification is necessary for
some applications, such as low-light surveillance and dehazing en-
hancement [1–3]. The level of noise increases in proportion to the
amplification factor. On one hand, under extreme conditions like
low illumination or heavy noise, which substantially deteriorates
image quality, object perception and recognition becomes difficult
for both artificial observation and computer vision. Thus, image

https://doi.org/10.1016/j.asoc.2018.08.046
1568-4946/© 2018 Published by Elsevier B.V.

https://doi.org/10.1016/j.asoc.2018.08.046
http://www.elsevier.com/locate/asoc
http://www.elsevier.com/locate/asoc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.asoc.2018.08.046&domain=pdf
mailto:stephenyoung@buaa.edu.cn
mailto:dmrzhang@buaa.edu.cn
mailto:dyuan@buaa.edu.cn
mailto:daniel.sun@data61.csiro.au
mailto:li.g@sjtu.edu.cn
mailto:raj.ranjan@ncl.ac.uk
mailto:drsun@pitt.edu
https://doi.org/10.1016/j.asoc.2018.08.046


748 Y. Yang, H. Zhang, D. Yuan et al. / Applied Soft Computing Journal 74 (2019) 747–759

noise limits applications over the VIoT [4]. On the other hand,
the transmission bandwidth is sensitive for IoT applications [5].
However, a noisy image incurs a compression ratio bottleneck
for network communication between sensor nodes and servers.
Noise seriously affects compression for popular image compres-
sion methods, because it brings much contaminated and useless
information into images [6]. Therefore, image denoising is an im-
portant factor that influences the quality of many imaging sensor
nodes and the performance of VIoT systems.

Diverse denoisingmethods have been proposed to reduce noise
in low-quality images in the past decade. Traditional denoising
methods include non-local mean (NLM) [7], block matching with
3D filtering (BM3D) [8–11] and global denoising [12], low rank
models including sparse representation denoising (k-SVD) [13,14],
and robust principal component analysis (R-PCA) [15]. For ex-
ample, the BM3D represents a milestone among the traditional
denoisingmethods,which is based on the assumptions that noise is
additive,white, andGaussian (AWG) [16], andnoisy natural images
contain the appearance of similar patches. Though amethod of this
kind is well engineered, the generality is weakened due to these
assumptions. Until recently, deep neural networks achieved desir-
able performance in various computer vision and image processing
tasks, including image denoising algorithms, such as the plain
multi-layer perceptron denoising (MLPD) [17], deep class aware
denoising (DCAD) [18], deep convolutional neural network-based
denoising [19], and deep Gaussian conditional random field net-
work (DGCRF) denoising [20]. Most parametric denoising frame-
works can be abstracted as multi-layer networks with certain
connections. By learning a mapping from contaminated images to
noise-free images on large-scale training dataset, deep neural net-
works have become the current state-of-the-art image denoising
paradigm.However, training deep neural networks requires a large
amount of data, and thus is often time-consuming. The extreme
learning machine (ELM) [21] was proposed with the intrinsic fea-
ture that it can be trained quickly. Many improvements based on
the typical ELM have been proposed to satisfy special applications,
such as hierarchical ELM (HELM) [22], and online sequential ELM
(OS-ELM) [23].

To overcome the deficiency in heavy and/or varying noise
removal and improve the efficiency of model training, we propose
a new denoising framework (Fig. 1) that consists of three mod-
ules: (1) patch decomposition and pre-processing; (2) patch-to-
patch denoising based on hierarchical extreme learning machine
(HELM); and (3) non-local aggregation. In the first module, a
noisy image is partitioned into overlapping patches with a fix
size and stride. Meanwhile, other necessary pre-processing is im-
plemented. The second module HELM contains an auto-encoder
and supervised regression, and is applied to image denoising. In
the last module, fine denoising is performed by aggregating non-
local patches according to their structural similarity. Our approach
can be used to address heavy noise and to achieve competitive
performance when compared to other methods. We designed a
multi-channel embedded image-processing device that can bear
our proposed denoising algorithm for VIoT-based surveillance
systems. The architecture of the VIoT-based surveillance system
is illustrated in Fig. 2. Raw images captured from distributed
cameras can be transmitted to a multi-channel embedded image-
processing device via standard interfaces. The on-board denoising
algorithms are implemented to remove noise in the raw image
according to a remote user’s commands. The resulting noise-free
images are then sent to a cloud server, where they can be retrieved
by end users.

The rest of this paper is organized as follows. In Section 2, we
briefly review previous research related to image denoising. Sec-
tion 3describes in detail the framework of aHELM-baseddenoising
network with non-local aggregation. In Section 4, we introduce

the embedded VIoT system for video surveillance. In Section 5,
database and experimental setting are introduced. In Section 6,
experimental results are presented, and comparisons with other
methods are discussed. Finally, we draw conclusions and discuss
future research directions in Sections 7 and 8.

2. Related work

In this section, we classify existing image denoising methods
into traditional and neural network methods and review them
separately. Then we introduce related research on embedded ap-
plications of image processing and machine learning for the IoT.

2.1. Traditional denoising methods

The first class of denoising methods assumes that an input
image contains substantially repeated or similar regions that can
be grouped to facilitate noise removal, including non-local mean
(NLM) [7], block matching with 3D filtering (BM3D) [8–11], and
global denoising [12]. The second class of denoising methods is
based on the theory of low rank models, including sparse repre-
sentation denoising (k-SVD) [13,14], robust principal component
analysis (R-PCA) [15], low-rank matrix completion (LRMC) [24],
and low rank representation (LRR) [25]. Another kind of method
utilizes certain properties of the noise itself during algorithm de-
sign, such as its structural or statistical priors (e.g. gradients, struc-
tural similarity, and correlation) or its transformed noise spectrum
(e.g. Fourier transform, discrete cosine transform [10], wavelets
transform [26–28], and numerical optimization (e.g. k-SVD, R-
PCA, and LRR). When the noise level is high, the performance of
these algorithms usually decays significantly due to deterioration
of similarities or correlations among various regions in the image.
For instance, BM3D measures the patch similarity using a firm
threshold. As the value of the SNR approaches the negative domain
(measured in dB), it becomes difficult tomake a decision regarding
whether the neighborhood patches are similar. A high noise level
has another effect in that numerous pixel values are clippedwithin
the range of [0, 255], resulting in substantial distortion.

2.2. Deep denoising networks

In recent years, artificial neural networks (NNs) have been
widely used to solve numerous image processing and computer vi-
sionproblems [29–33], including imagedenoising. Burger et al. [17]
proposed a plain multi-layer perceptron denoising (MLPD), which
delivers competitive performance compared to BM3D. Li et al. [19]
proposed a CNN-based denoising network that uses the deep
neural network in TensorFlow, and Remez et al. [18] proposed
deep class aware denoising (DCAD) without the AWG assumption,
which is widely assumed in other methods. Vemulapalli et al. [20]
proposed a deep Gaussian conditional random field (DGCRF) net-
work for discriminative denoising. Despite these benefits, the
adoption of deep learning within VIoT and embedded end-devices
faces significant barriers due to the computational resource re-
quirements and energy consumption of these algorithms [34].

In contrast to back-propagation based neural networks (BPNs)
such as CNN, an extreme learning machine (ELM) was proposed
by Huang et al. to train generalized single hidden layer feed-
forward neural networks (SLFNs) [21]. The ELM trains an SLFN
in two main stages: (1) random feature mapping and (2) solving
linear parameters. During the first stage, ELM randomly initial-
izes the hidden layer to map input data into a feature space by
some nonlinear mapping function [35]. Specifically, SLFNs with
randomly initialized hidden neurons and learnable output weights
are trained to minimize regularized least square errors and can
be computed efficiently. ELM has been successfully used to solve
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Fig. 1. Framework of the HELM-based denoising networkwith non-local aggregation. (a) Patch decomposition and preprocessing; (b) HELM-based patch-to-patch denoising
network; (c) non-local aggregation.

Fig. 2. VIoT architecture for a surveillance system using our denoising networks.

many practical problems [36], such as shape segmentation [37],
facial recognition [38], wearable-based activity recognition [39],
and histopathological image classification [40]. These applications
motivate us to train an end-to-end denoising network based on
ELM.

However, due to its shallow architecture, feature learning using
ELM may not be effective for natural signals such as images [22].
To address this issue, a hierarchical ELM is proposed with a multi-
layer perceptron framework [22], including an unsupervised auto-
encoder module that can extract sparse and compact features. On
the other hand, an incremental training strategy is demanded if a
large-scale training dataset is to be used. Liang et al. [23] proposed
an online sequential ELM (OS-ELM) that can learn sequentially
from individual data points or from chunks of data.

2.3. Embedded applications for IoT

Many devices and applications of image processing and ma-
chine learning within the IoT ecosystem have emerged in recent
years [41,42]. Drolia et al. [43] proposed a system called Pre-
cog, which accelerates image recognition by enabling caching and
prefetching on the edge devices. Li et al. [3] proposed a road
vehicle monitoring system based on intelligent VIoT, and they
transplanted algorithms, e.g. image dehazing, license plate and
vehicle type recognition, into an embedded processor for testing in
practical environments. Ventura et al. [44] designed an IoT device

using an Arduino MEGA board to reduce energy consumption, and
they implemented a machine learning architecture on this plat-
form. Dhote et al. [45] presented a multifunction image processing
system that is accessible over the Internet using a system-on-chip
(SoC) architecture with a field-programmable gate array (FPGA),
and they used low-cost chips such as Raspberry-Pi and Spartan 6
FPGA in this system. Li et al. [46] proposed a data analysis approach
for big data, where data was collected from IoT devices. They
applied the deep convolutional computation model to learn hier-
archical features of big data using a tensor representation model.
Lane et al. [34] presented a preliminary measurement study of
common deep learning models on representative mobile and em-
bedded platforms. They compared targeted hard platforms, such
as the Qualcomm Snapdragon 800, Intel Edison, and Nvidia Tegra
K1, based on mainstream convolutional models or deep neural
networks.

As aforementioned, the VIoT faced the challenge that heavy
noise image captured in extreme environments and these image
should be transmitted within limited bandwidth and computa-
tional resource. Existing traditional and deep NNs-based denoising
methods are hard to make balance between denoising perfor-
mance and computational burden. Our research provide an ef-
fective method that fills the gaps between the denoising quality
and efficiency in width-sensitive VIoT edge devices. Our denoising
method differs from previous methods in the following aspects:
(1) we focus on cases with heavy noise that cannot be handled
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effectively by traditional non-learning methods; (2) we improve
the design of HELM denoising with desirable training time; (3)
an online sequential HELM is proposed to enhance the learning
capability of a patch-based denoising network; (4) a two-step
denoising framework, including a neural network filter step and
a structural aggregation step; and (5) an VIoT-based embedded
image denoising device is designed for use as a video surveillance
system.

3. HELM-based image denoising

In this section, we briefly review the theory of ELM and then
describe details of the proposed framework, including data pre-
processing, HELM-based auto-encoder learning, and the non-local
aggregation procedure.

3.1. Recap of extreme learning machine

The output function of SLFNs with L hidden nodes can be com-
puted as follows:

fL (xk) =

L∑
i=1

Gi (xk, ai, bi) · βi, ai ∈ Rd, bi, βi ∈ R , k = 1, . . . ,N

(1)

where xk is the input data;ai and bi denote the inputweight vectors
and bias of the ith hidden node, respectively; βi is the output
weight; and Gi (·) is the activation function (chosen fromGaussian,
hyperbolic tangent, or hard limit functions) [35]. According to the
universal approximation capability of ELM [47], SLFNs with addi-
tive or radial basis hidden nodes can be used to approximate any
continuous target functions with randomly initialized parameters.

For a set of N training samples, Eq. (1) can be represented in the
following compact form:

T = H · β (2)

where H is the output matrix of the hidden layer

H =

⎡⎢⎣ G1 (x1, a1, b1) · · · GL (x1, aL, bL)
...

. . .
...

G1 (xN , a1, b1) · · · GL (xN , ai, bi)

⎤⎥⎦ (3)

The aim of ELM training is to minimize the error and norm of
the output weights:

Minimize : ∥β∥
σ1
p + C∥H · β − T∥

σ2
q (4)

where σ1 > 0, σ2 > 0, p, q = 0, 1/2, 1, 2, . . . , ∞, and C is a
parameter which controls the generalization ability of the model.
Please refer to [21,48] for approaches that can solve for the output
weights β.

The ELM learning is implemented in the following three steps:
(1) Assign randomly hidden node parameters ai and bi;
(2) Calculate the hidden layer output matrix H;
(3) Calculate the output weights β.
The drawback of the original ELM is that its shallow architec-

ture cannot effectively handle image contents, even with a large
number of hidden nodes. Tang et al. [22] proposed HELM as a
hierarchical learning framework with both unsupervised feature
extraction and supervised feature regression/classification in a
multi-layer manner, which is described as follows:

Let H i be the output of the current ith hidden layer, and let
H i−1 be the output from theprevious hidden layer. The relationship
between consecutive hidden layers can be represented by

H i = G(H i−1 · βi) (5)

where βi denotes the weights of the current hidden layer, and G(·)
is the activation function. The layers are cascaded as a feature-
learning network, and the extracted features become more pow-
erful as the number of layers increases.

3.2. Data preparation for training and applying

Considering an 8-bit quantized image, an image with randomly
generated noise according to an additive model could have pixel
values below 0 or above 255, but the value of a practical noisy
image may be clipped between 0 and 255. For analytical conve-
nience, we convert the numerous pixel values from the range of [0,
255] to [0, 1] by normalization. The normalizationmodel is defined
as that pixel values of the input image are divided by 255, even
if the original pixel value is outside the interval [0, 255]. Later,
we decompose the noisy image into small patches, and they are
denoised separately.

For training the network, white Gaussian noise is added to
patches and then 0.5 is subtracted to generate the input data.
Chunks of the corresponding clean patches will be used as a ref-
erence for training, thus the network learns how to map noisy
patches to clean patches as expected.

To make the trainedmodel more efficient, we apply the follow-
ing procedures:

(1) The stride of cropped patches is set as small as possible in
order to restore details in the output image.

(2) Training patches come from various type of images to train
a generalized model.

For applying the network with a well-trained model, we crop
an image into equal-sized patches as training data with a certain
stride. The stride should be smaller than the patch size to ensure
overlap between patches. Then, 0.5 was subtracted from each
patch.

3.3. Improved HELM with online sequential training

Our target is to build a multi-output HELM regression network
as an adaptive patch-to-patch filter that learns to reduce noise
from the contaminated patch. As shown in Fig. 3, the proposed
framework consists of an unsupervised auto-encoder and super-
vised regression. The number of input patches and the size of the
training dataset are K and w*h, respectively, where w*h is also
the number of input nodes. The first hidden layer of the network
is regarded as an unsupervised feature extractor, which consists
of input weights, the sparse auto-encoder, and hidden weights.
The sparse auto-encoder generates a weight matrix as a group of
adaptive convolutional kernels. The second hidden layer performs
supervised regression and is implemented in the original ELM. Let
N andM be the number of nodes in the first and second hidden lay-
ers, respectively. Randomly initialized mapping connects N nodes
and M nodes between the two hidden layers.

The purpose of the auto-encoder is to extract sparse features
from input data via certain hidden weights. The auto-encoder
can learn the data structure adaptively and represent data ef-
ficiently [49]. However, directly training the auto-encoder with
heavy noise patches is difficult in our experiment. Hence, a two-
stage training strategy is employed. First,we train the auto-encoder
using clean patches as both inputs and outputs to yield an initial
auto-encoder. Second, the initial auto-encoder is fine-tuned with
noisy training data to output effective features for the subsequent
denoising module.

The basic HELM framework requires that the entire training
dataset feed into the network in a one-shot manner. However, if
there aremillions of patches to be processed, learning is intractable
due to memory limits. Motivated by OS-ELM [23], we separate the
large training dataset into chunks and import them sequentially
for training. Each chunk of data includes a batch of image patches.
After a particular chunk is used for training, it will be discarded.
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Fig. 3. Proposed HELM-based patch-to-patch denoising network.

3.4. Applying patch-based HELM for denoising

With a well-trained model for the improved HELM network,
the decomposed patches are sequentially input to the neural net-
work, either one-by-one or chunk-by-chunk. The denoised image
patches are obtained from the network output. The input–output
relationship can be expressed mathematically as follows:

H1 = tanh((X − 0.5I) · β1) (6)

H2 = tanh(H1 · β2) (7)

Y = H2 · β3 (8)

where X and Y are the input and output data of 1-D extending
image patch vectors. 0.5I is an input bias. β1 and β2 are matrices
containing hidden weights, and β3 contains the output weights.
We choose the hyperbolic tangent transfer function as the activa-
tion function tanh [50]. Themost intensive operations in the above
network are matrix multiplications and look-up table mapping.
Due to the computational complexity, it is favorable to implement
this network using MapReduce [51], graphics processing units
(GPU) [52], or embedded field-programmable gate array (FPGA)
devices [53], although common central processing units (CPUs)
may also be used for small image patches.

3.5. Non-local aggregation

During inference, a test image is first decomposed into
overlapping patches as the input to the trained neural network
in order to obtain denoising patches. Here, we calculate the dot-
product between each denoised patch with a 2-D Kaiser window
and then aggregate the results to form a finer denoised image. In
previous works, [17] proposed a method to reconstruct denoised
patches at their corresponding locations, and then average them in
the overlapping regions. Alternatively, the structural similarities
between the current patch and its neighboring patches can be
measured, and similar patches can be selected based on the non-
local theory reported previously [7,16] to yield a fine result. A
fast Lanczos singular value decomposition (LANSVD) [54] is used
to decompose the current and neighboring patches to extract
correlated features that easily describe structural similarity. The
k largest singular values and the corresponding singular vectors
of a unitary matrix are used. In our application, k is empirically
assigned to 20. This yields

UΣV ∗
= Pn, w∗h (9)

where P is a matrix representing a batch of patches (each 2D
patch has been converted to a 1D vector here), n is the number
of neighboring patches, and w and h are the weight and height
of the patch, respectively. U ,Σ ,V are decomposed matrices of P
obtained via singular value decomposition.

A = Un,kΣ k∗k (10)

where A is the product of the k largest singular values Σ k∗k and
the corresponding singular vectors Un,k .

Define Si,j to be the structural similarity between the ith patch
and the jth patch.

Si,j = exp(−γ
Ai − Aj


1) (11)

According to the similarity determined with Eq. (11), the top
m most similar patches are refined with a threshold τ and are
averaged to obtain amean patch. Thenweplace themean back into
those locations with corresponding similar patches. The purpose
of this aggregation is to obtain cleaner and smoother results in
a flat area while preserving clearer edges in the gradient area. In
comparison with a simple weighted average used in [17], the non-
local aggregation step can improve the peak signal-to-noise ratio
(PSNR) by up to 0.3 dB on average.

4. VIoT-based embedded image processing system

To build a VIoT platform that can capture and analyze stream-
ing video or images in-situ and connect the end device to the
Internet, we designed a multi-channel video surveillance system
using embedded image processing technology. This system can
provide on-line processing and intelligent analysis, such as image
denoising, image enhancement, and object detection and track-
ing, and can support 1000M Ethernet communication. The on-
board system contains three serial digital interface (SDI) channels
for video input, a field programmable gate array (FPGA) for pre-
processing, a digital signal processor (DSPs) for data processing
and analysis, peripheral interfaces, and powermanagers. As shown
in Fig. 4(a), this hardware platform includes a high-performance
Kintex XC7K325T FPGA and multi-core TMS320C6678 DSPs. Some
necessary memory devices, such as static random-access memory
(SRAM), double-data-rate synchronous dynamic random access
memory generation 3 (DDR3 SDRAM), serial peripheral interface
(SPI), and NOR flash memory, are included in this embedded sys-
tem. A simplified chart of this system is shown in Fig. 4(b).

The SDI video was decoded from multi-channel surveillance
cameras in parallel using the FPGA, and the raw image data was
transmitted to the DSPs via serial rapid I/O (SRIO), which forms
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Fig. 4. (a) The embedded VIoT hardware platform and (b) its chart for multi-channel video surveillance.

the bridge between the FPGA and the DSPs.When the transplanted
algorithm of HELM-based denoising and well-trained weights are
loaded into the DSPs, an image of a video frame can be processed
according to the received commands. Due to the matching algo-
rithmic structure implemented on the DSPs or a general CPU, we
can simulate and evaluate denoising performance on a CPU before
transplanting to our device.

5. Database and experimental setting

For thepatch-to-patchdenoisingnetwork, the first auto-encoder
hidden layer contained 900 nodes, and the output hidden layer
contained 5000 hidden nodes.

We evaluated ourmethods by investigating two different tasks:
denoising of hand-written digits and natural images, using public
datasets. The first experiment implemented our patch-based de-
noising network using a dataset of hand-written digits, and the
second experiment trained and applied our denoising framework
to the natural image datasets.

(1) MNIST database
The MNIST handwritten digits dataset [55] contains 60,000

samples for training and 10,000 samples for testing. Each sample
is a normalized image of a handwritten digit, with a fixed size of
28*28 pixels.We tested diverse additive Gaussian noise levelswith
standard deviation [44] ranging from 50 and 300 in increments of
10.

(2) Natural image training database
To collect suitable training data for image denoising, we down-

loaded high-quality photographs from the National Geographic

website [56] to build our training dataset. There are 263 images
in the dataset, which included landscapes, portraits, animals, ar-
chitecture, and other images. We converted all color images to
grayscale images and then extracted patches from random loca-
tions. Different sized patches were collected to train the model
with different noise levels. Increasing noise levels require more
neighbors to participate in the computation, therefore a larger
patch size is carried with increasing noise. Assume that the patch
size is w*h, where w is equal to h. For computational convenience,
the patch width w and height h are assigned to be even integers.
Thus, the relationship between patch size and noise level is shown
in Fig. 5. The number of cropped patches for the auto-encoder was
set to 200,000, and the number for supervised training datawas set
to 100,000. We found that these numbers were sufficiently large
for the network to distinguish between image content and noise,
even when the noise level was high.

(3) Natural image testing database
We utilized two datasets of natural images for experimental

comparison. The first test dataset contained 11 standard images,
including Lena, peppers, Barbara, cameraman, hill, couples, house,
fingerprint, montage, man, and boat, which were commonly used
as benchmarks for denoising performance comparisons in previous
studies [7,8,17]. The second test dataset was selected from the
PASCAL VOC 2012 image database [57] containing the first 100
images named with the prefix ‘2012’.

When noise is added to an image, the pixel values could lie out-
side of the interval [0, 255]. To accommodate this,we allowedusers
to determine whether pixel value overflows should be retained
or clipped to the range of [0, 255] before applying normalization,
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Fig. 5. Relationship between patch width and height (on the vertical axis), and
noise level (on the horizontal axis).

which was indicated in Section 3.2. We trained the network under
both choices for different noise levels. The unclipped model is
given by

y = x + n (12)

where n, x, y are additive white Gaussian (AWG) noise, the noise-
free image patch, and noise-contaminated image patch, respec-
tively.

The clipped model is given by

y =

{ 0, x + n < 0
x + n, 0 ≤ x + n ≤ 255
255, x + n > 255

(13)

In our experiments, we compared our approach with classical
methods, such as block matching with 3D filtering [8] (BM3D, a
non-local approach), image denoising via sparse and redundant
representations over learned dictionaries [13] (KSVD, a sparse
dictionary learning approach), and plain multi-layer perceptron
denoising [17] (MLPD, a neural network based approach).

6. Experimental results

6.1. Handwritten digits denoising on MNIST dataset

Our patch-based denoising network was trained in approxi-
mately 2.5 min on an i7-5500U 2.7 GHz CPU. We subsequently
tested this network with the images of hand written digits in the
MNIST dataset. Our results, along with the results from the three
conventional methods, are shown in Fig. 7. It can be seen that our
method outperformed all threemethods in all cases, except for two
isolated points when σ = 50 and 70 in the unclipped model. The
MLPD approach exhibited the best performance when unclipped
images were used. Some examples of testing results are shown in
Fig. 6, which demonstrates the high performance of our method
compared to the other three methods.

To further apply the denoising network to real handwritten
digits, we purposely captured an image with heavy noise using
a smartphone camera (iPhone 7, ISO 640, shutter time 1/3200 s,
file mode raw) in an extremely dark environment. A clear image
is shown in Fig. 8(a) with 25 digits written by the first author,
and the captured image is shown in Fig. 8(b) with a few rec-
ognizable details. We enhanced the image via linear grayscale
stretching in mapping-form, as shown in Fig. 8(d). After applying

Fig. 6. Results from denoising of the MNIST test digit images using BM3D, KSVD,
MLPD, and our method. In this example, we show the result of each method under
different noise levels with standard deviation σ = {50, 100, 170, 280} for the
unclippedmodel (Eq. (12)). The results for the clippedmodel (Eq. (13))were visually
similar.

this enhancement (Fig. 8(c)), the digits were faintly presented
but remained unidentifiable due to corruption by heavy grain
noise that is characteristic in images captured under extremely
low illumination. After basic image processing steps consisting of
grayscale-inversion, image cropping, and resizing, the cropped im-
age patches (Fig. 9(a)) were fed into our patch-denoising network.
Themodel was trainedwith a noise level of σ = 300. The results in
Fig. 9(b) show that the proposed HELM-based denoising network
exhibits high performance in terms of noise removal, and the
model preserves the hand-written digits from an extremely-low-
quality image. The results suggest a wide range of applications,
such car license plate identification in extremely dark or hazy envi-
ronments, and identifying hand-written documents while solving
forensic cases involving low-quality, illegible document images.

6.2. General denoising on natural image dataset

In this experiment, we trained our denoising network on the
aforementioned natural image dataset. We trained our denoising
network with the same architecture and parameters, but different
models (clipped and unclipped maximum intensity values) and
noise levels ([51] between 50 and 300) were used. Each indepen-
dent network required 5∼10 min for training on the same CPU
mentioned in Section 6.1. During our tests, we implemented the
image denoising in two ways. In the first method, noise was re-
moved only with a patch-based network, and overlapping patches
were combined via a simpleweighted average asmentioned in [17].
In the secondmethod,weutilized a complete denoising framework
using the patch-based network and non-local aggregation, as de-
scribed in Section 3.5.

Fig. 10 shows the results of our two patch-based network
methods in comparison with the three conventional methods,
in terms of the PSNR and SSIM. When the two versions of our
method are compared, the non-local aggregation method out-
performs the patch-based network for all noise levels based on
a simple weighted average. The non-local aggregation improved
PSNR by 0.2∼0.3 dB. Compared with BM3D and KSVD, our method
is clearly superiorwhen [54] is larger than90 for themodelwithout
clipping. For themodelwith clipping, ourmethoddisplays superior
performance when [55] is larger than 80. When our method is
compared to MPLD, the performance is nearly equal at high noise
levels [56] = 170. However, our method slightly underperformed
for [57] = {50, 75}. However, we achieved this performance using
only several minutes of training timewith a CPU. Fig. 11 shows the
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Fig. 7. Denoising performance on theMNIST dataset. (a) Unclippedmodel (Eq. (12))
and (b) clipped model (Eq. (13)).

denoised results of the image Lena with a noise of [59] = 170. It
can be seen that the denoised images obtained via the MLPD and
our method are superior to BM3D and KSVD, based on a subjective
observation. There are fewer unreasonable textures in the flat area
in our result compared to the MLPD result. However, the edge of
our result is less sharp than the MLPD result.

To analyze the practical utility of our method in more diverse
images, Table 1 shows a summary of the statistical results from
test datasets (11 standard images and 100 images selected from
PASCAL VOC) corrupted with white Gaussian noise ([60] = 170).
In terms of the average PSNR, our method produces significantly
better results than BM3D and KSVD and is competitive with MLPD
in both datasets. On 11 standard test datasets, our method outper-
formed MLPD when applied to 7 of the 11 images. For the rest 4
underperformed images, our performance was only 0.1 dB lower
than that of MLPD, except the ‘Fingerprint’ image for which the
performance difference was 1 dB. It is likely that no similar finger-
print textures existedwithin our training data. Of the 100 images in

Table 1
Average denoising performance of two datasets in the clipped noisy model (noise
standard deviation σ = 170).
Test dataset 11 standard images 100 images of PASCAL

PSNR SSIM PSNR SSIM

BM3D 18.08 0.4945 16.24 0.4264
KSVD 17.89 0.4734 16.06 0.4068
MLPD 21.23 0.5697 20.58 0.5172
Ours 21.15 0.5501 20.80 0.5192

the PASCAL VOC 2012 dataset, our method over-performed MLPD
by 0.2 dB on average in terms of PSNR, and the results displayed
better performance in 58 of the 100 images.

As Levin and Nadler reported in [58], there is an inherent limit
when we estimate a clean version from a noisy natural image
contaminated by AWGN. A statistical limit has been proposed to
tell how much more the natural image denoising algorithms can
be improved when we use a certain patch size during implemen-
tation. This is measured by taking a lower bound on the optimal
Bayesian minimum mean square error. We can then estimate the
best possible bound of the optimal PSNR value (PSNRop).We denote
p(x) as the probability density corresponding to the w*h patches,
p(y) is the resulting density of the corresponding noisy patches, the
noise level is σ , and xc is the central pixel in each patch x. Using
a sufficiently large set of N image patches and a set of M image
patches, upper and lower bounds of MMSE can be determined as
follows

MMSEU
=

1
M

∑
j

(µ̂
(
yj

)
− xj,c) (14)

MMSEL
=

1
M

∑
j

V̂
(
yj

)
(15)

where µ̂
(
yj

)
is an approximated mean and V̂

(
yj

)
is an approxi-

mated variance given by

µ̂
(
yj

)
=

1
N

∑
i p(yj|xi)xi,c

1
N

∑
i p(yj|xi)

(16)

V̂
(
yj

)
=

1
N

∑
i p(yj|xi)(µ̂(yj) − xi,c)2

1
N

∑
i p(yj|xi)

(17)

For Gaussian noise,

p
(
yj

⏐⏐xi) =
1

(2πσ 2)w∗h/2 e
−

xi−yj
2

2σ2 (18)

WhenN is sufficiently large, the twoMMSEU andMMSEL values
are similar. The best possible optimal PSNRbound canbe computed
from

PSNRop
= 10log10

(
1

MMSEL

)
(19)

We provide a reference of the best possible bound of PSNR
based on the image Lena with three heavy noise levels ([80] =

170, 240, and300) using the corresponding patch size shown in
Fig. 5; the PSNRop values are about 24.7, 23.6, and 22.5 dB, re-
spectively, which are higher than the denoising results shown
in Fig. 10(a). This shows that our denoising algorithm still has
additional capacity to provide improvement when heavy noise is
present.

Fig. 12 shows the real noisy images and their corresponding
denoised results. The images were captured with an industry cam-
era in small aperture mode and with an internal enhancement
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Fig. 8. Denoising test using real-world images. (a) Image of 25 digits captured using normal exposure in a bright room, (b) raw image captured in a dark room, (c) enhanced
image by linear grayscale stretching, and (d) mapping curve (black solid) used to map the grayscale in (b) on the horizontal axis to the grayscale in (c) on the vertical axis by
linear stretching. The gray area in (d) shows the histogram of the raw image in (b).

Fig. 9. Denoising results for Fig. 8(c). (a) Gray-scale inverted and cropped image patches containing hand-written digits and (b) results using our patch-based denoising
network.

turned on. Thus, they contain heavy noise. After denoising, the
visual quality is significantly improved.

The computational burden for applying the HELM-based de-
noising network is relatively low. For instance, to process a 512 ∗

512 image cropped to 28 ∗ 28 patches, the patch-based network
denoising step takes approximately 8 s with stride 4, or 2 s with
stride 8; the non-local aggregation step takes up to 3 min. Our
algorithm was simulated in Matlab scripts on a CPU (i7-5500U
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Fig. 10. Comparison of images with various noise levels.

2.7 GHz). Although the use of more complex computation in our
case produced better performance, a proper trade-off is necessary
and should be determined for particular applications.

Table 2
Comparison of the useful information ratio in the clipped noisy model (noise
standard deviation σ = 170, JPEG compression format).
Approaches Size of JPEG

compressed file
CR PSNR (dB) UIR (1/dB)

Noisy 158 KB 0.617 8.05 0.0767
BM3D 15.6 KB 0.061 19.79 0.0031
K-SVD 18.5 KB 0.072 19.27 0.0038
MLPD 18.7 KB 0.073 23.35 0.0031
Ours 15.7 KB 0.061 23.60 0.0026
Noise-free 30.8 KB 0.120 ∞ 0

Table 3
Comparison of the useful information ratio in the clipped noisy model (noise
standard deviation σ = 170, JPEG2000 compression format).
Approaches Size of JPEG2000

compressed file
CR PSNR (dB) UIR (1/dB)

Noisy 292 KB 1.140 8.05 0.1417
BM3D 17.9 KB 0.070 19.79 0.0035
K-SVD 40.3 KB 0.157 19.27 0.0082
MLPD 41.7 KB 0.163 23.35 0.0070
Ours 19.3 KB 0.075 23.60 0.0032
Noise-free 128 KB 0.500 ∞ 0

The compression rate and useful information of denoised im-
ages are keys to communication efficiency over the VIoT. We give
a definition to describe the useful information ratio (UIR) that is
relevant to compression ratio (CR) of a denoised image and PSNR
between the denoised and noise-free images:

CR = Sc/Sr (20)

UIR = CR/PSNR (21)

where Sc is the size of the compressed mono-denoised image file,
and Sr is the size of the corresponding mono-raw image file.

A smaller UIR value indicates more efficient communication
may be performed between end nodes and a server in the VIoT.
As shown in Tables 2 and 3, the result is illustrated by the ex-
ample of Lena, which contains Gaussian noise with standard de-
viation [88] = 170. The file size of the mono-raw data is 256
KB. The image compression approaches we chose are popular the
JPEG and JPEG2000 methods [59]. The compression ratio of JPEG
and JPEG2000 compressed files were called by using the ‘imwrite’
function in Matlab. We compare denoising results with different
approaches in the clippedmodel. Our approach archives the small-
est (best) useful information ratio compared to the other three
denoising approaches with both JPEG and JPEG2000 compression.

7. Discussion

The trained weights of the auto-encoder layer can be visualized
as patches, as shown in Fig. 13. These weights are applied to the
input patches with a dot product operation and can be interpreted
as filtering kernels, which can be used to extract useful information
like structural features from the noisy image. The outputs from this
hidden layer are used as filtered elements to combine a denoised
patch with the following hidden layer and the output layer.

Theweights of the hidden layer and the output layer are trained
efficiently without iteration. This is the reason why our denoising
network can be implemented at a high computational speed.
Meanwhile, the network can be trained to satisfy different noise
models and levels (even if SNR < 0 dB) without extra effort.
The aforementioned experimental results show that our method
achieved high performance despite the presence of heavy noise
compared with the other state-of-the-art methods. However, at
present, our denoising approach cannot outperform others when
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Fig. 11. A noisy image containing Gaussian noise with standard deviation σ = 170, and denoised images using BM3D, KSVD, MLP, and our method. The top and bottom
rows show the results of the models without and with clipping, respectively.

Fig. 12. Real noisy images (left) and denoised images using our method (right).

weak noise is present (i.e. [92] < 70). A possible reason is that the
architecture of the network is not sufficiently complex to represent
details in the image accurately. Increasing the number of nodes
or layers may provide a potential solution, but over-fitting of the
model should be taken into consideration.

A comparison of the useful information ratio (UIR) reveals that
our approach is more efficient for transmitting useful information
within a limited bandwidth for bandwidth-sensitive VIoT system.
This indicates that communication cost can be reduced for data
interaction between end devices and servers.

8. Conclusion

To address the problem of removing heavy noise in the visual
Internet of Things, we proposed a novel denoising method that is

based on hierarchical extreme learningmachine. The framework of
our method consists of a patch-to-patch image-denoising network
and non-local aggregation. Fast training is a key feature of our
method compared to other approaches, e.g., our denoising network
can bewell trainedwithin several minutes on a single CPU. Experi-
mental results show that ourmethod can effectively and efficiently
address various noise levels, in both clipped and unclipped noisy
models. This method can benefit VIoT applications in surveillance
situations, which suffer from heavy noise and limited bandwidth.
Our approach can provide efficiently transmit useful information
within a limited-bandwidth. For engineering towards practical
applications, we have designed an embedded VIoT system that
can accommodate our denoising algorithm formulti-camera video
surveillance.
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Fig. 13. Random selection of weights in the auto-encoder layer. (a) Weights learned from the natural images dataset. (b) Weights learned from the MNIST dataset.
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