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Abstract—The ’Smart World’ envisioned by technology will
be achieved by the penetration of intelligence into ubiquitous
things including physical objects, cyber-entities, social-elements
or individuals and human thinking. The development of Smart
World is enabled by diverse applications of Wireless Sensor
Networks (WSN) into those components identified as things.
Such a smart-world will have features controlled significantly
by the location information. Control and Policy information
of Smart World services, often addressed as Location-Based
Services (LBS), are governed by location data. Localization thus
becomes the key enabling technology for Smart World facilities. It
is generally classified as active and passive techniques in nature.
Active localization is a widely adopted localization scheme where
the target is detected and tracked carries a tag or attached
device. The other category, Passive methods, defines targets to be
localized as free of carrying a tag or device, hence also referred
to as Device-Free localization (DFL) or Sensor-less localization.
The passive approach is a well suited for the development of
diverse smart world applications with ubiquitous localization.
Device-free localization schemes fall into a wide range of ap-
plication scenarios within the Smart World ecosystem. A few
notable examples are occupancy detection, identity definition,
positioning, gesture detection, activity monitoring, pedestrian and
vehicle-traffic flow surveillance, security safeguarding, ambient
intelligence-based systems, emergency rescue operations, smart
work-spaces and patient or elderly monitoring. In this paper,
the revolution of device-free localization technologies have been
reviewed and classified comprehensively. Further, the emergence
of the Smart World paradigm is analyzed in the context of device-
free localization principles. Moreover, the inherent challenges
within the application domains have been extensively discussed
and improvement strategies for multi-target localization and
counting approach are discussed. Finally, current trends and
future research directions have been presented.
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I. INTRODUCTION

HE location of an object and reference time-frame are

two vital variables of any engineering or scientific ob-
servation. Any reading extracted from an intelligent system is
fundamentally associated with the location and time values of
the corresponding object or event. The inception of Localiza-
tion techniques had begun in the early days of human civi-
lization, as in reference frames based on the relative positions
of heavenly bodies (sun, moon, and stars) for navigation on
the ground and in the ocean. Later on, finer techniques were
developed based on the Earth’s magnetic field, for instance,
the compass. With the onset of the industrial revolution the
earliest precise measurement of time using the atomic clock
was developed, and later came location identification from
the Global Positioning System (GPS)[1]. GPS accuracy lies
within tens of meters under ideal conditions, and was com-
mercialized in the 1990s. The localization technology stream
further developed around outdoor[2]][3] and indoor[4][5] use-
cases with accuracy scales in the range of meters. Finally, the
category of device-free approaches to localization principles
were applied in the medical field for tumor detection[/6], which
was highly precise[7] and accurately measuring in the range
of millimeters [8]][9]. Figure 3 represents the evolution of
different approaches of device free localization scheme.

The emergence of location-based services and applications
has led to a growing demand of ubiquitous localization or
localization anywhere [10], [[L1], [12], [13]]. Wireless devices
and Wireless sensor network technologies and applications
being applied into widespread scenarios have gained much
interest in recent years. The localization principles for devices
in these networks have captured constantly growing attention
of the R and D community. Live monitoring, tracking and
activity detection of objects and entities are the most fre-
quently executed operations. Existing localization techniques
from relevant literature can be categorized as either Active or
Passive models. Active localization scheme is the method of
having the device located by the system using an embedded
sensor, an RFID tag or an electronic device [14]. The principle
also takes to use major systems such as Global Positioning
System (GPS), infrared-based and ultrasonic-based ranging
systems. Passive localization, on the other hand, is based on
the device or thing (object) tracking without having to resort to
embedding any electronic device. In other words, this principle
is valid in scenarios where the object is localized without any
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information from or the presence of any localization system.
Relevant scenarios most commonly encountered in the real-
world are intrusion detection in buildings, secure facilities
or private properties, specifically within the National Defense
sector or security domain, active online traffic monitoring of a
Smart City, localization of human activity in a specified geo-
graphic region, health care monitoring, telemetry systems, etc.
Hence, a vast array of research interests are steadily evolving
in the device-free localization or sensor-less localization front
[L5]].

To elaborate on this flexible mechanism, device-free local-
ization methods utilize object-to-object interactions defined
through radio signal properties like absorption, scattering,
diffraction, reflection, refraction or any rational combination
of these techniques. The radio link modification due to the
physical and geometrical properties of the object under obser-
vation are perceived in the region-of-interest (ROI), leading to
the object being localized precisely in real-time. In building
automation systems, like the smart home or smart building,
occupant presence detection and counting are keys to numer-
ous applications like identity detection, gesture monitoring or
activity monitoring in living entities.

However, these functions, when designed in the context of a
smart home, hardly take into account occupancy information
[16], leading to a significant amount of energy wastage in
these automation systems. Proper occupant detection inside a
building can automate the building for low energy consump-
tion [17], 18], [19], [20], [21], [22]. Device-free localization
methods also offer logical support to consumer applications
such as fitness tracking [23[], [24] and monitoring of the elderly
[25], [26] in health care services. Other notable applications
include gesture recognition in gaming [27]], intrusion detection
[28], border security assistance [29], security safeguard, road
side and traffic flow surveillance, emergency rescue operations,
ambient intelligence schemes, smart spaces and patient mon-
itoring. In all the aforementioned scenarios, the object is not
committed to carrying an electronic sensor for localization,
which shows an important research area over traditional active
methods of localization [30].

Interrelationships between localization techniques and smart
world application domain are essential and interconnected
[41], [42]. The smart world paradigm can be thought of
as consisting of four layers - the physical world, the social
world, the cyber world, and the thinking world. The physical
world is a mixture of people and things (objects) and the
context of their encounters and interactions. All of these
levels have a critical requirement to gather information on
the location of people and things, with respect to time and
physical displacement. Smart vehicles and self-driving vehi-
cles, autonomous systems in manufacturing, communication,
etc. epitomize the vitality of need for location information in
geographic navigation in the physical world. Social behavior
and inter-relationships among identifiable entities are analyzed
within the social world background. Location-based gaming
and the spread or influence of epidemics are two typical social
events that require location information for the progress and
continuation of social activities [43]. Localization and tracking
are equally important in the cyber-world domain for real-time
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Fig. 1. Location Based Services(LBS) In smart World

applications like location-specific web search to render cyber-
world intelligence. Finally, the thinking world applies location
information in many aspects of life, like travel, residence,
career, education, and entertainment, to render better quality-
of-life for human beings. Therefore, the services for smart
World are impossible to design and establish in the absence
of location information. A high-level outline of the location-
based services described here are presented in Figure 1.

Depending upon the technologies incorporated, like optics,
electrical or magnetic field variation, radio frequency, infrared
or mechanical principles, etc., device-free localization can
be classified into different domain technologies. Optical or
infrared methods use the highest frequency range. These
methods rely on computer vision technologies for localization,
but they cannot overcome wall penetration, darkness, atmo-
spheric smoke, [44] etc. Further, these methods have privacy
issues as they visually monitor, using cameras, individuals
[45]. Electrical field or mechanical pressure sensor based
localization has given the best results to date, but the deploy-
ment cost is much higher in comparison to other methods
[46], [47]. The main advantage of radio frequency based
device-free localization is that it overcomes the problems of
physical barriers (walls), lack of clarity in vision, range and
accuracy trade-offs and privacy. Typical measures used in radio
frequency based device-free localization (DFL) are designed
to include Received Signal Strength (RSS), Time of Arrival
(ToA), Angle of Arrival (AoA), Channel State Information
(CSI) and Channel Frequency response.

In this paper, a thorough technical description of local-
ization methods in connection to Smart World scenarios and
valid explanations of the technical complexity, current trends,
prospective applications, and future research directions have
been presented. The multidisciplinary area of localization
science with regards to device free sensor-less localization is
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extensively reviewed. The rest of the paper is organized as
follows: The focus of Section II is to explain the evolution of
various device-free localization (DFL) techniques. To simplify
the understanding of different localization methods, a detailed
taxonomy is presented in Section III. We then discuss the key
classes of localization techniques in Section IV to VII, with a
focus on the critical analysis of the existing approaches. One
of the key features of this tutorial paper is to learn critical
lessons from the different classes of localization techniques,
the later is discussed in Section VIII. Section IX describes
the application of DFL with a focus on analyzing its core
technical issues and challenges. Some discussion on future
research directions is also covered in Section IX. Finally, the
conclusion is presented in Section XI.

Location Based Smart Services

Location Intelligence

Localization and Tracking Algorithms

Location Sensing

Smart
- World(Things,People,Groups,Motion)
Fig. 2. Layers of Ubiquitous Localization System for Smart
World

II. EMERGENCE OF DEVICE FREE UBIQUITOUS
LOCALIZATION TECHNIQUES

The inherent need for position and location knowledge
demands diverse research initiatives into localization technolo-
gies. Due to the pervasive presence of wireless signals around
us (e.g., WiFi, GSM, and FM radio), wireless localization can
be thought of as the most prevalent technique to implement
location estimation. Over the years, various wireless localiza-
tion techniques have been successfully developed. They have
also evolved from active to passive in nature based on radio
frequency based communication techniques. Priyadarshini et
al.[S9] have categorized localization as having two types -

active and passive - on the basis of presence of the radio fre-
quency tag. One of the most popular active localization system
was developed around 1960s for military applications called
Global Positioning Systems (GPS), explained by Youssef et
al.[l60]. GPS became the most popular referencing system for
almost every positioning and navigation application. However,
it has severe limitations in indoor scenarios [[61]]. GPS has also
been noted to start failing when there is attenuation or obsta-
cles in line-of-sight ranging scenarios, like in a city with high-
rise buildings, forests with high density and thick canopies,
as well as mountainous areas, mostly due to link failure in
establishing communication session from the GPS device to
the satellite [61][62]. To overcome the above-described prob-
lems different approaches have been proposed for electronic
identification. Radio-frequency based identification techniques
have been gaining quite a bit of momentum based on their
features of low power consumption and accuracy. The object
to be localized have to carry identification tags which can
store and process information in real-time for localization and
tracking of the object [63].

Radio frequency based systems work by using three sub-
systems: identification tags, servers, and readers, as proposed
by Bouet et al. [63]]. The tag can be of three types - active,
semi-passive and passive. Active RF tags carry batteries for
power supply requirements. The passive tags don’t have any
internal power systems [64], instead, they communicate with
the readers by backscattering the carrier signal received and
bringing electromagnetic resonance into the picture [61],[63].
Semi-passive tags have batteries powering up their systems as
well as apply the backscattering method. This radio frequency
method of localization is highly accurate and less costly but
in a real-time application, it has the limitation of multi-object
tracking[59].

A newer human-centric design of localization methods are
being adopted for healthcare and fitness tracking scenarios
through the framework of Wireless Body Sensor Networks
(WBSN) [65]. WBSNS are constituted of base sensor nodes for
telemetry (generally wearable devices) and central processing
node(s) for further analysis. The wearable sensor nodes collect
physiological and functional information of the human body
which is then processed by the central node to generate
intelligence required to manage the operations, control the
functions and schedule the wearable devices. Nonetheless, a
major problem exists within the scope of these systems - the
interference of sensing signals while the users are closely
located [|63]]. Further, a Slotted Carrier-Sense-Multiple-Access
with Collision Avoidance (CSMA/CA) based Hopping method
is used in WBSN to mitigate the interference.

Device-free localization or sensor-less localization is a
growing generic research interest in the domain of real-time
human and object detection across a multitude of applications
such as health care system, logistics, security and defense,
manufacturing and production and asset tracking, etc. [66].
Such an approach employs the different environmental radio
changes for deriving logical rules for tracking entities. These
methods, therefore, work without any active sensor unit em-
bedded in for the localization of objects [67]]. The presence of
human entities is reflected in the physical phenomena that are
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Fig. 3. Emergence of Device Free Localization System for Smart World

associated with the signal change due to shadowing, diffrac-
tion or scattering. These phenomena continuously change the
magnitude and phase of the signal which can then be adopted
for localizing individuals. These changes arise in the scattered
signals due to the variation of density and composition across
the cross-section of the human body [68]. Several algorithms
and models have been proposed in the literature for signal pat-
tern detection and extracting location information. Howeyver, it
is quite difficult to compare those methods since they vary in
terms of region of deployment, hardware configurations, type
of communication protocols used, and so on.

The human presence detection inside an indoor environ-
ment is another area of growing interests and device-free
localization techniques promise to provide good solutions.
The wireless link between the sensor node and the associated
signal strength variation provide a strong clue toward localiz-
ing the human entity. Priyadarshini et al.[59]] considered the
resonating properties of water to the signal shadowing effect.
The author asserts that over seventy percent of the human
body composition is water and taking the water’s resonating
properties into account for the development of device-free
localization systems. El-Kafrawy et al. [68] developed a DFL
system considering the RSS variation associated with human
motion. The author designed a ray tracing model using a bunch
of transmitters and receivers, and localized indoor humans
based on the phase change of the line-of-sight signal. Jamie et
al.[69] analysed the movement pattern of objects with respect
to RSSI. The author conducted an experiment using wireless
sensor networks and concluded that wireless attenuation of
signals depended upon the number and speed of targets.

The main aim of this survey is to summarize the device-free
localization techniques, which are required to realize smart
world application. Although smart infrastructures including
the internet of things and sensor/actuator networks are being
actively investigated by the community, there is currently lack
of literature that critically surveys and analyzes device-free
localization methods. In depth study and critical analysis of
the existing device free localization methods is one of the
key contribution of this tutorial paper. [[15], [S9], [60], [61] by
focusing a specific scenario. These approaches are limited and
cannot focus the overall taxonomy of device-free localization
context. Patwari et al. [[15] considered measurement of RF
sensors and took into account of the statistical estimation for
location purposes. Another approach using database training
of the tracked entity for localization is presented in [60],
[70], [71]. Techniques for localization based upon physical
parameters like the electromagnetic field reconstruction [72],

narrow-band radar [73]], tomography [49], [S0],[48],[74]] have
also been designed and tested. MIMO radar based method
[53] [54] uses spatial diversity for reliable detection. Ultra-
Wide-band methods [1S[[7S][SLIIS2][76][77][78] are designed
on the impulse response measurements for the separation
of multipath changes and calculate time delay to estimate
location. Image estimation methods like radio tomography
[79][55][56] exploit RF measurements using spatial filters to
estimate location and motion of tracked objects. Further, com-
bined application of RF tomography and compressed sensing
[80] for link measurement gives an energy efficient solution
to the DFL problem. Accurate and robust human motion and
activity detection by Wi-Fi signal is presented by Kosba et
al.[81]]. Device-free method of human occupancy detection is
reviewed by Priyadarshini [59] and indoor active and passive
localization methods have been analyzed by Deak et al.[66].
Figure 3 shows the evolution of device-free localization meth-
ods over the last 15 years. As the aforementioned methods
focus on specific research problems, there is a requirement to
undertake critical and comparative analysis of these methods,
the later is the key contribution of this survey paper.

III. CLASSIFICATION OF DEVICE FREE LOCALIZATION
TECHNIQUE

The development of ubiquitous localization system is pos-
sible with the extensive use of wireless signals like GSM,
WiFi and FM. These categories of Device-Free Localization
(DFL) techniques are often referred to as radio sensing or
sensor-less sensing. This method exploits link measurements
to estimate object location. The primary properties of wireless
links applied in radio-sensing are Received Signal Strength
(RSS) and Channel State Information (CSI). There are two
types of approaches which take into account the measured
properties for location estimation: 1) Shadowing or Link
Quality Measurement, and 2) Reflection or Scattering of the
link. Hence the methods are also categorized as 1) Vision-
based approach (uses shadowing or link quality measurement),
and 2) Radar based approach (uses reflection or scattering
of the link). The detailed taxonomic classification is given in

Figure

A. Radio Vision Based Approach of Device Free Localization

Here, the variation in the properties of wireless links be-
tween the sensor nodes is exploited for location estimation.
This can be based on either the physical layer values e.g.
Channel State Information (CSI) or the higher layer measures
e.g. Received Signal Strength (RSS). The logical model of a
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Fig. 4. Taxonomy of Device Free Localization

localization problem can be realized as an object interfering
with wireless transmission links. Contextually, a transmission
link comprises of periodic frames of adjacent symbols and
an object in position z inside the link area performing an
activity . The state of the object can be represented as a
combination of its location and activity as © = [z, 6]. Channel
response over a set of received symbols depends upon the
object state ©. In static environment conditions when the
object is not hampering the link, (© = ¢), the equivalent
channel response h(7|¢) = SN akgr—re 7% is modelled
as a multipath which is a combination of N delayed paths.
Here, oy and ¢ are the amplitude and the phase-shift of
the k'" link respectively and g, _,, models the received pulse
waveform with delay 7. When an object is in state O, the
changes in the channel response at symbol time teT’ may be
represented as

he(7]©) = Sh 40k (1©)gr -1, 1]y 7+ (1)

where the amplitude «y,(¢|©) the phase shift ¢ (¢|©) and the
augmented delay 74 (¢|©) of the k*" link highlight the object-
generated interference compared to the object free state © = ¢
Amplitude o, (¢|©) and phase shift ¢ (¢|©) incorporate object
induced micro Doppler effects.

The above deduction proves that the presence or motion of
an object induces a change in channel link quality of com-
munication systems. The basic structure is shown in Figure [5
where the detection of objects is based on the extraction and
estimation of the measured RSS or CSI values.

1) RSS: The most common metric of measurement of
channel quality is the Receiver Signal Strength (RSS). RSS

(o)
%))

©)

( (o))
e

(@)

1 =Target Object

(@)

<(°)>=Sensor

Fig. 5. Vision Based Approach of Device Free Localization

is commonly used for transmitter (TX)-receiver (RX) link
adaptation and link measurement for the different estimation.
Power estimator or peak detector is widely used to acquire
information about signal strength.
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2) CSI: Channel State Information (CSI) is a metric of
channel response induced due to some interference in link
level. CSI estimation is obtained from a reference training
signal multiplexed with information symbols. Hence, in con-
trast to RSS, the CSI information processing gives multiple
independent measurements and can be used to localize and
track fast object motion and activities.

H = (Hij)N,. . Ny 2

H;; is the CSI of the link formed by T°X; and R.X; containing
information of the N subcarrier.

Radio vision method maps changes in link properties of the
region of interest with respect to the estimated location. These
approaches are further categorized as 1) Training based, and
2) Model-based approaches of Device-Free Localization. To
compute the location by training based approaches, an off-line
training-phase free from the object is a prerequisite. A Model
based approach is further sub-divided as Propagation Model
methods and Statistical Estimation Model methods, which do
not require an off-line training phase.

B. Radar Based Approach of Device-Free Localization

A Radar-based approach of Device-Free localization ex-
ploits the scattering or reflection property of the radio link.
This is modelled as n, transmitter (TX)-receiver (RX) pairs
operating as a network of sensor radars with each pair acting as
an index. The index set is represented as N1 = {1,2,...,n,}.
The i pair transmitter is in location pg} and emits a signal
s(t). The location of the receiver is pi? it received the
signal after backscattering by objects or scatterers of the
environment.

@
Py @ op’

Ptx

RN .:
Pt el S ()
ob,

Fig. 6. Radar Based Approach of Device-Free Localization:
A bi-static sensor radar model: Red empty circles represent the
transmitter and receiver positions, blue circles represent the target
scatterers, and black circles represent the background scatterers.
Black dashed lines indicate the direct path between the transmitter
and receiver as well as the first multipath component related to the
background scatterers. Blue solid lines indicate the first multipath
component related to the background scatterers

The sensor radars (SRs) are modelled as a random set N;
of n; targets. The k'" target t;, is located in position pgk) with

keNy. Further a random set IV}, of n; background objects is in
position p(()k) with keN,. The background objects are always
present even in the absence of targets. Figure [6] shows a bi-
static (One TX and One RX) sensor radar with two target
scatterers and two background scatterers.

—> Static Backscatterer

aansa> Moving Backscatterer

Fig. 7. Static and Dynamic Backscattering Model

A promising approach of device free localization, based on
wide-band and ultra-wide-band (UWB) [132[][[133]][1134]] signal
sensor radars (SRs) is gaining popularity in applications like
presence detection and counting of objects. The advantage
of a wide bandwidth is the ability to achieve localization
with high resolution, multipath mitigation and multiple target
detection with closed position, etc. [135][136][137]. Multi-
object counting and localization is achieved with the placement
of UWB radar at the entrance of the region-of-interest based
on the time of arrival (ToA) of back-scattered signals [138]].
This algorithm relies on the threshold crossing of estimated
ToA measurements. Choi et al. [139] had proposed a counting
algorithm using local maxima of the power of the received
signal. In his method, when a local maxima exceeds a defined
threshold, a set of samples around the local maxima are deleted
iteratively. However, this approach bears the limitation that the
design of the proper threshold value which is crucial for the
system performance [135].

Jin He et al. [140] proposed a crowd-centric counting
algorithm based upon Support Vector Regression (SVR) to
learn the relation between extracted feature and the number of
target objects. The learning phase parameters depend on the
training sequence derived from the feature set that belongs to
both the time and frequency domain. However, in the above-
mentioned research work, there is no clear explanation of the
theoretical model that was used for localization and counting.
A list of scattering algorithms for localization based on radar
principle has been reviewed and categorized in the taxonomic
trees as shown in Figure[d] The scattering model can be further
static or dynamic in nature based on the tracked object as
shown in Figure [7]
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IV. PROPAGATION MODEL BASED DEVICE FREE
LOCALIZATION

Device-free localization approaches exploit radio links and
their properties within the sensor network domain for the
estimation of object location. The RF sensor network is a
network consisting of RF sensor nodes. Here, the RF wave
parameters denote the various characteristics of sensing op-
erations. In RF sensor networks the sensors broadcast and
receive signals via wireless “links”, which are projections of
the sensor node passes in the region-of-interest using received
signal strength (RSS) measurements. Any object that crosses
these links interferes with the link and alters the measured RSS
value of the link. The receiver senses and exploits those RSS
variations for location predictions of the object. A proper prop-
agation model of those links with RSS characteristics helps in
the development of the localization technology domain. This
section reviews state-of-the-art localization approaches based
on the propagation model.

A. Propagation Models

1) Shadowing: Shadowing model exploits the RSS atten-
uation property of the radio link as shown in Figure [§] In
this model, the environment is first considered without the
localizing object, and RSSs of all involved radio links are
measured. The sample mean of all unaffected RSS average
values is defined as the average RSS. In real-time localization
scenario, the receiver measures the RSS value, induced by
shadowing loss, and calculates its numerical difference from
the average RSS of the initial empty environment. The model
accounts for link shadowing as a linear combination of the
signal attenuation. Different attenuation models presented in
the literature are based on spatial impact model of the signal
as well as the signal impact on the link. Wilson et al.[79] [55]
modified the spatial impact model and developed an ellipse-
based geometrical model with nodes coinciding with the foci.
In this model, the RSS is either inversely proportional to the
square root of the length of the radio link for objects inside the
ellipsoid or set as zero otherwise. This model gives quantitative
information about the attenuation impact of each link.

()

Fig. 8. Target attenuates the links result in variation of
RSS[79[155]

Wilson et al.[79] proposed a shadowing based outdoor
localization model for object detection. In this model, the
RF sensor network monitors the attenuation of the links due
to object movement and localize or track the target object.
This system calibrates the RSS in static condition devoid of

humans or target object, and uses that information to calculate
the RSS difference in real-time monitoring. Moroever, the
environmental noise is modelled based on Gaussian Mixture
Model (GMM), which is a probabilistic model well known for
reducing the localization error. To track the moving object,
the paper implements the well-established regularization tech-
nique. Further, the authors proved that the shadowing model
is capable of localizing and tracking single as well as multiple
human entities with a significantly lower error value. However,
due to all active sensor nodes, this model has the demerit of
high power consumption.

2) Channel Diversity: Kaltiokallio et al.[56] improved the
shadowing model of RF sensor network using multiple channel
communication among sensor nodes. The author proves that
the probability of signal shadowing in each link between the
sensor nodes is better represented with different RSS mea-
surements from multiple frequency channels. The two-channel
selection criteria involved are based on packet reception rate
(PRR) and fade level of the link. PRR ensures maximum
communication reliability while the fade level concept[109]
maximizes the fade level attained within the link. The author
also verifies that the channel diversity approach maximizes lo-
calization accuracy compared to the single frequency channel
approach. The testing is done the indoor scenarios of ground
area 70 m? and 30 sensor node elements, involving human
localization, and the observation was that average errors were
less than 0.1m. However, this approach is only applicable to
the localization of stationary objects and people. Moreover, the
author does not elaborate on the localization principle within
the moving object scenario.

3) Ambient Radio Imaging: Energy efficiency is equally
significant over localization accuracy in device-free localiza-
tion systems since sensor nodes are not always connected
to power supplies. Energy Saving is a vital requirement
for outdoor localization techniques as well as in the indoor
scenarios and yet is often neglected. Khaledi et al. [58] focused
on the energy efficiency aspect of the device-free localization
problem, with localization accuracy in consideration as well.
The authors divide the monitoring area into smaller partitions
as part of this approach, the partitions with ineffective link
RSS variation are switched off. They also suggested two
methods for effective link estimation near the target radius
based and ellipse based.

In addition, they tested both methods based on energy
efficiency and localization accuracy and compared them with
shadowing[[141]] and variance[S5]] based approaches. Three
scenarios were investigated: the office space, indoor area,
and a bookstore, for experimentation of the proposal. It was
found that an ellipse based approach is better in attaining
energy efficiency over other approaches while the radius based
approach offers higher accuracy. However, the method is only
applicable to single target tracking.

4) Directional Radio Imaging: The majority of the device
free localization systems realize omnidirectional antennas for
radiation. Wei et al.[85] suggested that the antenna direc-
tion can improve the quality of the radio link for better
accuracy of localization under device-free conditions. The
author implemented a very efficient directional antenna system
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TABLE 1. Propagation Model Based Radio Vision Method
Research Work Model Deployed Deployment No.of Measured Physical Quan- | Localization Accuracy Complexity Research Findings
Environment Range Sensor tity
Nodes
1791551156 Shadowing Outdoor 40 m=. 28 RSS 0.021-0.036 mean sq. er- | O(n) Linearly Localize only one/two person based on ra-
ror with Voxel | dio imaging
O(n?),
Quadratic  with
number of sensor
node
156 Channel Indoor 70m 30 RSS < 0.10 m average local- | Linearly with | Works in real-time with promising high
Diversity ization error voxel O(n),n = | accuracy
Vozxel
158 Ambient Radio | Indoor 70 m 30 RSS 0.172 m (ellipse ap- | O(n) n=voxel | The author considers only the nearby links
Tomography proach), 0.1544m(radius | but better than | of moving object by the ellipse or radius
approach), 0.1693m(basic | RTI due to power | model to estimate localization. Hence sav-
approach) efficiency and | ing 50-80% of energy.
periodic shut
down of sensor
185 Directional Indoor 28 m 7 RSS of directional links rms error 0.4340(LoS) and | O(n?),Quadratic | Directional antenna have been used for LoS
Radio Imaging 0.7506(Non LoS) due to number | and non LoS link measurement for better
of link | location estimation.
measurement
186, Exponential Both Indoor and | 24-36 m? four RSS 0.07-0.21 m. mean error 0(n?) Exponential Reyleigh RSS model outper-
Rayleigh Model Outdoor different form due to mitigation of multipath inter-
sets. ference by this model.
187 Diffraction The- | Simulation Study | Short Range Different | RSS 0.25-0.4 mean error 0(n?) Electromagnetic propagation of the link is
ory Sets modelled with diffraction theory.
Simu-
lated
1881189119019 | Radio Grid Indoor Indoor > 16m? | more RSS Less than Im O(n?) Quadratic | Real time tracking system is developed with
for each grid than 3 complexity due | dividing the tracking field into different area
for each to influential link | called grid and adjacent area have different
grid communication channel.
1921[93] Compressive Both Indoor and | variable 144m? 5 RSS less than 0.8 m O(K.log(N/K)),| Unifies radio map for different area by using
Sensing outdoor K=targets with N | compressive sensing which reduces human
sensing nodes effort. This method is applicable for multi-
ple object tracking
[94. E-HIPA Indoor 36 m Variable RSS 0.3-04 m O(KMN+ Energy efficient multi-target based method
log(2N)) using compressive sensing.
called Electronically Switched Directional (ESD) antenna for Solnstant
. N . . elocit
energy-efficient cost-effective localization. The ESD antenna Model
enables dynamic electronic direction control which has better
efficiency than the traditional antenna. Multipath fading is E
. . . . . . Iror
controlled with this directional antenna focusing and collecting
signals in the specified direction, thereby improving the link Iégggtlgglon

quality. The writers suggested that there are 36 possible
combinations of transmitter-receiver pairs for a single radio
link. They named these pairs direction-pattern pairs. The pairs
that were recognized in this method were compared with
existing methods like [79]], Variance Radio Tomographic Imag-
ing (VRTD[55] and Channel Diversity Radio Tomographic
Imaging (cdRTTD)[56] and validated that it outperforms in terms
of localization accuracy for LOS and NLOS conditions.

5) Exponential Rayleigh Model: Guo et al. [86] proposed
an RSS based Exponential Rayleigh (ER) model for device-
free localization with better performance. The model applies
Bayesian inference in estimating state posterior distribution
as shown in Figure E} In this model, the state transitions
with respect to time are shown in the state space model,
and gives prior state distribution. The constant velocity model
represents a moving process of the target. The state posterior
distribution is calculated by the particle filter which is a
form of Monte Carlo based method. An additional hierar-
chical clustering process is augmented for multiple target
identification in multi-target scenarios. The author applied
Hierarchical Agglomerative Clustering (HAC) algorithms for
multiple target identification. The major blocks presented in
the Exponential Rayleigh (ER) model is given as follows.

e Motion Model: Movement of an object can be mod-
eled as a physical process. Tracking human activity is
implemented with a human movement model which is
considered as a first-order Markov process. This leads to
the Markov process model predicting the next state of

Fig. 9. Device Free Localization with ER Model[86]

the system based on its previous states. Here, the current
state of the object motion can thus be predicted from the
last state. ER model uses the various state-space models
to create object motion.

Particle Filtering: In non-Gaussian and nonlinear sys-
tems the Monte Carlo method [142] is used to extend
the filtering as a particle filter. To achieve an optimal
solution, state distribution is expressed using random
samples called particles. Particle degeneracy, however,
turns out to be a prominent issue, which is then solved
with re-sampling methods. In the ER model, Sampling
Importance Re-sampling (SIR) particle filter is used for
device-free object localization.

Hierarchical Clustering: Hierarchical clustering is used
for multiple object localization. The HAC algorithm
[143] is a promising clustering method. In this method,
each particle is initially supposed to be independent and
after each iteration, clusters are merged under linkage
rules and terminated when cluster number equates to the
targets. The center of these clusters gives the target state
information.

o Multiple Particle Filter: Closas et al. [[144] proposed the
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Multiple Particle filter for performance improvement in
high dimensional targets. The tracking performance is
improved in comparison to the standard particle filter.

6) Diffraction Theory: Rampa et al. [87]] proposed a diffrac-
tion theory based tractable model for moving object localiza-
tion. The paper depicted the perturbations of electromagnetic
signals caused by moving objects near transmitting or receiv-
ing sensors. Object size, position and orientation information
is estimated by the exploitation of received signal strength
measured from multiple radio links.

bstacle Freshnel’s Ellipsoid

|

Fig. 10. Device Free Localization with Diffraction Theory[87]

"Floor

The suggested model is shown in Figure [I0} The target
object is orthogonally placed in the line-of-sight segment
connecting transmitter and receiver. The target is also assumed
to be a perfectly electromagnetic absorbing rectangular 2D
surface as shown in Figure [I0] Location of the link is set
above the floor, without the wall and ceiling. The Fresnel’s
ellipsoid [143]] is drawn without any contact with other parts
except the target. Ground reflections are ignored in this model.
In 2D horizontal space, the target barycentre is located with
off-axis displacement. Target objects can move or rotate in any
direction along LOS (Line-of-Sight).

Based on this diffraction theory, an ad-hoc model has been
developed to describe the fluctuation of radio signals caused
by the presence of objects between transmitter and receiver. A
lower bound metric, which is also known as the Cramer Rao
Lower Bound (CRLB), is applied for estimating the variance.
The efficiency of the estimator is measured based on the lowest
possible mean square error. Further, Rampa et al. validated the
above estimator model, which predicts localization accuracy,
in a experimental setup that included different indoor and
outdoor conditions [[146]].

7) Radio Grid: Zhang et al. [147] proposed the radio grid
based device-free localization. This paper explains how the
authors had deployed a radio grid in the ceiling and observed
the link that was influenced the most by the object. The author
reported that the highest RSS fluctuation is along the line of
link direction as well as the line perpendicular to it. They then
developed a signal dynamics model based on the midpoint,
intersection point, and best cover respectively. Experimenta-
tion was performed on the model with a 4 x 4 sensor grid
in an indoor scenario of floor area 108 m?, with the single
object localization error of 0.7m and 1.8m for two objects
which he further improved by dynamic clustering [148][88].
Sen et al. [149] proposed another approach for implementing
Radio grid-based method using CSI signal fingerprinting. Due
to the high resolution of CSI based methods, it applies to
human localization and activity detection. Furthermore, it has
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been enhanced by research initiatives like breathing detection
[150] [151] [152] [153]] and occupancy detection[154] using
efficient feature extraction from the CSI signal. Depatla et al.
[155] further extended a statistical model from RSS to develop
a people counting system in an area and also claimed its
applicability with CSI model of the signal. Recently Wang et
al. [156] had developed a CARM model to characterize human
speed using CSI sub-carrier amplitude and former activity
model which helps to localize humans based on eight different
activities, with accuracy levels peaking at over 80%. Further,
this model is improved by the Localization information with
Fine-grained Subcarrier (LiFS)[90] model too, using LOS
shadowing. LiFS model divides the surrounding link into
three zones: LOS, NLOS and First Fresnel Zone (FFZ) which
improves the performances of all previous models. It was
also capable of localizing human beings without training and
less than 0.5meter median error. Pu et al. [[157] designed
a prototype using software radios for gesture recognition
in indoor scenarios. This method can classify nine gestures
with an astonishing 94% accuracy by exploiting Doppler
shifts. Further, Xing et al. [158] developed another device-
free method of human motion detection using Doppler shift
and localization principles, by measuring AoA data from
directional antennas. Moreover, CSI based device free method
is still evolving compared to its active localization counterpart
[159][160][161]. Recently SpotFi [[162] reported being more
accurate than all prior methods with 40cm error using only
commodity WiFi devices.

% R = RSS change vector of cell

M = Radio Map of the Grid
6 = Location Vector of cell

Fig. 11. Compressive Sensing: The real-time RSS of the
cell is collected to form RSS vector(shown by coloured
cell) and applying compressive sensing theory to localize the
target[92][193]].

8) Compressive Sensing: Multiple object localization and
counting are also possible with Compressive Sensing [92]][93]]
technology. To achieve high localization accuracy, researchers
have proposed a dense deployment scheme of sensor nodes.
However, Wang et al. [92] showed that high localization is
achieved in sparse deployment scenarios also through Com-
pressive sensing approach. Modern device free approaches
adopt RSS based measurements since they do not require
additional hardware installations for WSN. RSS interference
of the link is an important measure for this type of localization
approach. Wang et al. [92] considered target location as a
sparse signal and reconstructed it using a Compressive sensing
approach. This choice of technique was made due to its ad-
vantage in sparse recovery. Furthermore, it was mathematically
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proven that the necessary Restricted Isometry Property (RIP)
satisfied for its applicability in the device free localization
problem context. They proved that the product of sensing
matrix and location vector obeys RIP with high probability as
shown in Figure [IT] In contrast to existing grid size design for
low localization error, the author conducted the Compressive
analysis on the appropriate choice of the grid size. Moreover,
they validated this approach in localization as well as target
counting in large-scale scenarios.

9) E-HIPA(Energy Efficient High Precision Adaptive)
Model: Wang et al. [94] developed E-HIPA model of multiple
object localization exploiting properties of Compressive Sens-
ing (CS) theory. The author divides the localization problem
into two subproblems. The author first formulates device-
free localization as a sparse recovery problem by establishing
the sensing matrix which satisfies RIP. They then designed a
recovery algorithm which adapts to the unknown number of
targets. Hence, much of the practical localization problem can
be formulated as a CS problem and be solved for a number of
practical scenarios. This approach exploits radio signal prop-
erties such that when a radio signal propagates the monitoring
area, it is diffracted, scattered, absorbed or reflected by the
target object. The distorted RSS measurement varies when the
target object is in different locations [55][I88][L63[][[70].

K-targets

r‘ K=2

Measurement Links

Fig. 12. E-HIPA: This method uses compressive sensing for
sparse recovery with reduced link measurement and energy
efficiency[94].

The author experimented E-HIPA in the setup as shown
in Figure [I2] The deployed area is a regular rectangular
region with all transceivers positioned at a single hop range.
For irregular or vast monitoring areas where the transceivers
are not placed in one hop distance, a modified approach is
to be followed. First, the big area is divided into smaller
subareas. E-HIPA uses additional small rectangular subareas
for boundaries of the irregular area to be covered. Finally,
E-HIPA estimates the target location simultaneously in each
subarea.

B. Summary and Insight of Propagation Model

A localizing object exploiting the radio links of the deployed
region is a compelling challenge. It may be overcome with
different propagation modelling approaches like shadowing,
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channel diversity, directional link pair, Rayleigh model, etc.
The numerous approaches proposed by authors have been
verified in indoor and outdoor scenarios.

Ambient
Radio
Directional Imaging
Radio
Imaging

Channel
Diversity

Reyleigh

T~

Shadowing

Diffraction
Theory

E-HIPA

Radio
Grid

Compressive
Sensing

Fig. 13. Comparative localization error analysis of Propagation
Model.

In Table [l an extensive comparison of the protocols are
presented. A comparative plot of localization accuracy is
depicted in Figure[T3] It is observed that The channel diversity
method gives the lowest error of 0.1m. In addition, shadowing
scheme, energy efficient model, and Rayleigh framework
generate localization errors below 0.2m. Hence, these methods
can further be modified to improve localization error measures
in the device-free context.

V. STATISTICAL MODEL BASED DEVICE FREE
LOCALIZATION

The vital foundation of various localization systems is the
capability of the system for proper navigation signal acquisi-
tion. In DFL installations, the target localization is calculated
with RSS or CSI data from the link, followed by various
estimation processes. Information unification and fusion are
the core technologies behind various statistical methods. The
following subsection presents the different statistical model
based DFL systems and a critical analysis of the existing DFL
systems are presented in Table[T]

A. Statistical Models

1) Sequence Montecarlo: In DFL systems, wireless link
modeling is essential for location estimation. Zheng et al. [95]]
developed a movement detection method and implemented it
in WSN. The communication link is modeled on a Gaussian
Mixture Model distribution for RSS measurements. A fore-
ground detection method was applied followed by Sequential
Monte Carlo (SMC) algorithm. The probability of affected
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TABLE II. Statistical Estimation Model Based Radio Vision Method

Research Work Model Deployed Deployment No.of Measured Physi- | Localization Accuracy Complexity Research Findings
Environment Range Sensor cal Quantity
Nodes

195 Sequence Monte- | Indoor 16 m? 24 RSS 0.2 m rms error O(n?) Quadratic | Stationary and moving objects are located

carlo in sensor node in both LoS and non LoS scenarios.

116411551196 Variance Indoor 70 m2. 34 RSS 0.45-1.03 m mean error. O(n%),Cubic de- | Capable of localizing the object behind the

pends upon link wall.

198 Histogram Indoor 16m2. 16 RSS 0.7m rms error O(n?), RSS from static link is measured and his-

Distance Quadratic depens | togram difference of RSS is the metric used
on link for quantifying the change of RSS differ-
ence. It works in lower sensor node density.

196 Subspace Indoor 70 m? 34 RSS 0.10 m mean error O(n?) This improved version of variance method

Variance proposed to improve accuracy by 41%.

199 Kernel Distance Indoor 60 m? 34 RSS 0.7m rms error O(n) The author proposes radius and ellipse
based approaches which are 50-89% energy
efficient.

1100] Fade Level | Indoor 70 34 RSS 0.30 m mean error O(n?),Quadratic | Measures the field in either constructive or

Model in  terms  of | destructive interference settings and predict
sensor node the location with a probabilistic model

1101} Three State RSS Indoor 48 m? 3 RSS 0.07-0.46 m O(nz),Quadratic The channel is modelled with three dif-

different with repect to | ferent states of electronic noise, reflection
setup sensor node and shadowing. Hidden Markov and Particle
filter is used to estimate and track the object.

1102 Hierarchical RSS | Both indoor and | Different exp. | 26 RSS 0.118-0.293m 0O(n?) Refine the RSS variations granularity of the

outdoor setup taken links and enhance the RSS from shadow
fading

170 Nuzzer Indoor 55.7m x38.8m Grid of | Changes in RSS less than 1.82m O(n?) This is a variance based RSS estimator

Sensors which is applicable for coarse gain local-
with ization of the object.
spacing
2m
110311104160 Bayesian Model Indoor and Out- | different indoor | 35 RSS 0.1-0.2 m. O(nz),Quadratic RSS measurement is probabilistic modelled
door scenarios in terms of node and used in different filtering techniques for
the optimized link
[10511106]110711108 Particle Filter Indoor 8m x8m Variable RSS 0.2-0.7 m (single target | O(NM?)Linear | Capable of Multi-target tracking with good
with 0.2m) in N target and | accuracy
different cubic in M
expt Sensors
[ 1109] Skew Laplace | Indoor 10m x10m Variable RSS 0.58 m and 0.9Im mean | High or Polyno- | Single and multiple objects can be tracked
Model error in two expt. mial time with this fade level model of RSS. Author
defined the fade level as a Skew Laplacian
distribution and estimated the location with
a particle filter.
|LIOTLLLL] SCPL Indoor 150 m? and 400 | 23 and | RSS Change less than 1.3 m. mean er- | Factorial Sequential Counting and Parallel Localiza-
m2(two expt) 20 (two ror Computational tion method presents 86% correct counting
expt) Complexity and multiple localization results with good
accuracy.

link is modeled as a classification problem in foreground
detection, then estimated from RSS measurement and taken
as a mean value. The SMC is applicable for the both non-
linear and non-Gaussian scenario to provide a good solution.
System performance is evaluated by the author in a radio
network comprising of 24 RF sensor nodes in a building.
They proved that the link structure could be used to estimate
the individual location. It is inferred from the experiment that
without any offline training this particular method achieved
an impressive 0.2m root mean squared localization error in
the dynamic environment. Not to mention how effectively this
method applies to LOS and Non-LOS scenarios.

2) Variance Model: The propagation radio model based
approach relies on the initial calibration of the environment
without the presence of the object. Changes in the environment
lead to error in localization and the resultant requirement of
recalibration. Wilson et al. [S5] proposed a variance based
DFL system. their approach, the region for localization is
divided into the grid of physical spaces called the voxel. On
the other hand, a vector of RSS variance [164] represents
the links’ shadowing area, which can be used to determine
the occurrence of the target in a physical space. This method
does not require calibration of the empty environment before
object localization and encompasses the variations in the
environment. This work demonstrates the application of the
normalized ellipse weight model for link shadowing or atten-
uation. The moving target is localized by Kalman filtering in
the voxel space with regularization technique [79]. The author
verified this method by conducting an experiment taking 34

sensors in indoor home scenarios and recorded a localization
error of 1.03m. Further, they reduced the delay induced by the
Kalman filter and improved this accuracy beyond by arriving
at a better localization error score of 0.45m. There is however
a downside that the method is not power efficient, since all the
RF sensors are always active, and also fail to localize static
objects on account of the lack of RSS variations.

3) Histogram Distance: A traditional DFL system requires
pre-calibration of devices in the empty environment. This
limitation is overcome by Zhao et al. [98]] with a Histogram
Distance based DFL system. It is a system capable of localiz-
ing both stationary and mobile targets without pre-calibration.
The histogram difference metric computed here is availed
to quantify the RSS change, which further estimates the
location. This method works well in lower node densities. The
author had also classified short-term and long-term histograms.
When an object is located near the line-of-sight (LOS) of
a link, the RSS histogram of the link significantly deviates
from the calibrated RSS histogram for a short time period.
The deviated histogram is called a short-term histogram, and
the previously calibrated RSS histogram is called long-term
histogram. These two types of histograms are measured based
on a metric and the difference between these two is determined
by Kullback-Leiber divergence [165]. The metric definition
and its calculation is computationally complex, but is sim-
plified by applying kernel-based approaches. The location is
then estimated from this histogram using different metrics.
The logic is also enhanced further by Zhao et al. [99] with
histogram difference and online calibration approaches. The
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proposed model was experimentally verified with 16 nodes
deployed in a 16 m? area achieving a notable 0.7m root-mean-
squared localization error, which is better than all the Variance
Based DFL models. [[79][55].

4) Subspace Variance: There is always a variation in link
RSS value whenever an object interacts with the RF links of
an RF sensor network. These variations in RSS help in the es-
timation of an object or target human. However, the unwanted
variations of RSS due to external phenomena like wind,
vibrating machinery, and other natural influences cause RSS
variations and thereby degrade the DFL system performance.
Zhao et al. [96] proposed and extensively verified a subspace
decomposition method to reduce the unwanted RSS variations
due to natural interference. These unwanted RSS variations in
the measurements collected are called intrinsic measurements.
A majority of intrinsic measurements in RSS are represented
in the lower dimensional space as Principal Components
by Subspace decomposition method. The components of the
measured RSS are also decomposed into intrinsic and extrinsic
sub-spaces respectively. Further, the subspace decomposition
method is used to reduce intrinsic RSS. The algorithm was
verified through experimental scenarios of 70 m? with 34
sensor nodes and achieved 0.1m mean localization error. This
method reduces root-mean-squared localization error by 41%.

5) Kernel Distance Based DFL Model: In histogram
distance[98] based DFL system there is an issue pertaining to
the calculation of histogram distance with low complexity and
that makes the system computationally complex. Zhao et al.
[99] further modified the system with Kernel distance approach
and successfully located static and dynamic objects in LoS
scenario as well as non-LoS scenarios. This method quantifies
the histogram difference between two histograms of RSS
measurement. The author critically compared the histograms
with different metrics such as Kullback-Leibler Divergence
(KLD) with the kernel distance and found that kernel-based
approach beats other methods. They validated the kernel-based
approach by conducting five experiments with the dataset from
Wilson et al. [109]] experiments. Finally, a comparison was
made between the kernel method and other DFL methods [55]]
[96][95] and the inference was that it is only applicable in
the real-time method for localization in LoS and Non-LoS
scenarios without training.

6) Fade Level Model: In RF sensor networks, the RSS
changes considerably for each communication link due to
the spatial impact of the object or the moving individual.
These spatial impacts should be modeled intelligently for
better localization accuracy in DFL systems. Kaltiokallio et
al. [100] improved the fade level model as described by
Wilson et al. [[109]]. Fade level model records constructive
or destructive interferences in the link and further exploits
this link measurement in the network for localization. The
difference in radio propagation and mean RSS of a link for
a specific channel is called the fade level of the link for a
channel. Based on the RSS change in a special impact area, the
probability of the presence of the object is calculated. Further,
the author used regularized least square and Kalman filters to
track the motion of the object. This model has been verified
with three experiments in 70 m? open-indoor, 58 m? single
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bedroom and 70 m? lounge room scenario and the results are
compared with the channel diversity [56] based DFL model.
This technique can also localize a human in the three scenarios
with high accuracy. In the open-indoor scenario, the fade level
model reported 0.17m. average localization error compared
to channel diversity model which gives 0.25m. average error.
The average localization and tracking accuracy of fade level
mode for the single bedroom scenario are 0.26m and 0.23m
average errors respectively which is significantly better than
channel diversity model achieving errors of 0.31m and 0.24m
respectively. In the lounge scenario, the fade level model
reported 0.30m localization error which improves the 0.72m
reported by the channel diversity model. The fade level model
may thus be inferred to work better with fewer sensor nodes
compared to channel diversity. It was also noticed that upon
removing eight nodes the accuracy in the fade level model
was reduced by 27% whereas when nine nodes being removed
caused the accuracy to drop further to 56% in channel diversity
model.

7) Three State RSS: Kaltiokallio et al. [101] proposed a
three-state RSS model where the measurements are dictated
by electronic noise, reflection or shadowing depending upon
the object to be localized or tracked. Based on this model, the
statistical and spatial model for different states are derived as
shown in Figure A monitoring application for the links
is developed to estimate the state of the target object and
temporal state of the propagation model. The author claimed
that this model gives higher localization accuracy than the
rest of the empirical models even if the sensing region of the
sensor nodes are increased. This three-state RSS model is the
modification of conventional time-varying two-state channel
model with an extra state included. This model can estimate
human location by human-induced temporal fading in the two
states. In one state the human-induced effect changes the
amplitude of the received signal by shadowing and in another
state a new multipath component is created by reflection.
The model is successfully implemented in a cluttered indoor
scenario. An assumption of a coherent receiver architecture
is made since they allow straightforward determination of the
relationship between changes in RSS with temporal variation.
The receiver is assumed to be synchronized to the LOS
component [56] and changes in RSS measurement depends
on LOS signal. The objective was to capture tiny changes in
the channel that is observable for all frequencies. There was
also validation on this model by an indoor experiment with 48
m? area obtaining localization error between 0.07m to 0.46m.

8) Hierarchical RSS: The significant challenges faced in
the context of RF sensor networks for device-free local-
ization is the decrease in sensitivity to shadow fading and
performance degradation in cluttered environments. To address
this problem Luo et al. [102] proposed a hierarchical RSS
model for enhancement of RSS variation sensitivity to shadow
fading. The author combines the Exponential-Rayleigh (ER)
and Diffraction model to parametrize both targets-generated
multipath interference and diffraction fading interference. RSS
variations concerning fade levels characterize these model
coefficients. The illustration of the hierarchical structure is
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Fig. 14. Three State RSS Model[[101]

shown in Figure In comparison to other models like the
elliptical model or the ER model, this hierarchical approach
represents the fading effect with more degrees of freedom.
A mathematical approximation of the hierarchical model to
diffraction-based model and ER-model in different scenarios is
developed. This model also incorporates the diffraction within
LoS path bounds and reflection outside LoS path. Hence, the
target induced changes in the RSS values are captured in this
model.

9) Nuzzer: A probabilistic model based DFL system called
Nuzzer is developed by Seifeldin et al. [70]. The Nuzzer
system has two operational phases; the offline phase and the
online phase. During the offline phase, a passive radio map
is built. The map is similar to an active radio map used for
device-based active localization systems [166][167][168]. In
the active radio map, the user collects RSS samples in a
mapped location of the network from all the access point using
a device. However, in the passive radio map, the user does not
carry any device; only the target’s effect on RSS data stream
recorded. The passive radio map data contains histogram per
raw data stream as compared to histogram per access point
in the active map. Whereas in the online phase, the target
object is localized with each zone based on RSS from each
data stream. Two modes were proposed by the author for
online phase; discrete space estimator and continuous space
estimator. The discrete space estimator outputs calibrated
locations from the RSS vector of different streams that have
maximum probability. After the discrete space estimator gives
a calibrated location, the continuous space estimator processes
a more accurate estimate of the target object. The authors
experimented with six data stream and concluded that the
Nuzzer system gives a good performance, especially in the
context of the non-line-of-sight device-free localization sys-
tem. This system covered high multipath and a large area with
an accuracy of 1.82 meters in the first experiment and 0.85
meters in the second experiment.

10) Bayesian Model: The DFL system is aptly categorized
into model-based approaches and training based approaches.
A model-based approach follows either linear techniques or
statistical estimation rules. In a Bayesian DFL approach, first
the RSS measurement model is developed. Subsequently, the
Bayesian filter is used to estimate the state of the target.
The different Bayesian-based measurement models include
elliptical model [169], exponential model [170] [171] [86],
diffraction model [103] [172] and three-state model [101]].
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The complexity of the elliptical model is the lowest and
the three-state model is the highest. These models are all
nonlinear in properties, so nonlinear filtering is to be applied
for tracking the targets. Different modes of Bayesian model
[LO3])[104][60] are present in the literature. Commonly, in
DFL systems the huge quantity of RSS data needs to be
processed for location estimation and these may encounter data
transmission disasters. Wang et al. [104] proposed a binary
mode of operation of RF sensor networks to overcome this
transmission disaster. In this approach, the RF sensor detects
only the link states, interfered or otherwise, as shown in
Figure [T5] This link-state information is further processed to
estimate target location. Different indoor scenarios have been
experimented and average localization errors are from 0.1m to
0.2m.

11) Particle Filter: A particle filter is an estimation ap-
proach for solving the localization problem. Markov chain
based particle filter is proposed for multiple object tracking
[106] [107]. The RSS value can be expressed in three main
terms; average RSS - when no target present, attenuation of
the link - when target present, and Gaussian noise affected
RSS measurement. They estimate target motion based on
the Markovian dynamic model. The author assumed multiple
targets move independently of each other. The authors exper-
imentally validated the model with 24 wireless sensor nodes
in a 49 m? area. The tracking accuracy in a two-target case
is 0.6m and for four-target is 2.5m. This method is further
modified by Nannuru et al. by joint target posterior density
model called Probability Hypothesis Density (PHD) [108].
It’s a function of single-target state space. This value is high
in regions where the location of multi-target is more. The
integral of this PHD over target state space gives the expected
number of targets. The robustness of the measurement models
is analyzed by considering the standard deviation of two
different noise values. The author finally concluded the mean
square error tracking accuracy of 0.3m, 0.7m and 0.8m for
single, two and three objects respectively.

12) Skew Laplace Model: The RSS measurement is mod-
elled with a continuous probability distribution. The distribu-
tions are a different form of Laplace distribution. Wilson et al.
[109] developed a statistical inversion method of DFL system
using Skew-Laplace model. In this model, RSS attenuation
is modeled using Skew-Laplace distribution derived from
training based parameter estimation. The temporal fading in
the static link enables statistical inversion method in RSS
model. The author suggested two functions of current position
and fade level. The target movement depends upon the steady
state as well as narrowband and temporal fading. Experimental
confirmation was obtained that a fade level quantifies the
presence of the target in this system. When a target is present, a
high variance of RSS is observed, and destructive interference
is observed in the absence of the target. Verification was also
made that this model with 100 m? area using a different
set of sensor nodes based on IEEE 802.15.4 standard. In
this experiment, they have located two stationary and moving
targets, even though the external building wall with a mean
localization error is 0.58m and 0.91m for each experiment
respectively.
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13) Sequential Counting Parallel Localization(SCPL): Xu
et al.[110]] suggested a DFL system based on RF sensor net-
work called Sequential Counting Parallel Localization (SCPL).
This method follows localization and counting stages with
the latter following a sequential cancellation method. In this
method, first the room is checked for the presence of the target.
If a target is found then the location of the target is checked
and its impact on the radio link is subtracted. In multiple
individual scenarios, the specific localization coefficient of
the individual is multiplied by the individual’s impact on the
link before subtraction. If the number of individuals is known,
then the localization phase is initiated with parallel tracking
of multiple individuals. Additionally, in this method the com-
putation is done by partitioning the entire area into smaller
cells. The author modeled human trajectory as the Conditional
Random Field (CRF). The author validated this model with
two experiments; one in 150 m?2 cluttered office environment
and other 400 m? open floor plan. It was conducted with 20-
22 sensor nodes operated in the 909.1 MHz frequency band.
The first experimental results had a counting accuracy of 84%
across all cases while the second experiment showed 100%
accuracy for single target but achieved 82%, 80%, and 83%
for four, three and two targets respectively. Total counting
accuracy reported in this method is 86%. Hence from the
experiment, it can be concluded that SCPL method leads to
proper counting and localization results for limited targets, but

failed for more significant numbers of targets.

B. Summary and Insight

Different statistical models-based DFL systems have been
critically analyzed and presented in Table [l Wide varieties
of deployment ranges and accuracy are analyzed and research
findings are compared. A localization accuracy based spider
plot is formed to compare the existing localization techniques
and categorized the algorithms in different accuracy zones.
Bayesian and Subspace variance-based approaches are found
to be the most accurate DFL systems with localization error
below 0.1m. The Nuzzer and SCPL methods are the lowest
accuracy methods though they support multi-object tracking.
The comparative plot is given in Figure [T8]

VI. TRAINING BASED DEVICE FREE LOCALIZATION
A. Training Based Methods

The training based DFL systems use a database of training
measurements and estimate the target location by comparing
a measurement taken during online phase with the training
measurement database. A comparative critical analysis of
training based DFL system is presented in Table [l The
comparative research finding and localization error in the
different scenarios are plotted and explained.

1) Extreme Learning Machine: The RF-based DFL system
measures the RSS and fuses these measured values to estimate
the location. Zhang et al. [112] proposed an extreme learning
machine (ELM) [173] based DFL approach to enhance effi-
ciency and localization accuracy. In this paper, the proposed
work is a parameterized geometrical representation of the
affected link. This representation consists of geometrical in-
tercepts and differential RSS measurement. The features from
the affected links are obtained by Parameterized Geometrical
Feature Extraction (PGFE) method and fed into the input
of ELM. PGFE-ELM for DFL is trained and tested with
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Fig. 17. Sequential Counting Parallel Localization(SCPL):First the profiling data is collected for single target followed by
successive cancellation based algorithm to determine the number of target and its location.[110]
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Fig. 18. Comparative localization error analysis of Statistical
DFL Models.

the created ELM as shown in Figure The method has
proven to be robust to the uncertain combination of wireless
links which is frequent due to uncertain wireless propagation.
Experiments on this method had proved it to be superior to the
Weighted K-Nearest Neighbor (WKNN), Back Propagation
Neural Network (BPNN), Support Vector Machine (SVM),
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as well as the popular Radio Tomographic Imaging (RTI)
DFL approach. Back-Propagation Neural Network (BPNN)
and Support Vector Machine (SVM) [174] get trapped in the
local minimum and had a time-consuming training phase. This
method is much faster than traditional machine learning algo-
rithms [173][176][177). Due to classic advantages like unified
learning, binary classification and multiclass classification it
is applicable to many DFL based systems like face recog-
nition [178][179], industrial production [180][181], human
physical activity recognition [182][183]], landmark recognition
[184]1[183] and leukocyte image segmentation [186], etc.

2) Channel Selection with Regression: The DFL systems
are prone to environmental changes and therefore need re-
calibration to sustain the system accuracy. Lei et al.
developed a system based on enhanced channel selection
and logistic regression to improve localization accuracy in
this changing environment. The author proposed a frequency
channel selection method that select two correlated channels
with higher Pearson correlation coefficient for RSS training
and testing procedure for the robust environment. Logistic re-

Enhanced Frequency

Logistic Regression
Channel Selecting Method

Classifier

N

Selecting two channels | Determining the
with highly correlated RSS Estimated Position

Fig. 19. Channel Selection with Regression Method[113]]
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Fig. 20. PGFE Extreme Learning Machine Based DFL[112]

gression classifier improves the localization accuracy without
database rebuilt in this DFL system. The proposed framework
is illustrated in Figure [I9] and consists of two steps - first,
the selection of highly correlated RSS channel pair, and then
applying a logistic regression classifier. The highly correlated
channel selection step used training and testing procedures
[187][188] for two correlated channels, followed by logistic
regression for location estimation. The author experimentally
verified this method is giving lowest localization error than
k-nearest neighbours classifier, linear discriminant analysis
classifier, and random forests classifier.
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Fig. 21. DFL system of body localization using Markov
model[114]]
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3) Markov Model: Kianoush et al. [114]] developed a
human body motion sensing and body localization and fall
detection method. This method is based on the Hidden Markov
Model (HMM) techniques and uses RF signal property ob-
tained from a sensor network placed in a workplace envi-
ronment as shown in Figure 21} This system monitors RF
signals in the 2.4 GHz ISM band and supports machine-to-
machine communication functions. Human-induced diffraction

and multipath effect are considered for RF signal monitor-
ing and help body localization with RSS footprint analysis
and Markov model-based predictor. The system can localize
individual position, motion and health-critical posture. This
method can further apply to worker safety and protection in
industrial applications. The source of information is fused
with other sensor information for several monitoring activities.
The author verified this method in terms of sensitivity and
specificity. Experimental evidence from the model with 14
m? area with 12 sensor nodes and achieved 0.198m average
localization error.

4) Probabilistic Classification: Xu et al. [115] proposed
a linear discriminant analysis (LDA) based DFL system us-
ing probabilistic classification (PC). The multipath effect is
reduced in this method and recalibration is done on the
training data to maintain accuracy in adapting to environmental
changes. The proposed system design is shown in Figure
2] it follows a layered sensing paradigm of sensing layer,
aggregation layer and analysis layer. The important block

Analysis DFL € Fingerprint
Layer Engine Data
Aggregation : : T

| Radio Receiver and Gateway |
Layer T T
Sensing Radio Auxiliary
Layer Transmitter Sensor

Fig. 22. Probabilistic Classification[115]]
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TABLE III. Training Based DFL Systems

Research Work | Approach Deployed Deployment No.of Measured Physi- | Localization Accuracy Complexity Training/Prediction Research Findings
Environment Range Sensor cal Quantity Delay
Nodes
2 Extreame Learn- | Indoor and Out- | 6m x 6m 16 RSS 0.7-1.40 mean error. Quadratic Training 0.01sec, Pre- | Parameterized geometric representation of
ing Machine door diction .001sec affected link is developed and ELM is im-

plemented from the feature extracted from
the affected link

113 Channel Indoor 84 m 30 RSS 3.34% average error rate | Quadratic Moderate Localization accuracy is improved by en-
Selection  with of all expt. hanced frequency channel selection with

Regression logistic regression algorithm.
[ 1114 Markov Model Industrial 4m x 4 m 12 RSS 0.198m average error Linear High This method is based on Hidden Markov
‘Workspace Model(HMM) which uses Radio Frequency

signal property for localization of human in
indoor environment.

(1113 Probabilistic Indoor one bed | 5Sm x 8m 8 trans- | RSS 0.36m average error. Cubic in training | Moderate Probabilistic classification based device free
Classification room appartment mitter& and Quadratic in localization method is proposed and val-
with 32 cells 8 testing idated with linear discriminant analysis
receiver (LDA) with 97% localization with basic
accuracy over 97%.
[1I6 iUpdator Indoor 9m x | 8 WiFi | RSS 0.5-Im error Quadratic Moderate Self-augmented Regularized Singular Value
office,library 12m(office),8m AP Decomposition (RSVD) method is imple-
& hall x Il1m(Library), mented with the properties of the RSS fin-
10m x 10m(Hall) gerprint database
[L17 Gradient Finger- | Five Story Cam- | 8000 m Several RSS less than 5.6 m with dy- | Quadratic Moderate A novel Gradlent FingerprinTing(GIFT)
prinTing(GIFT) pus building WiFi namic wifi signals method is proposed which is adaptable with
AP time varying signals and device heterogene-
ity.
[II8 CSI with SVM Indoor(lab,room) 7m x 6m(lab), | 2 trans- | CSI 1.22m(lab),1.39(room) Polynomial time Training and predic- | Channel State Information(CSI) based Io-
6m x 6m(room) mitters tion 4msec calization approach is presented with SVM
and which shows 97%presence detection preci-
2 re- sion.
ceivers
[L19 Machine Vision Indoor(apartment, | 67 'm?(office), 58 | 32(office),| RSS 0.45m peak error(two tar- | High Polynomial | High Real-time RF sensor network capable of
office) m? (apartment) 33(apart- gets), 0.46m peak er- | time for multiple localizing multiple targets is developed with
ment) ror(three targets), 0.55m | object tracking radio tomographic imaging based machine
peak error(four targets) vision method.
[ 1120 CRF based | Indoor 12m 25 RSS less than 1.3 m. Linear time Prediction delay 1.9 | A combination of probabilistic energy mini-
Markov Model X9.5m(test 1), msec mization with conditional random field with
11mX12.3m(test2) Markov Model is proposed with multi ob-
ject tracking capability.
[ TI21 Deep Learning Indoor 7.2mX 9 RSS 0.85m(lab) and | High Polynomial | High Device Free Localization and Activity
7.2m(lab),  9m 0.88m(apartment) time Recognition (DFLAR) method is suggested
X4.5m(apartment) by the author which uses Deep Learning

for establishing relationship between shad-
owing effect of wireless link with location.
[ 122 Dictionary Indoor 21 x 21 sq. ft. 12 RSS 92.86% Quadratic 50-60msec prediction | Device free localization problem is formu-
Learning delay lated as an optimization problem. Further
the path tracking is improved by tracking
neighbourhood rule.

is the PC-DFL engine which streams radio data, combines Data Collection - -

. . . . Acquisition R . Fingerprint Target
fingerprint data and runs a localization module to estimate Module > h;;;’;se"“c‘"’" Reconstruction Localization
location. The sensing layer constitutes an auxiliary sensor and
automatic recalibration module. Validation on this method in Fingerprint Updating Stages
a one-bedroom apartment scenario .w1th 32 c.ells, using 16 Fig. 23. iUpdator[116]
sensor nodes. The environment is highly multipath prevalent
but still they achieved localization of individual with more
than 97% cell estimation accuracy with localization error up to | Location Based Services and Application
0.36m. System accuracy is always maintained over 90% even
with the reduf:tion of sensor nodes from .16 to 8. Accure.my Accelerometer GIFT Engine
levels are achieved through standard training methods which
can extend the lifetime of training data for a month with N Moton Extended
estimation accuracy over 90%. The auxiliary sensors in the @ > Detection i’;‘l‘:;:le
module automatically recalibrates to improve the localization *
accuracy as shown in Figure 22] WiFi

5) iUpdator: The DFL systems based on fingerprinting
approach are popular due to low deployment cost and good
accuracy. Chang et al. [116] developed a DFL system called
iUpdator using Self-augmented Regularised Singular Value
Decomposition (RSVD) augmenting the sparse attributes of
the fingerprint database. iUpdator can update the whole RSS
fingerprinting database at reference locations. This algorithm
can sense the variation in RSS difference and is able to detect Fig. 24. GIFT module architecture[117]
the neighbouring wireless link similarity too, which in turn
facilitates overcoming short-term RSS variation.

Map Construction

| Gmap Construction |

| Fingerprint Map Construction |
A

The iUpdator method consisting of four modules of in- fingerprint matrix followed by inherent correlation matrix
herent correction acquisition, reconstruction data collection, formation. The inherent correlation matrix contains constraints
fingerprint matrix reconstruction and localization module as for reconstruction fingerprint matrix. In reconstruction data
shown in Figure In inherent correlation module, iUpdator collection module fresh RSS measurement at the minimum
extracts Maximum Independent Column (MIC) vectors from number of reference location are collected to form the refer-
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Fig. 25. Conditional Random Field based Markov Model[120]

ence matrix. Besides far away points from direct links are also
acquired and referred no-decrease matrix. Fingerprint matrix
is constructed with self-augmentation RSVD method from the
correlation matrix, reference matrix and no decrease matrix.
In localization module, reconstructed fingerprint matrix is
exploited with non-linear optimization method to estimate the
final location of the object. The author experimented this
method in three scenarios of 108 m?2 office, 88 m?2 library
and 100 m? hall with 8 WiFi access points and obtained 0.5-
Im localization accuracy.

6) Gradient Fingerprinting based DFL: The fingerprinting
method compares WiFi fingerprint of RSS with the pre-
established fingerprint map of a specific location. The fin-
gerprint map of a place changes with the modification in
the environment, so there is the need for recalibration of
fingerprint map periodically to sustain the accuracy of the
DFL system. Also, RSS measurement due to heterogeneous
devices supplements error in DFL systems. To overcome these
issues, Shu et al. [[117] developed a Gradlent FingerprinTing
(GIFT) technique which gives more stable RSS gradient. In
this method, the RSS values are collected and compared to
build a gradient-based fingerprint map (Gmap) followed by
online Extended Particle Filter (EPF) for target localization.
The GIFT is adaptive to RSS change in an environment
so does not need further fingerprint map calibration. The
GIFT has a map construction module and GIFT engine as
shown in Figure 24] First, Gmap is constructed from existing
absolute value fingerprint map, which contains WiFi gradients
of the environment and is stored in the cloud. Afterwards,
the GIFT engine is executed. GIFT is compatible with site
survey[ 166[][[189]], crowdsourcing [190] and calibration meth-
ods [191]][192]. GIFT engine compares the RSS with Gmap
and estimates the location with motion detection module and
EPF. The author also implemented GIFT on mobile devices
and conducted extensive experiments in a five-storey building
and achieved 80% localization accuracy of average 5.6m with
dynamic WiFi signals.

7) CSI with SVM Model: Zhou et al. [118] proposed a
DFL system based on WiFi channel state information (CSI)
and Support Vector Machine (SVM). The author modeled
device-free presence detection as a classification problem and
DFL as a regression problem [193] establishing a nonlinear
relationship between CSI fingerprint and location using CSI
data without considering the complex environment. SVM is
proposed for processing CSI data to achieve presence de-
tection. The process flow is as follows: CSI data collection,
feature extraction, model training to form presence detection
classifier and the relationship between CSI and then the
location is established, as shown in Figure 26| The noisy
WiFi channels are dealt with through density-based spatial
clustering on CSI data. Principle Component Analysis (PCA)
is used to reduce the dimensionality of the data, thus reducing
computational complexity. Evaluation of this model was done
in two experimental setups in the research laboratory and a
meeting room. Localization accuracy obtained were 1.22m and
1.39m respectively in which the detection precision is more
than 97%.
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Fig. 26. CSI with SVM[L1§]]
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8) Machine Vision Methods: A real-time DFL system for
multiple objects is suggested by Bocca et al. [119] based
on machine vision approach. This method is a modification
of Radio Tomographic Imaging (RTI), aptly functioning in
real-time scenarios. In this model, the author combines RSS
measurement of different frequencies for each link. This is,
in essence, a fade level of the weighted average method. The
method uses the ellipse model to show weight and the image
is reconstructed with the regularised least-square method.
Change propagating model is adopted from the Wilson et al.
[79] model. The author suggested different methods of pro-
cessing and tracking of multiple objects based on thresholding,
Kalman tracking, clustering, etc. This real-time DFL model is
tested in three different environments and obtained an average
tracking error of 0.45m, 0.46m and 0.55m for two, three, and
four targets respectively.

9) Conditional Random Field based Markov Model: The
Conditional Random Field based Markov Model is for mul-
tiple object localization is presented by Sabek et al. [120].
This model combines the Markov model with the conditional
random field to form a probabilistic energy minimization
framework to capture the spatial and temporal relationship
between the targets. This model uses the cross-calibration tech-
nique to reduce calibration overhead, even in multiple object
localization scenarios. The author formed an energy mini-
mization framework for this model which further increases
accuracy and energy efficiency. The system architecture of
the model is outlined in Figure 25| The operation of this
method has an offline training phase and an online tracking
phase. In the offline training phase, the RSS readings are
collected followed by device-free fingerprint construction. In
the online tracking phase, energy minimization framework is
implemented with the sensed RSS reading with the previous
offline fingerprint. The author verified this method with two
scenarios of 114 m? residential apartment and 130 m? office
building. In both the environmental setting 25 fingerprint
locations were sampled. The authors implemented 17 and 22
independent test locations for residential apartment and office
building environment respectively. Both scenarios gave good
results, with 1.1m localization accuracy obtained in different
test cases. They further compared median error with other DFL
systems and concluded that their system is 35% more accurate.

10) Deep Learning: The DFL systems are selected for
localization, activity recognition and many other applications
as well. This method analyses the wireless links and estimates
the target location without embedding any device to target.
This method poses a critical problem of characterizing the link
property for target localization. Wang et al. [121] proposed a
Deep-Learning based approach for realising DFL systems with
universal and discriminative features from the wireless links to
localize the target as shown in Figure[27] The author developed
a Sparse Auto-Encoder network to learn a discriminative
feature from the wireless link. These features are merged into
a Softmax Regression-based framework to estimate location,
gesture, activity recognition simultaneously. The model was
experimentally verified with 802.15.4 Zigbee hardware in the
cluttered indoor laboratory and an apartment scenario. Both
time domain and frequency domain features were considered
and analysed. The proposed model has a wavelet filter module,
a deep learning feature extraction module and a classification
module based on softmax regression. RSS from the link is first
measured and applied wavelet transformation [194] to denoise
signal is used. Features from this signal are extracted using
a Deep Learning model to build the feature map. The map
further trains the parameters of the softmax regression classi-
fier [195]]. During the offline phase, the parameters are learned
using a Deep-Learning model and Softmax Regression model.
In the online phase, the feature of the signal links are extracted
using Deep Learning model followed by location estimation by
Softmax Regression Classifier. The author validated this model
with the two scenarios for localization, gesture recognition and
activity recognition simultaneously with a localization error
of 0.85m and 0.88m in cluttered indoor lab and apartment
respectively when using eight sensor nodes.

11) Dictionary Learning: Li et al. [122] proposed a dictio-
nary learning based Difference of Convex (DC) programming
to solve the DFL system localization problem. The author
suggested the target in a monitoring area can be estimated
from the obstructed RSS measured data using dictionary
learning. The author formulated the DFL problem as a non-
convex optimization problem and adapted the minimax con-
cave penalty for solving it using DC programming. A tracking
neighborhood rule is also proposed by the author which
can be augmented with the path tracking task to improve
the localization accuracy. Under noisy conditions, this rule
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provides a good localization accuracy.

Fig. 28. Dictionary Learning

In the DFL system, the link obstruction information is
learned and formulated as a sparse representation model as
shown in Figure 28] The sensor nodes broadcast throughout the
monitoring area. RSS is sensitive to environmental condition
so may change due to humidity, temperature, etc. Hence,
changes in the propagation parameters affect the receiver gain
of the sensor nodes [169]. Compared to the actual obstruction
incidents, the total number of links in the grid is very high, so
it manifests as a sparse combination. The author did not derive
a direct solution, rather they suggested sparsity-enhanced reg-
ularization method. The concept has experimentally validated
the method with the real-world dataset of 21 x 21 f¢? area with
12 sensor nodes with more than 92.86% localization accuracy.
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Fig. 29. Comparative Analysis of Localization Error of Train-
ing based DFL Approach

B. Summary and Insight

A comparative analysis of training based DFL system is
plotted in Figure 29 From the plot, the Markov model based
DFL system is found to be more efficient with the accuracy
of 0.198m average localization error. There are two types of
database generated based on CSI and RSS data. A majority
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of the approaches follow the RSS method of estimation due
to its low cost and complexity. The comparative research
findings and their critical analysis is presented in Table
Probabilistic Classification, Channel selection with regression
and dictionary learning approach are excellent candidates for
future research work due to their versatile applications and
robustness to environmental changes with reasonable accuracy.

VII. BACKSCATTERING METHOD FOR DEVICE FREE
LOCALIZATION

A. Backscattering Models

Backscattering method uses reflection from the environment
that RF sensor transmission signals naturally produce to trace
for a reflecting object. Analyzing those reflected signal the ob-
ject location is estimated. The existing backscattering approach
of device-free localization is explained below and presented in
Table [[V]

1) WiFi-Scattering, WiVi & WiDeo: WiFi-based scattering
uses existing infrastructure for DFL systems. These methods
are cost-effective. Motion detection is a prerequisite for var-
ious WiFi based DFL systems[60]. Feature extraction based
methods motion detection and moving variance have been
proposed for motion detection. Moussa et al. [71]] suggested
Maximum Likelihood estimator for DFL system for smart
environments. The detection is improved by an RSS feature
extraction system[81]][70] from environmental changes or CSI
[196][197]from physical temporal variance. WiFi CSI based
human detection system [198][152] exploits multipath propa-
gation to extend detection range of a link. Breadth detection
based human localization is proposed by Wu et al. [199].
CSI based methods are resistant to variance in environmental
changes.

WiVi[123] is WiFi enabled technology to detect moving ob-
jects behind closed doors or through walls. WiVi uses Inverse
Synthetic Aperture Radar (ISAR) technology for multiple ob-
ject localization and their motion with direction. WiDeo[124]]
is a backscattering approach for WiFi infrastructure. The
access point plays the role of a backscatter sensor. The RF
sensor receives the reflected RF signal and localizes objects
using three major features from the reflected signal. These
features are amplitude, ToF and AoA. WiDeo mimics the
radar principle from Software Defined Radio (SDR) [200].
The author verified that WiDeo is able to locate five objects
with high accuracy compared to the other existing methods.

2) RFID: The RFID technology based DFL systems at-
taches RFID tags in the specified points of the deployed
region. An RFID reader transmits the signal, which passes
to RFID tags through scattering by the objects. The tags then
modulate the RF signal indicating the presence or absence of
the object in the specified region. An RFID reader receives
this scattered signal and estimates the location of the object.
This scattering technique detects moving objects. The range
of communication in RFID scattering systems is around ten
meters which are further increased by increasing sensitivity
[129] of RFID reader. RSS fluctuation based RFID tracking
system TagTrack [67]] is developed by Ruan et al. which uses
a Hidden Markov Model for statistical prediction of target
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TABLE IV. Backscattering Method

Research Work | System Deployed Deployment No.of Measured Physi- | Localization Accuracy Complexity Research Findings
Environment Range Sensor cal Quantity
Nodes
1124 WiDeo Simulated using | Variable Variable | WiFi  Scattered | median error less than | Polynomial time The proposed method mines the WiFi
C and Matlab RSS Tem. backscattered radio signal and localizes upto
five desired object.

[ 1125 COTS-RFID Indoor WiFi Range tags RSS median error 21.5cm Polynomial time Author proposed a method to extract re-
placed flected backscattered signal, further lo-
1m apart calize and track using Hidden Markov

Model(HMM).

126 UWB Indoor 10m x 10m (lab) 13 trans- | UWB signal | 0.27-0.94.m rms error Linear time but | Differentiate low frequency signal against
mitter Power high  hardware | the background signal, which was affected
and cost by humans. From this low frequency signal,
2 re- the human presence is detected.
ceivers.

[ 11271 mTrack Object tracking Im >3 Phase/RSS 8mm mean error. Polynomial time A novel millimetre wave radio tracking sys-

tem which uses beam scanning mechanism.

[ 1128 Doorjamb Indoor room 7 Ultrsonic 90% room level tracking | Polynomial time Ultrasonic range finders based signal pro-

reflected signal accuracy cessing techniques to localize human posi-
tion and motion.

1129 D-Watch Indoor(library, 9m x 12m(lab), | 8 AoA median error | Moderate This method uses angle of arrival informa-

lab, hall) Tm  x 10m | antenna 16.5cm(library), 25.5cm | computing tion from the RFID tags backscatter signal.
(library), array (lab), 31.2 cm (hall) cost with high | The backscatter signal is processed with P-
7.2x10.4(hall) with hardware cost MUSIC algorithm capable of multiobject
half localization.
wave-
length
space

1130’ UHF-RFID indoor 20 m? Numerous| RSS Variations 0.64m average error. O(TS?),Where The author uses passive RFID tags for dter-
Passive T is number of | mining the location with maximum prob-
Tags rssi vector and | ability using supervised learning models.

S is  number | Further, this location construct and emission
of location | matrix is used to approximate-track object
state,S=26 using Hidden Markov Model.

[ 1131 Wideband Simulation and | Different Case | Variable | Ultrawideband 0.86-1m rms error NP-hard with | A counting based sensor radar is developed

Model Study Signal different solution | which uses wideband signal backscattering.
approach

[ 12017, 1202] Optical Method Simulation and | Indoor Scenario Variable | Image based Moderate High 3d model based localization system devel-

Prototype oped with optical signals, which tends to be
computationally efficient.

objects showing 98% of accuracy. RF backscattering through
wall scenario using an antenna array of RFID tags called
Tadar[[125] is proposed by Yang et al. The author models
the object motion using Hidden Markov Model and trajectory
estimation is done with a Viterbi algorithm. It came up with the
localization error of 7.8-20 cm in the indoor scenario. A tiling
strategy for RFID readers and tags have been deployed by
Kuska et al. [203]] for geometric DFL system to locate human
beings. Shi et al. [204] replaced the active RFID with passive
RFID system for low maintenance, low cost, low scalability,
and easy deployment.

3) D-Watch: The RFID tag and reader-based approach are
used further in D-Watch [129] with AoA based informa-
tion processing to estimate the location of the object using
backscatter. To locate an object, this system requires at least
two readers and multiple tags (around fifty). The angle is
estimated from the power drop at the respective direction due
to shadowing of the path between tag and reader. Applying
triangulation of this angle the location is estimated. The power
drop is calculated with MUSIC(MUItiple Slgnal Classifica-
tion) algorithm [[129]. The position of the tags do not have any
influence on localization itself; hence there is less deployment
cost of this system. However, some tags with direct path angle
require prior deployment positioning only to reduce random
phase offset. The author deployed this system in 70 m? area
and reported a 16.5 cm median error for human localization.

4) UWB: Ultra-WideBand (UWB) technologies have
higher bandwidth than other technologies which get more
precise channel impulse response for narrowing down the
target. UWB technologies are more accurate than RSS based
method and exhibit less hardware complexity than AoA based
antenna array systems. However, the UWB systems are short-

range systems due to their ability to send low energy signals.
A DFL based human localization scheme based on breathing
detection is developed by Yarovoy et al. [205] in the 1-
12GHz band using UWB. An outdoor environment based
human localization system is developed by Chang et al.
[206]. His modified method is for tracking two people [207].
Furthermore, he developed a system to distinguish and localize
human entities from other moving objects[208]. A calibration-
less DFL system for locating humans was developed again by
Kilic et al. [209]. In this method, a likelihood ratio between
the received signal power and signal power in human free
reflection is compared to locate object position. Further, the
author developed four UWB radio based DFL system[126]]
with errors of 12-180cm in indoor scenarios.

5) mTrack: RF-based scattering principle of DFL systems
relies highly on the reflection property of the RF signal. The
signal whose wavelength is smaller than the object cannot
easily penetrate the object. This property is utilized for achiev-
ing maximum reflection but for the traditional ISM band 2.4-
5GHz. is not suitable for better scattering based localization.
Wei et al. [127] proposed a 60GHz radio standardized with
IEEE 802.11ad based tracking system called mTrack. mTrack
uses the electronically steerable high directional beam with
high sensitivity, tracking the smallest change in object location.
It uses both RSS and phase measurement from the scattered
signal, and can be realized with one transmitter and two
receivers. In this method, the object is located by estimating
reflected signals from the relative angle. The author has
achieved a localization error below 8mm with a range of just
Im due to the high frequency. Hence this technology can
be applicable for localizing small objects, biomedical in-body
tumor localization and wireless transcription scenarios.
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6) Ultrasonic Scattering: Ultrasonic based DFL systems
act as the supporting system for smart world applications
like thief detection, safety and security purposes. This DFL
system uses scattering techniques for localization. Consecutive
ultrasonic signals are sent in a periodic interval and ultrasonic
sensors record the echo by the objects. These echo signals
are utilized for localization estimation of objects. A tracking
algorithm based on movement patterns is used for localizing
humans using ultrasonic DFL systems. Hnat et al. proposed
an ultrasonic DFL system for room-level tracking of human
beings [128]. The author presented this method as being
capable of estimating location as well as height and direction
of movement of humans in indoor scenarios with an average
localization accuracy of 90%. The ultrasonic sensors are costly
which gives a high deployment cost and is thus less popular
for commercial applications.

7) UHF-RFID: The RFID based DFL systems are seen
as attractive, having low cost, low maintenance and being
energy efficient due to passive tags. Ultra-high frequency
passive radio-frequency identification (UHF-RFID) tags based
scattering for DFL systems was developed by Wenjie et
al. [130], taking advantage of supervised classification with
data-driven models to quantify the RSS distribution. This
DFL system further works as the tracking beacon with the
application of multivariate Hidden Markov Model and kNN.
Hidden Markov Model for probabilistic estimation of learned
localization to construct emission matrix of human models
for continuous tracking. In this model, the learning pattern
for each iteration can be modified by the system. That makes
this model computationally efficient and accurate. The author
verified this method with the meticulous experiment in two
scenarios with more than 94% accuracy and mean localization
error of 0.64m.

Background
Removal
A N
Feature Target
Extraction Localization

Counting Counting

Crowd-
Centric

Individual-
Centric

Fig. 30. Wideband Scattering based DFL system[[131]

8) Wideband Scattering: DFL using wideband scattering
method have applications in counting people and things called
crowd-counting in a monitoring area. This Wideband scatter-
ing based DFL enables applications in smart buildings, public
safety, intelligent transportation for the advancement of the
smart world. Bartoletti et al. [131] proposed a mathematical
framework for a device-free counting system. This method
first uses wideband signal backscattering using model order
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selection followed by low-level feature selection for counting
of the human elements. Low-level feature extraction methods
give lower computational complexity in this method. The
author verified this method with realistic operating conditions.
This is a counting system based on Sensor Radars (SRs).
Two scenarios were developed in this work: first individual-
centric, based on model order selection and second crowd-
centric, based on energy-detection as shown in Figure
Energy detection is used for counting where energy samples as
a function of the number of targets applicable for only wide-
band and ultra-wideband RF signals. The individual-centric
approach localized individual targets, but proved to be much
more computationally complex then crowd-centric approach.
The author further directed that the crowd-centric approach
applies to smart world device-free localization scenarios due
to its ability which is independent of the number of targets.

9) Optical Methods: In the outdoor scenarios, the GPS
fails to work near the building and urban canyons. In those
scenarios, the image-based localization system typically gives
high localization accuracy. Similarly, GPS signal is very weak
in indoor scenarios. The image-based methods promise to give
better result in those scenarios. Lu et al. [201] introduced
a technique that can build 3D structure from motion pattern
captured by a video camera. To this end, the authors developed
a system to track people in video feed by using optical flow
techniques. Further, a graph matching approach is suggested
by the author for estimating camera images. Moreover, the
authors experimentally prove the effectiveness of the tech-
nique, in terms of localization accuracy and speed, in an indoor
mapping context.

UWB
Scattering
mTrack RFID
Ultrasonic WiFi
Scattering Scattering
Wideband
D-Watch Scattering

UHF-
RFID

Fig. 31. Comparative Analysis of Localization Error of
Backscattering Approach

B. Summary and Insight

The scattering based DFL systems is showing a high
accuracy due to the adoption of radar-based technologies.
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The reviewed technologies proposed attaining an accuracy
between 8mm to 80cm. A spider plot is drawn in Figure
to comparatively measure the different system in the light of
localization accuracy. From the analysis, it is deduced that
WiFi scattering and mTrack methods have the highest accuracy
with low average localization error below 20cm. Though wide-
band scattering and UHF-RFID have very lowest cost systems,
these give low localization accuracy comparatively with other
methods. Hence for smart world application, mTrack can apply
to in-body localization in Body Area Networks. However
wideband, Ultra-Wideband, D-watch, WiFi scattering and Ul-
trasonic based DFL system is applicable in the localization of
indoor scenarios. The critical analysis is shown in Table

VIII. LESSONS LEARNED

To reflect on the lessons learned, this section presents over-
all comparative analysis of the device free localization (DFL)
techniques. For simplifying the comparative understanding
related to accuracy range and computational complexity of
different DFL techniques, we have included the details on
the same in Figure 32. One of the key observation, also
depicted in Figure 32, is that WiFi scattering and statistical
subspace variance method outperforms other methods. While
the training-based approaches have reduced in complexity,
from highly complex to comparatively lower complex system,
scattering and RADAR based DLF methods have been the
preferred choice due to its accuracy. As some of the smart
world applications demand high accuracy, e.g., 10 cm with low
computational and hardware complexity, new classes of RFID-
based DFL systems and methods have evolved. Though RFID-
based DFL systems and methods can offer improved accuracy,
they are not that effective when subjected to heterogeneous
indoor IoT networks.

Given the proliferation of smart world applications, from
smart healthcare to smart cities, next-generation localization
systems and methods need to cater for multitude of hetero-
geneous environment. It is natural to believe that developing
next generation of hybrid localization methods, that combines
localization method with an active learning technique, will
be a viable alternative for handling the heterogeneity of fu-
ture smart applications. Training-based hybrid DFL methods,
although have unique ability to learn different deployment
scenarios and environments, do not perform efficiently when
deployed in a new environment. To overcome such limitations,
periodic model calibration and re-training, which can be
tedious and time consuming, is highly recommended. As very
nascent literature is available in context of hybrid localization
methods, this area of research is expected to receive significant
attention from research community.

We also found that power consumption is a major issue
in those DFL methods that are based on Radio Frequency
(RF) network. For instance, scattering and RADAR based
DFL methods can provide centimeter grade accuracy, they
are highly power consuming due to the need of sending and
receiving large volume of RF signals. Hence, one of the future
research directions could be how to make RF-based DLF
methods more energy efficient while not compromising on its
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accuracy. To summarise, the LBS-based DFL methods also
have good potential to be adopted in context of IoT-based
smart world applications.

Implementing DFL based system for localization in smart
heterogeneous network warrants additional hardware. How-
ever, this is in contradiction to the original requirement of
smart world application, which prefers infrastructure-free DFL
deployment environment. To balance these conflicting require-
ments, one of the possible alternatives could be to deploy the
DFL methods within the WiFi router/switch chipset. In our
view, future research investigations will focus on some of the
aspects discussed above.

Complexity
Deep @
Learning
Machine
Vision
2
O (n?] : Fingerprinting
“\_ Shadowing
WiFi \Y
Scattering
>—
Variance UWB
o) G
Future DFL
Systems
10cm 20cm 30cm
Localization Accuracy

Fig. 32. Lessons Learned

IX. APPLICATIONS, OPEN ISSUES AND FUTURE
DIRECTION

The device-free localization serves a huge percentage in
location-based services in smart world domains. The appli-
cation, related issue and future direction of the research are
summarized in the following Table V. The smart word domains
are categorized as smart home, smart city, energy efficiency,
Intelligent Transportation System(ITS), Industry, Emergency
Services, Sports and Retail. Challenges and future research of
each domain are analyzed in the following subsections.

A. Application

Automatic monitoring and control in the Smart World
scenario are possible with the development of networking
and localization techniques. These technologies provide intelli-
gence and comfort to disabled and older adults[25] [44] [141].
Control of heating, lighting, air-conditioning has been imple-
mented already for smart homes. The DFL system can enhance
these smart systems by providing location information. The
existing smart systems can use this location information to
provide more robust control. For example, the room heating
and air conditioning can better be controlled if the information
about the number of occupants and their body temperature is
available [150][199][[154]. For a room with a very high number
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TABLE V. Application,Open Issue and Future Research

Smart
World Application of DFL Challenges Future Research
Domain
1-Environmental impact modelling
1-Intrusion Detection[89] 1-Threat and Security[212][213][21?%1&?;2:;%;33 irregular
Smart Home 2-Activity Recognition[210][211] 2-Anomaly Detection environment.[[157] ¢
Y ¢ 3-Optimal Sensor Deployment 3—Centimete£ grade accuracy
DFL system[28] [27] [124] [125]
. 1-Border Control[215] . 1-CSI based DFL system[154]
Smart City 2-Surveillance System[79] [216] 1-Anomaly Detection 2-Ubiquitous monitoring
. . 1-Heart beat based human
1-Occupancy Detection[150][199 1-Anomaly .Dete({t10n of Static localization and counting.[26]
Energy based Automatic Control[154] and Dynamic Object. 2-breathing detection based human
2-Multi-object Detection.[1T0][28] locahzaﬁoi and counting [151]
ITS 1-User Identification[217] [218] 1-Threat and Security.[214]
1-Elderly Care[25] [44] . 1-Deep learning based data
Healthcare 2-Ambient Assisted Living[141] | !“Threat and Security modelling for DFL
1-Occupancy Detection[199]
Industr 2-Individual Counting[219] [220])] 1-Threat and Security[214] 1-Human detection based on motion
ustry 3-Industrial Safety[221] [222] 2-Multi-object detection[[110][28]) pattern using Deep learing[223] [224]
4-Industrial Risk Monitoring
Emergency éigzﬁf (1;/21 rslfrl(())ln[[21165£§J 1225] 1-Multi-object detection[110][28] B:\f:g;ﬁiitbased Radar
Services 3 Fire Rescue Mission 2-Hardware and Maintenance[100] 2-Wi-Fi CSI[I54]
Sport 1-Gesture Recognition[226][227]| 1-Localize object without |-Vital sien /activity classificati
ports 2-Activity Recognition[[153] [22§]] any activity[229][156] - Vital sign factivity classication
. 1-Shoppers Behaviour . . - -
Retail Recognition[230][228] 1-Threat and Security 1-RFID Localization[224][125]

of occupants, if it results in increasing temperature then the
building heating system can adjust the conditioning to lower
levels of cooling. In the case of no occupants, the conditioning
system will shut down and fall into power saving mode. The
DFL system helps to collect this environmental information
which enhances the existing smart control systems.

DFL system is highly essential for intruder detection and
security applications too [89] [230]. If the system locates any
activity in an entrance to a specific object other than the
main entrance, like the balcony window or back door, then
it processes this information and compares it to the movement
information defined in the database in the system profile.
The DFL system analyzes location, movement and activity.
For cases when the intruder activity detected is classified
very uncommon and not defined in the system profile, it will
activate the alarm routine. Hence, the safety and security of
the smart building are vitally improved by the DFL system.

The location of intruder and victims are critical in hostage
situations. DFL systems are the only option for localizing
and tracking victims and intruders during a rescue operation
[15]. Military and special operation forces can evoke decisions
based on such crucial location information provided by DFL
system. Maas et al. [216] studied rapidly deployable RF sensor
network for localization and self-calibration. In a hostage situ-
ation, DFL system measures RSS on all the links and processes
them in real-time to show the location of an individual and
an object in a building. This gives the situational information

about the safety of the building or which part of the building
is safe for entrance or initiating point to a rescue operation
[164] [225].

In natural disaster scenarios too, like earthquake, fires,
flooding, etc., the distressed civilians, trapped or otherwise,
need to be localized for providing emergency aid by emer-
gency responders. Fisher et al. [225]] demonstrated an efficient
way of emergency responders action with the help of DFL
system. These responder systems estimate the survivors as
well as keep track of the responders in action with the help of
DFL systems in a inaccessible situation. Any such disastrous
situation can be avoided with the help of DFL systems,
including monitoring the presence of toxic gases or vibrations
in the building structures ubiquitously, and so on. In a fire
rescue mission, the firefighter seeks the location information
of the victim as well as the best possible safe route for rescue.
These routes are dynamic, and real-time monitoring of the
safest route as well as the affected space is pivotal to the
success of such activities and is possible with DFL systems.

The safety of the professional individuals in an industrial
area is a significant concern and it is only possible with the
ubiquitous monitoring of the workers in industrial scenarios
like manufacturing plants, construction sites, etc. [221] [222].
DFL systems continuously monitor the interference and indi-
viduals to recognize hazards and related activities in the area of
deployment. Edirisinghe et al. [221]] developed a DFL system
to identify the risk zone in a construction site scenario. They
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developed different geographical work zones on the site and
defined potential hazards in the zone. Further, they outlined
the risk profile of each zone for different activities. It was
experimentally verified that the DFL system is effective for
indoor and outdoor scenarios of different construction phases.
Edirisinghe et al. [221]] further proposed DFL based detection
and risk monitoring system in different scenarios for the ability
to detect human, vehicle and different activities. However, their
proposed system, unfortunately, gives a false alarm and misses
in different scenarios.

The DFL system considerably enhances the healthcare and
assisted living scenarios by interpreting the daily work of
patients and individuals. If there are any abnormalities in the
behaviour traced in subjects, then the health specialist is noti-
fied to visit the individual. A finite state machine (FSM) based
DFL system is proposed by Kaltiokallio et al.[44]] for elderly
care scenario. This approach extracts higher-level information
from the localized individual to estimate health condition.
Bocca et al. [141] developed Ambient Assisted Living (AAL)
system with the help of device-free approach. DFL system
does not require the tracked entity to have an embedded device.
Hence, it is well applicable to healthcare scenarios. Due to the
ubiquitous nature of device-free based localization approach, it
is gaining enormous interest in localization technologies. The
wide applicability of DFL is shown in Table V.

B. Open Issues and Challenges

The device-free localization approach opens up a diverse
set of application domains, as explained in Table V, and
immense research interest is gaining momentum in this field.
However, realising these technologies in appropriate smart
world scenarios needs further deeper development. Though
DFL is a novel localization approach, challenges encountered
in this direction are numerous, like anomaly detection, hard-
ware costs, security, scalability, inter-operability, deployment
overhead, etc. as shown in Table V.

Object movement or other physical information is not
available in device free scenarios in contrast to device based
scenarios. The identity or type of the object to be localized is a
challenging task. DFL systems should be able to differentiate
the target object from all other objects in the field. Hence,
anomaly detection is a significant step before localization in
device free approach, and there are huge chances of mis-
detection or false alarm as well. One possible solution to this
problem is the application of Pattern Recognition, commonly
used in computer vision to differentiate objects. It has been
inferred that there is a need for similar technology in DFL
system by which uniquely defined features specify the target
object, distinguishing it from all other objects.

Counting of localized objects plays a vital role in moni-
toring crowds in communities for rescue operation or safety
and precaution, public social spaces like shopping malls or
exhibitions and associated safety mechanisms in place, and
similar situations. Some research work reported Percentage of
nonzero Element approach [219] in CSI to locate and count
the human population in different scenarios. Still, in wireless
network infrastructure, differentiating static and moving ob-

25

jects followed by localization and counting is an open research
challenge.

Multi-object tracking is another significant and difficult-to-
solve challenge. It even drastically reduces the performance of
the DFL system for indoor scenarios, where the RSS or CSI
variations are strenuous to calibrate even in case of the mul-
tipath effect of the signal. A massive amount of multiple link
calculations or specialized hardware are required for existing
successive cancellation approach [110] [28] of DFL system
where the individual object’s impact is separated from the
whole. The available DFL based simultaneous multi-tracking
system is only capable of localizing less than ten objects.
This solution is only acceptable for smaller scenarios. For
real-world smart world applications like conferences, shopping
malls, conventions and large social gatherings, exhibition
centres, etc., the present methods fail to achieve multi-object
localization. This aspect emerges a potential open challenge,
and scattering based radars and Wi-Fi CSI method may solve
this challenge in the future.

Deployment strategies enormously impact the localization
performance of a specific setting. The detection accuracy
in the indoor scenario is profoundly affected by moving
the ceiling sensor nodes to the floor. Hence, an optimized
deployment strategy is a necessity for better accuracy in DFL
systems. Open research issues here are the minimization of
the sensor nodes in number with maximum coverage and
reaching the least number of dead spots in the deployment
region. The deployment cost varies from different approaches
of DFL systems, for example, the training based and finger-
print approach requires lesser sensors compared to the radio
grid-based approaches. Deploying more sensors in multiple
scenarios require high cost and if the battery-power sensors
are deployed the additional augment energy requirement issue
arises in the long run. The RF sensor based localization and
occupancy detection system renders enough accuracy in de-
ployed infrastructure but a major issue of power consumption
pops up.

The primary objective of DFL systems is to localize objects
without embedding sensor devices in the target object. It
is a form of sensing module design which is enormously
extended into different utility contexts like activity detection,
monitoring, location-aware activities, etc. [231][229]. There
is still a challenge left - to localize objects independent of
activities without the use of training modules in commercial
wireless and IoT infrastructures.

Scattering based DFL systems for object localization are
much more fine-grained and accurate. However, technology
makes this approach quite expensive. Military scattering based
radar systems of DFL are highly accurate but out of the
many future scopes are in civilian and industrial applications.
Alternative solutions of SDR based Radar and WiFi-based
systems provide accuracy with industrial applicability. Among
the scattering methods, the UWB based approach is highly
expensive due to UWB transceiver. These technologies costs
are dependant mainly on bandwidth, which further depends
on localization accuracy. Therefore, finding a low-cost option
in this approach is an open challenge. Device-free RFID ap-
proach is a low-cost option in this kind of approach [125]][L00].
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The localization accuracy is increased by frequency diver-
sity in industrial and medical wireless networks. The common
allocated frequency band of operation of these networks is the
Industrial-Scientific-Medical(ISM) band. In indoor scenarios,
the network functions in this band, which have a high den-
sity of devices and thus needs to tackle interference due to
neighboring devices.

The RF-based device-free localization is more advanced and
provides privacy over the existing computer vision strategies
in activity recognition and presence detection. However, Qiao
et al. [214] reported an issue in indoor scenarios of WiFi-based
DFL systems where intruders are able to exploit the WiFi to
get the critical information of individuals, like their presence
and activities which may be misused for criminal intentions.
Hence, securing the DFL system is definitely a primary and
open challenge for the smart world community.

C. Future Research

Localization systems are designed, calibrated and tested
in a standard environment. Sudden changes in the environ-
ment can lead to major anomalies in overall accuracy. These
environmental effects can be conquered by modeling the
object’s motion [156]] and Doppler shifts [[157] for localization
and activity recognition. Modelling the environmental impacts
towards accurate DFL system is the prospective future work.
Work thus requiring to be done has been outlined in Table V.

The lowest device-free localization error achieved in scat-
tering based on radar principle [28][27][124][125] is of a
few centimetres. However, for smart world applications of
intrusion detection, elderly monitoring, rescue mission and
indoor climate control even few centimeter grade errors impact
the performance of the DFL systems. The DFL context and
its application are lacking context-aware ubiquitous solutions
for the smart world setups and its prospective future research.
Centimeter grade accuracy in indoor localization and millime-
ter grade accuracy in in-body wireless networks can render
the Smart World components ubiquitously localized for these
scenarios.

The CSI based DFL systems are popular due to its structure
and its application. This method uses channel frequency re-
sponse of the link. Different frequencies are prone to different
attenuation levels due to frequency selective fading. Wang et
al. [90] proposed a LiFS model to filter those bad frequency
carriers which are subjected to fading and infer object po-
sition in DFL systems. Dimensionality reduction techniques
[154](156] like PCA and kPCA methods are effective in
efficiently extracting features from CSI measurement to solve
the frequency-selective fading problem in DFL units. This
approach of device-free systems can so be improved for
better localization, activity recognition and detection based
applications for the future Smart World. The precise carrier
channel frequency estimation is a challenge, and it can degrade
randomness of received signals that restricts accuracy in lo-
calization as well as Doppler shift of received signals. Luong
et al. [232] proposed a frequency synchronization method of
the sensor nodes which help better carrier channel frequency
estimation.
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Accurate feature selection and definition of rules for better
prediction of location based on deep learning approach in
DFL is a novel approach. Deep learning solved most data
modeling challenges and is definitely applicable to different
diverse scenarios like speech recognition and computer vision.
It can even be further extended to human sensing [223] in
device free scenarios. Few works have been reported in the
device-based frameworks on RFID technologies[224]] which
can be followed in device-free scenarios for localization.

Localization of humans or objects based on motion pattern
is adopted in many methods. This can be further extended
with the vital sign. Localization of humans based on vital sign
such as heartbeats [233]], breathing [26] [[151]], etc. holds great
potential as future technologies in smart world scenarios.

X. CONCLUSION

The smart world and its application are enabled by the
wireless sensor network technology and its various features.
Sensor-less or device-free localization is an advanced applica-
tion for the smart world using wireless RF sensor technologies.
In this technology, the static or moving object is tracked and
localized without embedding the object with any sensor or
tags. In DFL systems the tracked object need not be aware
of the localization system. Hence this system works without
the cooperation of the tracked object. It offers a multitude of
smart world applications like smart home control, counting
and monitoring crowd, military rescue operation, surveillance
system, disaster rescue, etc. This paper reviews the existing
device-free localization approaches and their application in the
domain of the futuristic smart world. There are two primary
techniques of DFL: vision-based and radar-based depending
upon the attenuation and scattering properties of RF wave
used for device-free localization system. Moreover, a vision-
based approach is categorized into model-based and training
based approaches respectively. A new taxonomy of existing
research work is presented alongside comparative analysis
of the various methods. The main focus dimensions for
comparative analysis includes the model-based, training based
and scattering-based approaches. These are well-established
dimensions for studying DFL systems. Finally, the application
ranges of DFL is discussed, followed by challenges, and
innovative future research is drawn and concluded.
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