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ABSTRACT Brain big data empowered by intelligent analysis provide an unrivalled opportunity to probe
the dynamics of the brain in disorder. A typical example is to identify evolving synchronization patterns
from multivariate electroencephalography (EEG) routinely superimposed with intensive noise in epilepsy
research and practice. Under the circumstance of insufficient a priori knowledge of subject dependency
on domain problem, it becomes even more important to adaptively classify the synchronization dynamics
to accurately characterize the intrinsic nature of seizure activities represented by the EEG. This paper first
measures the global maximal information coefficient (MIC) of all EEG data channels to form a time sequence
of correlation matrices. A lightweight VGGNet (Visual Geometry Group) is designed to adapt to the need
to prune massive EEG datasets. The VGGNet characterizes the synchronization dynamics captured in
the correlation matrices and then automatically identifies the seizure states of the EEG. Experiments are
performed over the Children’s Hospital Boston-Massachusetts Institute of Technology (CHB-MIT) scalp
EEG dataset to evaluate the proposed approach. Seizure states can be identified with an accuracy, sensitivity,
and specificity of [98.13% 4 0.24%], [98.85% £ 0.51%], and [97.47% £ 0.36%], respectively; the resulting
performance is superior to those of most existing methods over the same dataset. The approach directly

applies to raw EEG analysis, which holds great potential for handling brain big data.

INDEX TERMS Brain big data, pattern classification, VGGNet, synchronization measurement, EEG,

epilepsy.

I. INTRODUCTION

Neuroscience research and practice have embraced the big
data era. Brain big data maintain long term neural recordings
of a large number of subjects under various conditions, which
hold great potential to reveal the hidden mechanisms that
drive brain activities. The recent boom in computational intel-
ligence provides an unprecedented opportunity to probe brain
dynamics based on brain big data. Synchronization measure-
ment has long been a hotspot in neuroscience research in
terms of both brain functions and malfunctions [1], e.g. diag-
nosis of brain diseases. The ability to find synchronization
patterns in multivariate electroencephalography (EEG) possi-
bly superimposed by intensive noise is increasingly important
in feature extraction [2], complex oscillator networks, neural

computing [3], and brain disorder detection [4]. Synchro-
nization measurement of EEG manifests an effective means
to characterize the underlying brain dynamics, e.g. identi-
fication and prediction of brain states. A typical example
is to identify evolving synchronization patterns from mul-
tivariate EEG routinely superimposed with intensive noises
in epilepsy research and clinical practice. The huge diversity
of EEG belonging to different patients makes this task even
more challenging.

Bivariate synchronization analyses have been exten-
sively investigated in the neuroscience community. Among
the classic bivariate methods, mutual information (MI)
is salient for discrimination and robustness to noise [5]
with its information theoretic interdependence measures [3].
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Maximal Information Coefficient (MIC) has then emerged
as the best bivariate synchronization measurement for anal-
yses [6] in terms of nonlinearity and robustness to noise.
Multivariate synchronous analysis methods have been devel-
oped, such as phase synchronization cluster analysis (PSCA),
S-estimator [7], and correlation matrix analysis (CMA) [8].
Those cannot adapt to the difficulties of (1) uncertain levels of
detail of synchronization measurement, (2) intensive embed-
ded noises, and (3) limited computing capabilities at the same
time.

Numerous methods have also been developed to classify
EEG synchronization patterns, including linear (e.g. Kappa
statistics [9] and K-means [10]) and non-linear classifiers
(e.g. Support Vector Machine (SVM) [11]). EEG data are rou-
tinely non-linear and non-stationary in nature, and synchro-
nization patterns (if any) embedded in EEG are inevitably
highly nonlinear. This always results in poor performance for
linear classifiers [9], [10]. In particular, Kappa is incapable
of revealing synchronization patterns in detail, and K-means
is often trapped at a local optimum due to its high sensitivity
to noises and outliers. SVM applies to non-linear problems,
while it cannot foster a general solution to EEG synchro-
nization classification: (1) selection of the kernel function
is problem-specific and (2) the space information among
synchronization patterns is discarded.

To tackle these challenges, an appropriate solution should
be able to (1) adaptively characterize the non-linear and
non-stationary synchronization patterns of EEG with brain
disorder belonging to different subjects, (2) capture the syn-
chronization dynamics in detail under the circumstance of
intensive noises, and (3) enable a general and cost-effective
solution. The approach proposed in this study is designed as
follows:

o It first organizes the Maximal Information coefficients
(MIC) of all EEG data channels to form a time sequence
of correlation matrices (CMMICs) to record the global
synchronization dynamics in great detail. The CMMIC
sequence can be easily transformed to observe syn-
chronizations between clusters of channels, e.g. those
in different brain regions. In other words, the spatial
level-of-detail can be flexible per request. Variation
in time windows can also result in change in tempo-
ral resolution. The CMMIC sequence forms the basis
for EEG identification in this study, which has the
merit of resistance to noises determined by the MIC
theory.

o As for classification of EEG synchronization patterns,
this study utilizes Convolutional Neural Networks
(CNN) as it excels in adaptive selection of features.
With a convolution operation capable of extracting
distortion-invariant patterns, CNN gained great suc-
cesses in video recognition, especially for the recently
emerging VGGNet (Visual Geometry Group) [12].
A CMMIC sequence is inherently similar to a video
in terms of both (1) the non-linearity of data elements
in each matrix (frame) and (2) the dynamic evolution
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of matrices (frames). A lightweight VGGNet is then
designed (Section IV-A) considering the need for effi-
ciency and the much smaller scale of CMMICs.

The proposed approach extracts the global synchroniza-
tion features without a priori knowledge of EEG. The
VGGNet model is trained in an off-line manner then
applies to other subjects for on-line prediction of the
states of epileptic EEG. Experiments are performed to
evaluate the proposed approach over the Children’s Hospital
Boston-Massachusetts Institute of Technology (CHB-MIT)
scalp EEG dataset (see http://physionet.org/
physiobank/database/chbmit [13]). Experimental
results indicate that this approach can classify seizure states
with high accuracy, sensitivity, and specificity achieved. The
overall performance is superior to those of most existing
methods. The classifier holds great potential in minimizing
false alarm of epilepsy seizure onset incurred by significant
noise and interference in sophisticated scientific and engi-
neering applications. It is less error prone as only one hyper-
parameter of time window size needs to be set manually. The
main contributions of this study include:

1) A lightweight classifier has been designed to identify
epileptic EEG without the need for a priori knowledge
on the EEG data. It exhibits excellent performance
in seizure onset detection and can be generalized to
analysis of other types of EEGs.

2) A complete solution has been developed to automat-
ically characterize the synchronization dynamics of
multivariate epileptic EEG superimposed by a high
level of noise and interference. The risk of missing
structural information of EEG incurred by excessive
denoising is minimized.

The remainder of this paper is organized as follows:
Section II presents related work and the objectives of this
study. Section III introduces the proposed correlation matrix
based on MIC (CMMIC). Section IV outlines the classifier
using a lightweight VGGNet. Section V presents the per-
formance evaluation of the proposed approach and gives a
comparison with the state-of-the-art. Section VI concludes
the paper with a summary.

Il. RELATED WORK

Detection and classification of the patterns hidden in multi-
variate EEG has long been an interesting research issue in
probing brain diseases such as epilepsy. Traditional methods
focus on time frequency analysis and synchronization mea-
surement. Recently, machine learning methods have boomed.
The most salient works pursuing this direction are introduced
as the follows:

Myers et al. proposed a seizure prediction and detection
algorithm by calculating the Phase/Amplitude Lock Values
(PLV/ALV). The algorithm achieved a sensitivity of 0.77,
a precision of 0.88 and 0.17 false positive per hour over the
CHB-MIT scalp EEG dataset [14].

In order to find the EEG segments with seizures and their
onset and offset points, Lorena et al. developed a patient
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non-specific strategy for seizure detection based on Station-
ary Wavelet Transform of EEG signals and achieved speci-
ficity of 99.9%, sensitivity of 87.5% and a false positive rate
per hour of 0.9 over the CHB-MIT scalp EEG dataset [15].

Piotr et al. proposed a method to classify patient-specific
synchronization patterns to predict seizure onset over a
Freiburg dataset [2]. EEG synchronization was measured
via cross-correlation, non-linear interdependence, dynamic
entrainment or wavelet synchrony. Spatio-temporal patterns
were then extracted to support seizure onset predication,
which achieved a sensitivity of 71% and zero false positives.

Fergus et al. proposed a new method for generalizing
seizure detection across different subjects without a priori
knowledge about the focal point of seizures over the CHB-
MIT scalp EEG dataset [16]. Classification was enabled by
the k-NN algorithm and achieved a sensitivity of 88% and a
specificity of 88%.

Morteza et al. proposed a density-based real-time seizure
prediction algorithm based on a trained offline seizure detec-
tion model. The method achieved an accuracy rate of 86.56%,
a precision rate of 86.53%, a recall rate of seizure prediction
of 97.27%. The false prediction rate was 0.00215 per hour
with their online signal prediction algorithm on the CHB-
MIT dataset [17].

In contrast to the existing work, this study aims to find a
solution with the capability of (1) detection of synchroniza-
tion with robustness to the intensive noise embedded in the
EEG with the evolving synchronization dynamics considered,
(2) adaptive classification of the non-stationary synchroniza-
tion patterns to capture the intrinsic nature of seizure activities
represented by the EEG, and (3) high efficiency in classifica-
tion to cater to the needs of potential big data applications.

lIl. CORRELATION MATRIX BASED ON MAXIMAL
INFORMATION COEFFICIENT

This section first presents the operation process of the pro-
posed approach. Synchronization measurement is performed
to form the Correlation Matrix based on Maximal Informa-
tion Coefficient.

A. OVERALL DESIGN

Considering the need for efficiency of analysis, this study
attempts to minimize the efforts of conventional EEG pre-
processing (basically denoising) that normally manifests as
an onerous task. Another concern is that existing methods
largely demand sufficient a priori knowledge and excessive
hyper-parameter settings. Fig. 1 illustrates the overall design
of the proposed approach, which operates in two phases:
(1) feature extraction of synchronization dynamics, and
(2) pattern classification upon the lightweight VGGNet. The
unlabelled raw EEG data are segmented with the same win-
dow size (8 seconds in the experiments). All MIC measure-
ments of all channel pairs in each time window are calculated
and organized as a CMMIC. The CMMIC time sequences are
then processed and classified by the lightweight VGGNet.
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FIGURE 1. Overview of the proposed approach and its operation process.

B. MAXIMAL INFORMATION COEFFICIENT

MIC is intended to measure the linear or non-linear syn-
chronization relationship between two random variables,
e.g. bivariate EEG segments, which is part of a larger
family of maximal information-based nonparametric explo-
ration (MINE) statistics [6]. MIC is an informative measure
to identify a subset of the strongest relations in a possibly very
large data set.

Given two random variables, e.g. two time series, the data
elements of each variable are rearranged in a descend-
ing/ascending order to get an ordered pair. For a finite set
D of the ordered pair, the x-values and y-values of D are
partitioned into x bins and y bins respectively (empty bins
allowed). A pair of such partitions is named as an x-by-y grid.
The maximum mutual information under each grid division
is assigned to I* by equation Eq.1 [6]:

I* (D, G (b1, b2, ..., bw) = maxI(D/G) (€))

where the maximum is identified across the whole G with
x columns and y rows, and I (D|G) denotes the mutual infor-
mation of D|G.
The characteristic matrix of D is an infinite matrix with
entries [6]:
I* (D, x,y)
M (D)x,y = T . 3 2)
logmin{x, y}
The MIC of a the original bi-variate data (sample size n
and grid size less than B(n)) is given by [6]:

MIC(D) = max {M(D),,} 3)
xy<B(n)
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where o(1) < B(n) < O (n'~*) for some 0 < & < 1.
In this paper we use B(n) = n’®.

MIC is a positive real value with the following proper-
ties [5]:

1) Boundness, all entries of the characteristic matrix fall

between 0 and 1;

2) Symmetry, the characteristic matrix remains the same
when the x- and y-values of D are interchanged;

3) Invariant, the characteristic matrix is invariant under
order-preserving transformations of the x- and y-values
of D since the distribution D|G depends only on the
rank-order of the data.

The MIC measure can only indicate the synchronization
strength of bivariate data. For an EEG dataset consisting of
M channels, apparently w MIC measures should be
calculated corresponding to all channel pairs.

C. CORRELATION MATRIX BASED ON MAXIMAL
INFORMATION COEFFICIENT

This study extends the MIC measure to quantify the global
synchronization of multivariate EEG, which combines MIC
with a correlation matrix, i.e. Correlation matrix based on
MIC (CMMIC). CMMIC can be formulated as Eq. 4.

MIC;y MICy» MICy,
MICy1  MICy MICy,

CMMIC = ) . i 4
MIC,1 MICp MICyy

where MIC;j(i,j = 1, ..., n) denotes the synchronization

strength between channels i and j. As determined by the
properties of MIC, CMMIC 1is a positive definite matrix:
MIC;; > 0&&MIC;; = 1. The trace value of CMMIC is equal
to the number of data channels. An identify matrix will result
IFF all channels are totally independent of each other, which
is obviously very rare.

) x>0

2 p = YN u = w(eMmIC) = YN mIC; =

#Channels

Each CMMIC is an instance of a synchronization pattern at
a time point (or over a time slot) of the EEG. A CMMIC can
be illustrated as a N x N symmetric image as shown in Fig. 2.
A sequence of CMMICs in time order represents the evolving
synchronization patterns (Section V-B).

IV. LIGHTWEIGHT VGGNet FOR EEG CLASSIFICATION
The CMMIC sequence is then processed and classified by
the lightweight VGGNet. As EEG normally has a low spatial
resolution, an excessively deep convolutional network does
not apply to classify CMMICs. This section first describes
the architecture of the VGGNet network and then details the
parameter settings.

A. ARCHITECTURE OF THE LIGHTWEIGHT VGGNet
Fig. 3 illustrates the architecture of the lightweight VGGNet,
which attempts to exploit as few layers as possible while
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FIGURE 2. A CMMIC illustrated as a gray image. The value of each pixel
represents the MIC measure of a pair of EEG channels.

gaining a high accuracy of classification. The VGGNet
begins with a standalone dropout layer, followed by five
convolutional layers with the same configurations and three
fully — connected (FC) layers. ReLU activation function is
adopted in all weighted layers (except the dropout). The
final ReLU activation function of the VGGNet classifies the
synchronization patterns [18], and outputs the final results
of identification of the particular EEG segment. The details
of the dropout technique and the pooling layer are as
follows:

o “Dropout” aims to solve the overfitting problem by
randomly dropping units from the neural network during
training. Dropping out 20% of the input units and 50%
of the hidden units was suggested in [19]. This study
sets the dropout ratio as an empirical value 0.1 through
a large number of experiments to avoid overfitting
(Section IV-C).

« A pooling layer represents an area (s x s) around a given
location as an element (e.g. maximum of all elements in
the area) and is useful in reduction of model parameters
in image/video analysis. However, it will cause signif-
icant information loss when dealing with CMMICs as
the latter have a low spatial resolution. Unlike images
or videos, the data elements in the feature matrix
exhibit little continuity. The values of neighbor date
elements can be significantly different as illustrated
in Fig. 2.

B. BASIC PARAMETER SETTINGS OF THE VGGNet
Parameter Settings of the VGGNet are described in Table 1
with the number of parameters reported in the rightmost
column. The overall parameter set (50,168) in VGGnet
is in general much smaller than existing deep CNN
models (see Section V for performance evaluation). The
lightweight VGGNet differs from other VGG variants in:
(1) five convolutional layers with the same configuration
(Convo2D(2, (3, 3), 2 is the number of filters and (3,3) is
the size of receptive fields) and (2) removal of pool layers.
The receptive field is set small enough: 3 x 3 [20], which
aims to convolve each MIC with the nearest neighbours
only.
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FIGURE 3. The architecture of the lightweight VGGNet. The f in the figure denotes the ReLU activation function.

TABLE 1. Parameter Settings of the VGGNet. The convolutional layer and
activation output parameters are denoted as “[samples (2D-shape size)

filters]”. The ReLU activation function is omitted in the table for

simplification.

Layer (type) Output Shape Parameter
dropout-1 (Dropout)  [None (23 23) 1] 0
conv2d-1 (Conv2D) [None (21 21) 2] 20
conv2d-2 (Conv2D) [None (19 19) 2] 38
conv2d-3 (Conv2D) [None (17 17) 2] 38
conv2d-4 (Conv2D) [None (15 15) 2] 38
conv2d-5 (Conv2D) [None (13 13) 2] 38
flatten-1 (Flatten) [None 338] 0
dense-1 (Dense) [None 125] 42375
dense-2 (Dense) [None 60) 7560
dense-3 (Dense) [None 1) 61

C. CLASSIFICATION

This subsection first details the training of the VGGNet model
and the testing over the trained model. The strategy for avoid-
ance of the overfitting problem is then covered.

1) MODEL TRAINING AND TESTING

The lightweight VGGNet is trained using SGD. This study
applies a very small weight decay to keep the model’s training
error low [21]. Weight initialization is performed conforming
to that proposed in [22] and batch normalization is applied
to the network [20]. The objective is to minimize the mean
squared error in the VGGNet. The VGGNet processes the
CMMICs (see Section III-C) as the initial inputs in model
training.

After shuffling the whole sample space, CMMICs are
divided into training sets, validation sets and test sets.
A 5-fold cross validation algorithm is employed to evaluate
the training performance of the classifier with training and
validation sets. The performance of classification is reported
with the test sets. During model training, for each layer:

o The forward propagation algorithm uses the outputs,
weights and bias of the previous layer as the independent
variables of the current activation function;

o The mean squared error is calculated based on the cur-
rent outputs;

« The weights and bias of the previous layers are updated
through a back propagation algorithm.

The above steps repeat until a steady state is reached, and the
final training performance of classification can be evaluated.
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The training is carried out by SGD optimizer using mini-
batch (size: 50) gradient descent based on back-propagation
with momentum (0.9) [21]. The training is regularized by
weight decay (le-4) and dropout (0.1). The update rule for
weight following Eq. 5 [21]:

0
Vig1 < 0.9.-v;, —0.0001 - € - w; — €{—lw;)D;>
dw

Wit < Wi + Vi (5)

where i is the iteration index, v is the momentum variable,
€ is the learning rate, and (g—{; lw;)p; 1s the average over the ith
batch D; of the derivative of the objective with respect to w,
evaluated at w;.

After the VGGNet model is trained, testing can be per-
formed on the test sets (or new EEGs from other subjects).
Here, the same parameter settings apply without the need for
parameter update. After the input goes through the dropout
layer and the five convolutional layers, the intermediate
matrix will be flattened to a vector (with size of 338 at
the flatten layer, see Table 1). The vector is passed through
to the last three dense (FC) layers with outputs with sizes
125, 60 and 1 respectively. Finally, the state of each EEG
segment (one CMMIC) is associated with can be identified
(Seizure or Non-Seizure).

2) AVOIDANCE OF OVERFITTING

Two strategies are adopted to reduce overfitting of the
VGGNet model: early stopping and dropout. In this study,
the validation accuracy is monitored continuously until it
stops ascending (patience: 10). The iteration of training will
then stop on completion of the current epoch. Taking our
experiments for example, the number of epochs was initially
set to 300 while the iteration stopped at the 67th epoch
(Section V).

The other strategy is “dropout”, which temporarily drops
units together with their connections at random from the neu-
ral networks during training. The central idea of dropout is to
take a large model that overfits easily and repeatedly sample
and train smaller sub-models from it. This prevents units from
co-adapting too much on training. At the test stage, it can
approximate the effect of averaging the predictions of all
these sub-models by simply using a single unthinned model
that has smaller weights, thus overfitting can be prevented in
a simple manner at the cost of double training time [19].
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V. EXPERIMENTS AND RESULTS

Experiments have been carried out to evaluate the perfor-
mance of the proposed method. Experimental results are
reported in terms of both synchronization dynamics and pat-
tern classification. The testbed is a desktop with Intel i7 CPU
(3.33GHz) and 24GB memory running 64bit Windows 7.
The experiments concern both off-line training and on-line
classification.

Off-Line Training: This procedure includes (1) calculation
of all CMMICs and (2) training the neural network models.
The bottleneck of step one is with MIC calculation, but it
can be computed in a massively parallel manner to minimize
the overhead [23]. As for the dataset (Section V-A) in this
study, the model can be trained in a couple of minutes on the
completion of step two.

On-Line Classification: This procedure includes (1) calcu-
lation of one CMMIC for evaluation and (2) state prediction
based on the model from the last procedure, which takes less
than 0.01 second.

A. DATA DESCRIPTION

The CHB-MIT scalp EEG dataset is used for this study (pub-
licly authorized for open access). The dataset consists of EEG
recordings from 22 patients (5 males, ages 3 - 22; 17 females,
ages 1.5 - 19) with severe epilepsy caused by organic lesions,
which were recorded simultaneously through 23 difference
channels (FP1-F7, F7-T7, T7-P7,P7-O1, FP1-F3, F3-C3, C3-
P3, P3-O1, FZ-CZ, CZ-PZ, FP2-F4, F4-C4, C4-P4, P4-02,
FP2-F8, F8-T8, T8-P8, P8-02, P7-T7, T7-FT9, FT9-FT10,
FT10-T8, and T8-P8) in 256Hz with 19 electrodes and a
ground attached to the surface of the scalp. Most recordings
contain multiple seizure occurrences.

This study investigates the EEG recordings with the same
number of channels (from 18 patients). To avoid the problems
of imbalanced samples, MCMC [24] sampling was used to
balance the seizure states and non-seizure state samples:

o For each Epileptic seizure stage with size S(seizure),
denote CMMIC counts for seizure as count(seizure) =
LS (seizure) /S (window)], where S(window) is the size of
the time window.

o Denote CMMIC counts for non-seizure stage prior
to epileptic seizure stage as count(prior) = L% X
S(seizure)/S(window)].

e Denote CMMIC counts for non-seizure stage poste-
rior to epileptic seizure stage as count(posterior) =
count(seizure) — count(prior).

B. EXPERIMENTS ON SYNCHRONIZATION DYNAMICS

Measurement of the evolution of relations among synchro-
nization patterns (CMMICs) is an effective means to under-
stand the roles of different data channels (i.e. brain regions).
This study analyzes the change of synchronization strength
in different channel pairs during seizure using the Apriori
algorithm. The support degree tries to find distinct variation
on synchronization measures between the seizure states and
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non-seizure states. The confidence degree tries to answer
which interaction among synchronization features leads to
epileptic seizure.

1) TOP-5 AND SUPPORT DEGREE

In the context of the Apriori algorithm, support degree
(support(A — B) = P(A N B)) denotes the probability
of A and B simultaneously. The more frequently A and B
appear simultaneously, the greater the association between
A and B is. Synchronization dynamics of epileptic EEG is
non-stationary in nature. Support degree is computed to
probe the relations amongst the MIC time series obtained
in the previous step to better understand the synchronization
dynamics in connection with seizures.

The experimental results indicate that about 30% of syn-
chronization between channels shows a decrease, while the
others show an increase(about58%) or invariant(about 12%)
on seizures.

For the top five of all channel pairs, (ie. [< C4 —
P4, FP2—F8 >, 82.4%],[< FZ—-CZ, FP2—F4 >, 81.3%],
[< FP2 — F4,T8 — P8 >,80.2%], [< FP2 — F8,FT9 —
FT10 >, 78%], [< P4— 02, F8 —T8 >, 78%]), their MICs
increase on seizures with support degree of 47.3%.

In contrast, for other the top five pairs, (i.e., [< T7 —
P7,T8—P8 >,57.1%],[< C3 —P3,C4— P4 >,56%], [<
P7 —T7,FT9 — FT10 >,50.5%],[< P3 — O1,FT9 —
FT10 >,49.5%],[< T7 — P7,C3 — P3 >,49.5%]), their
MIC's decrease on seizures with support degree of 12.1%.

The results indicate that on seizures the probability of
increase of synchronization strength is much higher than that
of decrease cases.

2) TOP-5 AND CONFIDENCE DEGREE

Confidence Degree (Confidence(A — B) = P(B|A)) is the
probability of B in condition with A. If the confidence degree
is 100%, then A and B can be bundled with the strongest
association; Otherwise, a small value means that there is
no obvious association between A and B. The confidence
degrees between the top five increased channel-pairs are
shown in Table 2, and the top five decreased channel-pairs
are shown in Table 3.

The results of confidence degree show that (1) the top
five channel pairs with MIC increase on seizures are likely
to evolve in a similar manner in terms of synchronization;
(2) those with MIC decrease do not exhibit this feature.

3) GLOBAL SYNCHRONIZATION STRENGTH

Fig. 4 presents the synchronization of Top-5 distinct variation
on synchronization measures between the seizure states and
non-seizure states. The values in seizure states are greater
than those in non-seizure states.The synchronization prop-
erty changes significantly from non-seizure states to seizure
states and vice versa. The global synchronization matrices
of average seizure features, normal features and their sub-
traction features are shown in Fig. 5. The negative values
will be displayed in white in the subtraction features matrix.
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FIGURE 4. Synchronization of Top-5 distinct variation on synchronization measures between seizure states and non-seizure states
for one instance of seizure onset. The X-axis denotes the time (8 seconds per unit), Y-axis denotes the synchronization value,
each curve is marked with the index of channel pair. A non-seizure state is separated from seizure states by red dashed lines.

TABLE 2. Confidence degrees (last column) between TOP-5 ascent
channel-pairs.

TABLE 3. Confidence degrees (last column) between TOP-5 descent
channel-pairs.

A B Conf (B — A%
<FP2-F8, FI19-FT10 > <FP2-F4, T8-P8 > 80.83
<P4-02, F8-T8 > <FZ-CZ, FP2-F4 > 81.09
<FP2-F4, T8-P8 > <C4-P4, FP2-F8 > 81.34
<FZ-CZ, FP2-F4 > <C4-P4, FP2-F8 > 81.34
<FP2-F8, FT9-FT10 > <FZ-CZ, FP2-F4 > 82.44
<C4-P4, FP2-F8 > <FZ-CZ, FP2-F4 > 82.44

<P4-02, F8-T8 > <FP2-F8, FT9-FT10 > 83.1
<FP2-F8, FT9-FT10 > <P4-02, F8-T8 > 83.1
<FP2-F4, T8-P8 > <FP2-F8, FT9-FT10 > 83.1
<C4-P4, FP2-F8 > <FP2-F4, T8-P8 > 83.57
<FP2-F4, T8-P8 > <FZ-CZ, FP2-F4 > 83.79
<P4-0O2, F8-T8 > <C4-P4, FP2-F8 > 84.0
<FZ-CZ, FP2-F4 > <P4-O2, F8-T8 > 84.51
<FZ-CZ, FP2-F4 > <FP2-F4, T8-P8 > 84.94
<FZ-CZ, FP2-F4 > <FP2-F8, FT9-FT10 > 85.92
<P4-02, F8-T8 > <FP2-F4, T8-P8 > 86.31
<FP2-F8, FT9-FT10 > <C4-P4, FP2-F8 > 86.67
<FP2-F4, T8-P8 > <P4-02, F8-T8 > 88.74
<C4-P4, FP2-F8 > <P4-02, F8-T8 > 88.74
<C4-P4, FP2-F8 > <FP2-F8, FT9-FT10 > 91.55

A B Conf(B — A)%
<C3-P3, C4-P4 > <T7-P7, C3-P3 > 47.83
<T7-P7, T8-P8 > <P3-01, FT9-FT10 > 47.83
<C3-P3, C4-P4 > <P3-01, FT9-FT10 > 50.0
<T7-P7, T8-P8 > <T7-P7, C3-P3 > 50.0
<C3-P3, C4-P4 > <P7-T7, FT9-FT10 > 51.12
<T7-P7, T8-P8 > <P7-T7, FT9-FT10 > 53.34
<T7-P7, C3-P3 > <C3-P3, C4-P4 > 55.01
<P3-01, FT9-FT10 > <T7-P7, T8-P8 > 56.42
<P7-T7, FT9-FT10 > <T7-P7, C3-P3 > 56.53
<P3-01, FT9-FT10 > <C3-P3, C4-P4 > 57.5
<P7-T7, FT9-FT10 > <C3-P3, C4-P4 > 57.5
<T7-P7, C3-P3 > <P7-T7, FT9-FT10 > 57.78
<T7-P7, C3-P3 > <T7-P7, T8-P8 > 58.98
<T7-P7, C3-P3 > <P3-01, FT9-FT10 > 60.87
<P3-01, FT9-FT10 > <T7-P7, C3-P3 > 60.87
<P7-T7, FT9-FT10 > <T7-P7, T8-P8 > 61.54
<T7-P7, T8-P8 > <C3-P3, C4-P4 > 62.51
<C3-P3, C4-P4 > <T7-P7, T8-P8 > 64.11
<P7-T7, FT9-FT10 >  <P3-O1, FT9-FT10 > 71.74
<P3-01, FT9-FT10 >  <P7-T7, FT9-FT10 > 73.34

The darker color denotes the higher synchronization mea-
surement. On average, the global synchronization of seizure
state is greater than that of non-seizure state.

The results from the above experiments indicate that char-
acterization of synchronization dynamics can provide useful
information to differentiate seizure states from the rest.

C. EVALUATION OF CLASSIFICATION PERFORMANCE

The lightweight VGGNet is trained using SGD for 300 epochs
on CHB-MIT with mini-batch size of 50. The learning
rate is set to 0.01. This study applies a weight decay
of le-4, momentum of 0.9 and Nesterov momentum [21].
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Weight initialization is performed conforming to that pro-
posed in [22] and batch normalization is applied to the net-
work [20]. Dropout rate is set as 0.1.

After being shuffled with random seed of 7, the data are
divided into training sets, validation sets and test sets, which
occupy 64%, 16% and 20% respectively. In the training
phase, a 5-fold cross validation algorithm is employed to
evaluate the training performance of lightweight VGGNet
with training sets and validation sets. That is, all CMMICs
are divided into 5 fold by shuffling with 5 iterations per-
formed. In each iteration, 4 fold are trained, and the remaining
fold is used for validation. The final result is the average
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FIGURE 5. The global synchronization matrices of average seizure features, non-seizure features, and their subtraction features between a pair of EEG

data.

of the outputs of 5 iterations. The results are reported in
terms of sensitivity(SEN ), specificity(SPE), accuracy(ACC),
Precision and Recall. SEN and SPE describe the rate of cor-
rectly detecting seizure states and non-seizure states, respec-
tively. ACC denotes the average performance of the classifier.
Precision calculates the proportion of all correctly detected
seizure onsets from all that were actually classified. Recall
calculates the proportion of all correctly detected seizures
from all correctly detected seizures and negative normals.
After the classifier was trained, the performance was reported
according to the testing sets.

Setting of time windows can affect the performance of
the classifier. Fig. 6 shows a box chart of the classification
performance with respect to segmentation. As the size of the
time window increases (starting from 512), SEN, SEP, and
ACC increase almost linearly with point of inflexion as size

VOLUME 6, 2018

768 and 1000 and then increase after that. The box height
indicates the amount of variance, which shows the station-
arity of the classification performance. With a window size
of 2048 (8 seconds), the accuracy, sensitivity, and specificity
reach the peak: [98.13% =+ 0.24%], [98.85% =+ 0.51%], and
[97.47% + 0.36%], respectively. This setting is then applied
to all other experiments. The variance of most results is small,
which indicates that the performance of lightweight VGGNet
is relatively stable.

Figure 7 shows the accuracy and loss metrics for the
training and validation processes. Here, acc and loss indicate
the accuracy and error in training, respectively; val_acc and
val_loss indicate the accuracy and error in validation, respec-
tively. Obviously, overfitting does not occur in training stage
as (1) acc and val_acc are high at the same time, and (2) no
significant difference exists between acc and val_acc in all
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FIGURE 7. Accuracy and Loss rates in the training and validating
processes.

iterations. Results also indicate that overfitting does not occur
in this case.

The area under the Receiver Operating Characteristic
(ROC) curve, denoted as AUC, measures the performance of
supervised classification rules. A satisfactory classification
rule is reflected by an ROC curve which lies in the upper
left triangle of the square. That is, it is above the counter-
diagonal (the luck line in the left of Fig. 8) [25]. The rank-
ing performance is promising when the AUC value is high.
Precision and recall rates are of mutual influence, both of
which will certainly be high in the ideal situation. However,
in general, when the accuracy is high, the recall rate will be
low, and vice versa. It is desirable that the Precision-Recall
Curve is above the principal diagonal (the luck line on the
right of Fig. 8). Fig. 8 shows the ROC Curve (left) and the
related P-R curve (right) to evaluate the performance of the
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TABLE 4. Performance Comparison. SEN and SPE describe the rate of
correctly detecting seizure states and non-seizure states, respectively.
ACC denotes the accuracy of classification. PK (A Priori Knowledge)
shows the dependence of the approach on a priori knowledge.

Author Year Classifier Sens Spec  Acc PK

Fergus 2016[16] k-NN 88 88 93 Y

Nasehi 2013[26] IPSONN 98 - - Y

Morteza 2016[17] MLP, 8653 9727 8656 Y
Bayesian

Lorena 2016[15] LDA NN 97.5 99.9 - Y

Our Approach Lightweight 9885 9747 9813 N
VGGNet

proposed VGGNet model. The figure illustrates the ranking
performance on the k-fold cross validation (5-fold in this
paper). The convex ROC/PR curve and the high AUC (both
are 0.99) exhibit the excellent classification performance of
the VGGNet.

A comparison between the proposed approach and the
state-of-the-art especially including those with intelligent
algorithms is presented in Table 4. The proposed approach
achieves the highest sensitivity and accuracy over the same
dataset CHB-MIT. Its performance is always superior except
the SPE in [15]. Nevertheless, SEN is a much more critical
indicator as it denotes whether seizures can be correctly
detected.

SEN reflects the capability of the classifier to correctly
identify an epileptic seizure (SPE for non-seizures). High
SEN and SPE values are both desired. The box chart of clas-
sification performance with respect to segment size is shown
in Fig. 6. Besides the above, indices including GMEAN
and F; — Score are measured to evaluate the capability of
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the approach to detect both seizure and non-seizure states
regardless of the percentage each state may exist in the whole
dataset [17], thus the false alarm rate can be limited low:

Gmean = \/ (Sensitivity x Specificity) 6)

Precision x Recall
F| — Score = 2 x — @)
Precision + Recall

Latency can be calculated to show the delay between the
time point where the classifier detects a seizure activity and
that marked by the expert:

Latency = E (Distanceyyset)
N

Z P(i) * Distanceéme,

i=1

%S(window) (8)

where Distance,pse; 1 the distance between start point of
the time window and seizure onset marked by the expert;
S(window) is the size of time window. For the time window
setting in this study (8 seconds), the latencies span from
1 to 4 seconds.
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D. DISCUSSIONS

1) ADVANTAGES OF DEEP NEURAL NETWORKS

The latest neural networks (NVN) are highly suited for EEG
classification as they afford (1) Non-linearity: A NN consists
of interacting neurons (linear or non-linear) and exhibits
intensive non-linearity, (2) Adaptivity: A NN has the inherent
ability to adjust the synaptic weights to adapt to the dynamics
of the external environment such as arbitrary pattern change,
(3) Fault Tolerance: When a part of a NN encounters a prob-
lem, the rest of the network will still function with the prob-
lem well contained, e.g. handling a segment contaminated
with intensive interferences, and (4) convolutional neural
networks (CNN) can adaptively select features [27].

2) NUMBER OF LAYERS

Although deep NN is widely adopted, an EEG classifier’s
performance does not necessarily rely on the number of
layers. As spotted in [28], a smaller CNN architecture (e.g.
SqueezeNet) can achieve the same accuracy as an extreme
deep NN does, and it has merits in: (1) more efficient dis-
tributed training, (2) less overhead, and (3) easy deployability
on embedded platforms with limited resources. Moreover,
an extremely deep NN may suffer vanishing/exploding gra-
dients and degradation problems.

3) GENERALITY

Most existing works on seizure detection and prediction have
focused on patient-specific predictors with strong depen-
dence on a priori knowledge of the patient [17], which
demands either the sample should be trained and tested for
the same patient or use manually set feature extraction rules
on each specific patient relying on experts. As a contrast,
this study uses samples from all patients under investigation,
based on which a general EEG classification model is fos-
tered to accurately detect seizure states of different subjects.

4) INDEPENDENCE OF A PRIORI KNOWLEDGE OF
FREQUENCY FEATURES

Conventional classification approaches rely on time, fre-
quency and spatial analysis of EEG [2]. The frequency bands
should be customized for a particular patient, and identifi-
cation of a set of suitable frequency bands itself is already
a research challenge and makes it very difficult for a classi-
fication model to be generalized to different patients. Some
approaches have been developed to address this problem,
such as the ones upon Bayesian framework [29]. However,
suitable frequency bands may only be achieved when a very
large amount of EEG epochs are processed with complicated
algorithms. Another problem is the size of time windows has
to be long enough to avoid the risk of losing useful frequency
information. For example, Piotr et al. had to form 1 or 5 min-
long patterns of 12 or 60 frames to get frequency field infor-
mation while bivariate synchronization was computed using
5s time windows [2]. To the best of our knowledge, existing
classifiers need sufficient a priori knowledge as stated in the
above. The proposed approach requires no a priori knowledge
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at all. Furthermore, existing methods largely demand prepro-
cessing of epileptic EEG to remove intensive noise/artifacts
while it is not necessary for the proposed approach.

5) POTENTIAL IN BRAIN BIG DATA APPLICATIONS

The time complexity of the neural network is proportional
to the product of the number of hidden neurons (V) and lay-
ers (L). As a small CNN framework, the lightweight VGGNet
can achieve a time complexity as low as O(L) given that
the computation on each layer is propelled by cutting-edge
GPUs and/or FPGAs. With the increase of patient sample
size, incremental training samples can be used to update the
model parameters via incremental online analysis and a more
accurate model can be obtained [30], [31]. The overhead
of processing the new CMMICs with the trained VGGNet
model can be almost ignored, which makes it particularly
suited for massive EEG identification while this persists as
an onerous task for conventional counterpart approaches. The
parallel MIC + + approach can reduce the time complexity
of MIC synchronization measurement to O(loga(N)) [23].
Using the latest high performance -cyberinfrastructure
[32]-[34], the model can be trained can be performed in a
near-real-time manner. The proposed classification approach
on the CMMIC sequence is naturally suitable for distributed
classification using a model parallel to each machine (map-
ping onto GPUs) [32], [35] and/or parallel data processing
over many compute nodes [36].

VI. CONCLUSIONS

It is an important issue to find synchronization patterns in
multivariate EEG superimposed with intensive noise and
accurately to classify them on this basis under the circum-
stance of insufficient a priori knowledge. Such capability can
significantly benefit brain dysfunction research and practices,
e.g. epilepsy.

This study extended the MIC method to measure global
synchronization of multivariate EEG. The global MIC mea-
sures (CMMIC's) have been organized in time sequence to
represent the evolving synchronization patterns. CMMIC's
maintain abundant useful information to differentiate seizure
states from the rest. A lightweight VGGNet is then designed
to adaptively characterize the non-stationary patterns related
to seizures and then classify them. The design alleviates the
vanishing gradient problem and strengthens feature propaga-
tion, which leads to a substantial reduction of parameters.

Experiments have been performed to evaluate the proposed
approach over the CHB-MIT scalp EEG dataset. The results
show an improvement relative to existing methods, with
accuracy, sensitivity, and specificity of [98.13% =+ 0.24%],
[98.85% £ 0.51%], and [97.47% £ 0.36%], respectively. The
variance of most results is small, which indicates that the
performance of the VGGNet is relatively stable.

The proposed approach achieves this performance without
the need for denoising the EEG. Furthermore, the approach
requires only one hyperparameter, which avoids the potential
errors caused by excessive parameter settings. The overall
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work enables a general and cost-effective solution to classi-
fication of EEG and holds great potential for handling brain
big data.
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