
Future Generation Computer Systems 87 (2018) 580–590

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

A multi-layered performance analysis for cloud-based topic detection
and tracking in Big Data applications
Meisong Wang a, Prem Prakash Jayaraman b, Ellis Solaiman c,*, Lydia Y. Chen d, Zheng Li e,
Song Jun f, Dimitrios Georgakopoulos b, Rajiv Ranjan f,c

a School of Computer Science, Australian National University, ACT, Australia
b Faculty of Science, Engineering and Technology, Swinburne University of Technology, Melbourne, Australia
c School of Computer Science, Newcastle University, Newcastle Upon Tyne, UK
d Zurich Research Laboratory, IBM, Zurich, Switzerland
e Department of Electrical and Information Technology, Lund University, Sweden
f Department of Computer Science, Chinese University of Geosciences, Wuhan, China

h i g h l i g h t s

• A novel end-to-end performance analysis that identifies key metrics impacting CTDT applications.
• A novel analysis that captures dependencies between metrics across the cloud layers.
• Identified metrics are validated via real-world data sets obtained from Twitter.

a r t i c l e i n f o

Article history:
Received 19 July 2017
Received in revised form 21 November
2017
Accepted 22 January 2018
Available online 3 March 2018

Keywords:
Cloud-based TDT
Big Data
Performance analysis
Cloud computing

a b s t r a c t

In the era of the Internet of Things and social media; communities, governments, and corporations are
increasingly eager to exploit new technological innovations in order to track and keep up to date with
important new events. Examples of such events include the news, health related incidents, and other
major occurrences such as earthquakes and landslides. This area of research commonly referred to as
Topic Detection and Tracking (TDT) is proving to be an important component of the current generation of
Internet-based applications, where it is of critical importance to have early detection and timely response
to important incidents such as those mentioned above. The advent of Big data though beneficial to TDT
applications also brings about the enormous challenge of dealing with data variety, velocity and volume
(3Vs). A promising solution is to employ Cloud Computing, which enables users to access powerful and
scalable computational and storage resources in a ‘‘pay-as-you-go’’ fashion. However, the efficient use
of Cloud resources to boost the performance of mission critical applications employing TDT is still an
open topic that has not been fully and effectively investigated. An important prerequisite is to build a
performance analysis capable of capturing and explaining specific factors (for example; CPU, Memory,
I/O, Network, Cloud Platform Service, andWorkload) that influence the performances of TDT applications
in the cloud. Within this paper, our main contribution, is that we present a multi-layered performance
analysis for big data TDT applications deployed in a cloud environment. Our analysis captures factors that
have an important effect on the performance of TDT applications. The novelty of our work is that it is a
first kind of vertical analysis on infrastructure, platform and software layers. We identify key parameters
andmetrics in each cloud layer (including Infrastructure, Software, and Platform layers), and establish the
dependencies between thesemetrics across the layers.We demonstrate the effectiveness of the proposed
analysis via experimental evaluations using real-world datasets obtained from Twitter.

© 2018 Elsevier B.V. All rights reserved.

* Corresponding author.
E-mail addresses: deanmeisong@gmail.com (M. Wang),

pjayaraman@swin.edu.au (P.P. Jayaraman), ellis.solaiman@ncl.ac.uk (E. Solaiman),
yic@zurich.ibm.com (L.Y. Chen), zheng.li@eit.lth.se (Z. Li), songjun@cug.edu.cn

(S. Jun), dgeorgakopoulos@swin.edu.au (D. Georgakopoulos), rranjans@gmail.com
(R. Ranjan).

https://doi.org/10.1016/j.future.2018.01.047
0167-739X/© 2018 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.future.2018.01.047
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2018.01.047&domain=pdf
mailto:deanmeisong@gmail.com
mailto:pjayaraman@swin.edu.au
mailto:ellis.solaiman@ncl.ac.uk
mailto:yic@zurich.ibm.com
mailto:zheng.li@eit.lth.se
mailto:songjun@cug.edu.cn
mailto:dgeorgakopoulos@swin.edu.au
mailto:rranjans@gmail.com
https://doi.org/10.1016/j.future.2018.01.047


M. Wang et al. / Future Generation Computer Systems 87 (2018) 580–590 581

1. Introduction

The advent of Big Data applications that are fuelled by numer-
ous data sources such as social media and the Internet of Things,
has created new opportunities for individuals, communities, gov-
ernments, and corporations tomakeuse of this newandpotentially
important data that is continuously being generated. This area of
research commonly referred to as Topic Detection and Tracking
(TDT) is becoming a critical component of the current generation of
Internet-based applications. An example where TDT research is of
critical importance is in developing the capability to provide early
detection and then timely response to potential landslides using
data obtained from sensors, and from social media outlets such as
Twitter. The Achilles heel for TDT applications thus far has been
limited access to real-time data which has an impeding effect on
the accuracy of the application. The Big Data era has the potential
to enhance the development of TDT applications by satisfying the
requirement of acquiring large volumes of data from variety of
sources at high velocity. Traditional TDT techniques are incapable
of coping with Big Data challenges best characterized by the 3V
features, which are Variety, Velocity, and Volume. Volume means
that the amount of data is so large that traditional storage devices
cannot store it (e.g. Every day, around 2.5 quintillion bytes of data
is created, which means that 90% of the data in the world was
created in the last two years [1]). Variety refers to themany sources
and types of data, which creates problems for storing, mining and
analysing the data. Velocity means being able to deal with the
massive and continuous speed at which data flows from sources
like sensors, social media, and various networks to the cloud to be
processed and stored.

Recently, cloud computing techniques have emerged as reli-
able, effective and practicable means for tackling the problems
confronting TDT in the Big Data era. For instance, there are a
number of cloud storage frameworks both commercial and free
such as Amazon S3 that can be used to store large amounts of data
(Volume). Some NO-SQL databases can be used to store, process
and analyse various types of data (Variety). In addition, parallel
computing frameworks such as Apache Spark can be effectively
used to significantly enhance the speed of processing Big Data, and
even tomeet real-time analysis requirements, which consequently
addresses the ‘‘Velocity’’ problem. Another benefit that Cloud com-
puting can offer is the scalability that can satisfy the requirement
of processing data which is rapidly increasing in volume.

1.1. Motivation and research problem

Although Cloud computing creates clear advantages for TDT
applications (for processing and analysing Big Data) such as those
identified above, it also generates new challenges, and one of the
most important challenges is how to optimize the cloud resources
to supportmission critical TDT applications. An important first step
is to study and analyse the performance of cloud-based TDT (CTDT)
applications. Developing analysis capabilities that can capture the
performance of CTDT applications is not a trivial task given (1) the
multi-layered nature of cloud computing (IaaS, SaaS, and PaaS),
(2) different metrics required to capture the performance of TDT
applications when compared with other cloud-based applications
such as e-commerce and customer relationship management sys-
tems, and (3) dependencies between each of the metrics across
cloud layers. Existing TDT analysis techniques [2–4], capture the
performance of processing and analysing Big Data in clouds, but
cannot be applied accurately to model the performance of CTDT
applications due to the lack of consideration for all layers (end-to-
end) that constitute a typical CTDT application (i.e. IaaS, SaaS, PaaS,
etc.).

1.2. Overview of methods and contributions

In this paper, we present a first kind of vertical multi-layered
(infrastructure, platform, and software) performance analysis
which captures and analyses the key metrics that have an impor-
tant effect on the performance of CTDT big data applications. The
main contributions of this paper are:

• Weclearly identify the key performancemetrics that impact
the performance of CTDT applications with respect to each
cloud layer (i.e. IaaS, PaaS and SaaS).

• We then analyse and establish the dependencies between
these metrics. The aim of the analysis is to be able to cap-
ture the performance of CTDT applications in order to be
able to effectively optimize resources for such applications
deployed in clouds.

• We conduct comprehensive experimental evaluations using
real-world datasets obtained fromTwitter to validate the ef-
fectiveness of the identifiedmetrics and their dependencies.

The paper is organized as follows: Section 2 summarizes a com-
prehensive survey of existing work related to the optimization of
CTDT applications, and also existing work related to performance
analysis for Cloud resource optimization; Section 3 illustrates our
performance analysis framework in detail; To evaluate our perfor-
mance analysis, we apply it to a specific case, which is a Naïve
Bayesian based CTDT application in Section 4; In Section 5 we
present experimental results based on a CTDT applications that we
implement; Conclusions and future directions are in Section 6.

2. Related work

Studies that are related to our work can be divided into:
(1) development and implementation of cloud-based TDT appli-
cations using machine learning techniques; and (2) performance
analysis for platform-as-a-service TDT applications running on
clouds using frameworks such asMapReduce. Aswe shall see, none
of these studies can be used to efficiently analyse the end-to-end
performance of CTDT applications. The first class of studies mainly
focuses onhow todevelop and implement a CTDT applicationusing
various machine learning algorithms (e.g. state vector machine,
Naive Bayes etc.). However, these works lack an analysis of factors
that influence the performance of the CTDT application. On the
other hand, the second set of studies are heavily focused on PaaS-
based approaches such as Map Reduce and lack consideration for
metrics such as performance of the distributed machine learning
algorithms and related dependencies across the cloud layers (IaaS,
PaaS and SaaS). These factors are important, and when not con-
sidered often lead to inaccuracy of performance modelling results.
This will have significant consequences on mission critical CTDT
applications that are dependent on fast, scalable and accurate anal-
ysis of events. For example, consider a landslide scenario. Under
normal conditions, the sensors deployed in the field monitoring
the activity of the land (e.g. movement of earth) produce data at
a constant rate, and data coming from social media streams is
relatively less constant. However, in case of an abnormal situation,
the sensor data rate and social media data increases significantly
resulting in increased volume. The challenge here is that a CTDT
application running in the cloud needs to be able to optimize the
cloud resources to cater for such diverse situations (normal and
abnormal). Failing to do so will result in mission critical applica-
tions failing to meet their goals; i.e. detecting and alerting their
users to important events [5,6]. In cloud computing terminology,
this is generally referred to as Quality of Service (QoS) guarantees
enforced by service level agreements (SLA) [7].

Table 1 presents a summary of CTDT applications focusing on
development and implementation. As described earlier, the first



582 M. Wang et al. / Future Generation Computer Systems 87 (2018) 580–590

Table 1
Characteristics of cloud-based TDT applications.

Study Performance model Performance guarantee Performance metrics IaaS PaaS SaaS

[8] No No No Yes No No
[9] No No No Yes Yes No
[10] No No No Yes No No
[11] No No No Yes Yes No
[12] No No No Yes No No

Table 2
Characteristics of related performance models.

Study H
D
FS

M
em

or
y

M
L

Ta
sk

sc
he

du
le
r

Re
al

en
vi
ro
nm

en
t

Si
m
ul
at
or

G
re
ed

y
al
go

ri
th
m

N
et
w
or
k

[2] Yes Yes No No Yes No No Yes
[3] Yes No No Yes No No No No
[13] No No No Yes No Yes Yes No
[4] No No No Yes No No Yes No
[14] Yes No No No Yes No No No
[15] Yes No No Yes Yes Yes No No
[16] No No No Yes No Yes Yes No
[17] Yes Yes No Yes Yes No No Yes
[18] No No Yes No No Yes No No
[19] No No Yes No No No No No
[20] Yes No No No Yes No No Yes

class of CTDT applications lack performance analysis and evalu-
ation capabilities, and provide no performance guarantees (QoS
or SLA). This means that they cannot be used to develop QoS
guarantees for mission critical CTDT big data applications.

A summary of platform-as-a-service CTDT applications is
shown in Table 2. As stated earlier, the focus of this related work
is to develop a performance model for map-reduce or similar
distributed framework-based TDT applications. We compare these
approaches by using the taxonomy presented below:

(1) HDFS: Are factors of HDFS taken into consideration?
(2) Memory: Whether this work considers effects of memory.
(3) Task Scheduler: Whether this work consists of scheduling

mechanisms of MapReduce tasks.
(4) Real Environment: Whether this work is based on a real

environment or another approach such as simulator.
(5) Simulator: Whether this work is based on a simulator.
(6) Greedy Algorithm: Whether this work uses greedy algo-

rithms to calculate or estimate the execution timeofMapRe-
duce tasks. This is a separate research problem as different
Map/Reduce scheduling strategies will lead to varying run-
time performance (e.g., Mapper/Reducer response time).
However, analysing how different scheduling strategies af-
fect run-time performance is not the focus of this paper.
In our model this is an input parameter available through
workload benchmarking.

(7) Network: Whether this works considers the impact of the
network.

In summary, both classes of CTDT applications surveyed, lack
the ability to represent the key metrics that influence the perfor-
mance of CTDT applications across cloud layers. In order to support
QoS guarantees (whichwebelievewill be an essential part of future
CTDT applications), it is essential to understand the impact of the
application’s components on each layer in order to optimize and
orchestrate cloud resources. To the best of our knowledge, we
are the first to present a performance analysis that considers the
performancemetrics within all end-to-end layers of a typical CTDT
application, as well as the dependencies between each of those
metrics.

Fig. 1. Factors which affect the performance in different layers.

3. Multi-layered performancemodel for CTDT Big Data applica-
tions

3.1. Background

Let us consider a disease detection CTDT system. Such a system
could potentially use a combination ofMapReduce, HDFS andAma-
zon or Spark Streaming, HDFS andWindows Azure or Storm, HDFS
and Google Compute Engine. The goal of such a CTDT application
is to provide timely and accurate notification to its users allowing
them to respond to adverse events such as earthquakes or diseases
outbreak. Current CTDT approaches depend on QoS guarantees
provided by the cloud provider, which are limited and restrictive.
For instance, it limits QoS to IaaS resources such as CPU, Memory
and Storage [7]. However, to support CTDT applications such as the
ones described earlier, there is a need to go beyond a simple QoS
guarantee strategy to a more end-to-end approach, i.e., the QoS
must satisfy constraints such as events detected within x minutes
of occurrence and notification delivered with y minutes. We need to
acknowledge that factors exerting substantial effects on the per-
formance of a CTDT application come from different layers (SaaS,
PaaS, and IaaS). For example, consider a typical Batch Processing
architecture (e.g., MapReduce) presented in Fig. 1. From the figure,
we can see that several factors from different layers can affect the
performance of a system. In the machine learning libraries layer,
the accuracy and precision of the classification techniques such as
the Support Vector Machine (SVM) and the Naive Bayesian model
depends on the underlying input data sets (e.g., Tweets). However,
in this work we validate the performance analysis technique in
context of Naive Bayesian classification algorithm. Moreover in a
MapReduce-based TDT application, the optimal number of Map
Tasks is also essential for achieving the highest speed of a sys-
tem. In addition, an appropriate scheduling method equally has
a pivotal role to play in the speed of a system. For a CTDT appli-
cation using a master–slave distributed file system (e.g., HDFS),
single failure is obviously a catastrophe in terms of speed. In
IaaS layer, for example, whether the applied memory is sufficient
has a significant influence on the speed of a Spark-based TDT
application.

In summary, we cannot ignore factors from any layer. Also in
addition to considering factors from all layers we need to identify



M. Wang et al. / Future Generation Computer Systems 87 (2018) 580–590 583

Fig. 2. Architecture of a performance analysis framework for CTDT applications.

dependencies between these factors and how they can influence
the performance of big data applications. Because, commonly, the
cooperative effect of more than one metric has more effect or
at least has equal effect on performance. Finally, the developed
analysis needs to cater to a range of CTDT big data applications
rather than being constrained to a specific class.

3.2. Metrics influencing the performance of CTDT applications

To capture the performance of CTDT applications, the first step
would be to identify and determine which metrics should be
used to measure the performance of a CTDT application at each
layer. There are different performancemetrics in terms of different
practical needs. Be that as it may, there can be certain common
important metrics that can be applied to most TDT applications
such as speed, accuracy, price (for commercial applications), etc.
Regardless of economic terms, speed is the factor of first-rate
importance in a CTDT application particularly for mission critical
disaster detection systems such as epidemic detection, earthquake
detection, fire detection, etc. Consider earthquake detection for
instance. Detecting the earthquake and warning citizens even a
fraction of a minute earlier may save many lives. Furthermore,
accuracy is another important metric for CTDT applications. A
speedy but inaccurate traffic congestion detection system aiming
to inform travellers about traffic jams or even suggest alternative
routes, for example, would mean nothing because it provides out-
dated or fraudulent information thatmisleads travellers, and could
even lead tomore traffic jams.We select speed and accuracy as two
key metrics in our performance analysis. Speed can be measured
by calculating the execution time of a CTDT application while
accuracy differs in different kinds of CTDT applications in terms of
different data mining algorithms adopted. Within this paper, and
for the purposes of our experiments, ‘‘precision’’ is used to describe
the accuracy of classification algorithms whereas ‘‘perplexity’’ is
used to measure the accuracy of clustering algorithms.

3.3. CTDT Big Data applications: Performance analysis framework

Fig. 2 illustrates our proposed performance analysis framework.
We develop a generic framework that could be easily adopted to
model a range of CTDT big data applications that could include
several technologies at each of the IAAS, PAAS and SAAS layer.

Data Mining Algorithm means the group of factors related to
the data mining algorithm adopted. Different kinds of data mining
algorithms [21] have different effects on both accuracy and speed.
For instance, as we discussed before, measuring the accuracy of

Fig. 3. Architecture of distributed disease detection system.

a clustering algorithm based CTDT application requires the cal-
culation of perplexity. In contrast, for a classification based one,
we need to compute the precision. Algorithm Class means the
type of data mining algorithm (e.g., Classification or Clustering)
while Algorithm Name means the exact algorithm used (e.g., K-
means, LDA, Naive Bayesian, etc.). Even in the same class, dif-
ferent algorithms might influence the performance of a system
in different ways. For example, K-means and Canopy are both
clustering algorithms, yet their influences on the speed of the
system are substantially different, as K-means can be executed
in more than one iteration whilst Canopy has only one iteration.
Others refers to factors that might be important but beyond the
scope of our existing work (providing scope for improvement).
Parallel Implementation Method represents factors related to differ-
ent parallelling methods of conversion of sequential data mining
algorithms into parallel ones, such as MapReduce or MPI. Parallel
Computing Paradigmmeans the different kinds of parallel comput-
ing frameworks adopted and relevant factors such as MapReduce
(e.g., the factor ofNumber ofMappers or Reducers), Storm, Spark, etc.
Distributed File System refers to factors related to the distributed
system such as Hadoop Distributed File System. In the IaaS layer,
we consider CPU, memory, I/O and Network related factors.

From the above architecture, it is obvious that our performance
analysis defines several groups of factors rather than specific fac-
tors. Because different CTDT applications might adopt different
implementation methods, such as different parallel computing
paradigms (MapReduce or Storm). Our performance analysis can
now be applied to almost all MapReduce-based TDT applications.
In the next step, we will illustrate how to use it for a MapReduce-
based Flu Detection system.

4. Using the multi-layered performance analysis framework to
understand MapReduce-based TDT applications

In this section, we demonstrate how the proposed multi-
layered performance analysis framework could study the impact of
key identified parameters for MapReduce-based TDT application.

4.1. MapReduce based TDT application architecture

We present the architecture of a MapReduce [22,23] based TDT
application in Fig. 3. The disease detection TDT application in this
scenario uses data from Twitter to detect Flu-related events by
analysing the tweets. First, we store the Twitter data in HDFS
(Hadoop Distribute File System). In our work, the data was pro-
vided by COSMOS project (https://www.cs.cf.ac.uk/cosmos/).

https://www.cs.cf.ac.uk/cosmos/


584 M. Wang et al. / Future Generation Computer Systems 87 (2018) 580–590

Table 3
Factors in the IaaS layer.

Name Explanation

T The capacity of a single node (the number of floating point operations
FLOPs per second).

B The bandwidth (Mbps).
P The number of computers.
Data Including data size and information in data.

We run MapReduce-2 and the HBase Database. On top of
Hadoop, we employ Mahout [24] which is a distributed and scal-
able machine learning library. One of the advantages of Mahout
is that most of its ML algorithms can be executed as a Map-
Reduce job. The disease detection application (also known as an
‘‘epidemic detection’’ application) [25,26] is built on a combination
of clustering, classification and topic detection algorithms.

4.2. Modelling of the disease detection system

As discussed in Section 3, speed is an important performance
metric, therefore we will discuss how to model the speed of a
MapReduce TDT application (Diseases Detection System).

The execution time of a MapReduce TDT process is actually a
MapReduce datamining process consisting of one ormoreMapRe-
duce jobs. In the MapReduce paradigm most jobs are executed
in a sequential way, therefore calculating the execution time of
a MapReduce data mining process can be divided into two parts:
calculating the execution time of a single MapReduce job and
calculating howmany MapReduce jobs contained in a MapReduce
data mining process. To calculate the execution time of a single
MapReduce job, we need to identify the process of a single MapRe-
duce job.

The calculation of a single MapReduce job involves capturing
the performance in IaaS, PaaS and SaaS layers. Factors relevant to
the IaaS Layer can be seen in Table 3.We explain the details of PaaS
and SaaS using the example of using Naive Bayes’ classification for
predicting disease types.

4.2.1. IaaS layer analysis factors
As discussed earlier, the analysis can be divided into three

independent layers, which have dependencies on each other. We
will illustrate the practical use of the analysis based on the diseases
detection application in terms of the three layers. Factors relevant
to the IaaS Layer can be shown in Table 3:

4.2.2. PaaS layer analysis factors
For the PaaS Layer, by adopting Hadoop MapReduce and HDFS,

the factors of the performance analysis are listed as shown in
Table 4.

In fact, a MapReduce-based Data mining algorithm consists of
one or several MapReduce jobs. Now we can calculate the execu-
tion time of each MapReduce job. The total execution time of a
MapReduce job can be computed according to Eq. (1).

Ttotal = Tmap × StartPercent + Tshuffle + Treduce (1)

Execution time of a map task can be computed using Eqs. (2)
and (3).

Tmap = Tumap × Nmap/P (2)

Tumap = Wmap × Cumap/T (3)

Cumap depends on several factors, such as the CPU speed, memory
size, and available network bandwidth, etc. From the above for-
mula, we can see that by increasing the number of nodes (i.e. num-
ber of Map and Reduce instances), end-to-end execution time of a

MapReduce job (and the CTDT application) can be reduced. Unfor-
tunately, it is not always the case, due to thatCumap will changewith
the changing of other parameters, such as CPU, Memory, Number
of Mapper, etc.

In the MapReduce based Hadoop framework the Nmap param-
eter (number of Map Tasks) is determined by setting: ‘‘dfs.block.
size’’, ‘‘mapred.map.tasks’’, ‘‘mapred.min.split.size’’, ‘‘input data
size’’, ‘‘goal number of mapper’’, and ‘‘mapred.max.split.size’’. How
to compute Nmap will be illustrated in the following equations.

The execution time of a reduce task can be computed by using
Eqs. (4), and (5).

Treduce = Tureduce × Nreduce/P (4)

Tureduce = Wreduce × Cureduce/T (5)

The coefficient Cureduce is similar to Cumap, and the only differ-
ence is that Cureduce is for Reduce tasks (Reducer). The formula to
compute the execution time of a shuffle task is shown in (6) and
(7).

Tshuffle = Wuoutmap × (Nmap mod P)/B (6)

Wuoutmap = Woutmap/Nmap (7)

The number of Map tasks is determined by the following pa-
rameters: size of block in HDFS ‘‘dfs.block.size’’, the goal number
‘‘mapred.map.tasks’’, the minimum size of splitting data for each
mapper ‘‘mapred.min.split.size’’ and themaximum size of splitting
data for each mapper ‘‘mapred.max.split.size’’.

4.2.3. SaaS layer analysis factors
Weconsider theNaive Bayes’ classificationML algorithm [27] to

aid our discussion of performance modelling at this layer. Except
speed, we will also discuss the accuracy (‘‘Precision’’ for Classifi-
cation algorithms). See Table 5 which details features of this ML
algorithm.

The total execution time of the whole classification process can
be computed as shown below in Eq. (8).

Tbayes = Njob × Ttotal (8)

‘‘RunSequential’’ is a special parameter which determines if the
Naïve Bayesian training process has to be executed in aMapReduce
way. If this is set to ‘‘true’’, the training set will be executed in a
sequential way. This can be a typical situation for a TDT application
where the training data is not large enough to be processed in
parallel by exploiting the MapReduce distributed parallel pro-
gramming abstractions. While the training can be done sequen-
tially on one cluster node, the actual classifying (testing) phase
can be implemented in the MapReduce way. In other words, the
performance analysis has to capture such complex configuration
decisions if it has to guarantee end-to-end execution times.

As noted earlier, Precision depends on the underlying ML al-
gorithms and the type of data sets under consideration. Hence, we
need to undertake various experimental studies to verifywhichML
algorithm leads to best possible precision for a given dataset. Even
for a given classification (ML) algorithm, the precision can change
due to the changing of other parameters. For instance, the param-
eter ‘‘complement’’ determined if the MapReduce Naïve Bayesian



M. Wang et al. / Future Generation Computer Systems 87 (2018) 580–590 585

Table 4
Factors in the PaaS layer.

Name Explanation

Ttotal The execution time (seconds) of a single MapReduce job.
Tmap The execution time (seconds) of a mapper task.
Tshuffle The execution time (seconds) of a shuffle task.
Treduce The execution time (seconds) of a reducer task.
Pstart The percentage of the finished mapper tasks when the ‘‘shuffle’’ starts.
Wmap The product of the amount of workload for a single mapper task and it

is related to the set of the blocksize of the HDFS, the split of the
MapReduce, the data size (IaaS).

Nmap The number of the mapper tasks.
W The workload of the whole input data size (MB or GB).
Cumap Coefficient describing the relationship between the node (TaskTracker)

and mapper.
Cureduce Coefficient describing the relationship between the node (TaskTracker)

and Reducer.
Tureduce The execution time (seconds) of a single Reduce task.
Nreduce The number of reducer tasks.
Wreduce The workload for a single reducer task.
Tumap The execution time (seconds) of a single mapper task.
Wuoutmap The workload of the single mapper task.
Woutmap The workload of all the mapper task.
BHDFS Blocksize of HDFS.
Nreplication The number of replication of data in HDFS.
MaxMemory of Map & Reduce task MaximumMemory allocated to mapper or reducer Task can use, it can

affect the execution time of a single task.

Table 5
Factors in the SaaS layer.

Name Explanation

Execution Time The whole execution time of Bayes’ classification includes time taken
for training, testing and learning.

Precision The accuracy of the classification.
Njob Depends on the PaaS level the number of Mapper and Reducer

parameter/factor.
Class of ML Algorithm Classification.
Name of ML Algorithm Naïve Bayes’.
Complement (Boolean value) Training process is based on C Naïve Bayesian or Standard Naïve

Bayesian.
RunSequential (Boolean value) MapReduce way or sequential way.

classifier is trainedbyusing ‘‘ComplementaryNaïve Bayesian’’. This
could lead to different precision as compared to standard Naïve
Bayesian.

Some parameters in this layer might have influence on factors
from other layers or require the assistance from factors of other
layers to cooperate in order to affect the speed, or precision of the
system. For instance, the ‘‘RunPartial’’ (MapReduce-based Random
Forest) will determine if the MapReduce job will be executed in
memory. If the MapReduce job is executed in memory, the job will
be memory-intensive and more memory (IaaS resources) might
lead to less execution time of Random Forest MapReduce-based
jobs. One of the advantages of our performance analysis is that
it can capture or reveal these inter-layer dependencies. Next, we
will discuss such specific dependencies in relation to different
algorithms such as Random Forest, Naïve Bayesian.

The basic theory of Naïve Bayesian classifiers is to group an
unclassified item into a class where such an item has the highest
probability related. For instance, x = a1, a2...am is an unclassified
dataset and each a is a feature of x while C = y1, y2...yn is a set of
all classes and each y represents a class. Take the disease detection
application for instance, x is an unprocessed tweet and yi means a
sort of known epidemic such as ‘‘flu’’, ‘‘measles’’ or ‘‘Ebola’’.

Traditionally a naïve Bayesian classifier process is sequential,
which means it will not scale to processing of large volumes of
Big Data. To efficiently process big data, it is better that naive
Bayesian classification algorithm should be parallelized. We adopt
the MapReduce programming model to parallelize naive Bayesian
classification algorithm and explain the key steps and analysing
factors in the following.

There are two main steps in the training part of naïve Bayesian
classifier: (1) Counting the ClassPrior P(yi) for each class. (2) Count-
ing the conditional probability for each attribute per class P(a|yi)
(in text classification, the attribute can be the word).

As a consequence, it is necessary for a naïve Bayesian classifier
based on MapReduce to have two main MapReduce jobs to under-
taking the above 2 steps: first for counting the Classifier and second
for computing the conditional probability.

The practical implementation of naïve Bayesian classifier in
MapReduce varies, especially for the training part. In this paper,
we studyNaïve Bayesian implementation based on theMapReduce
framework by exploiting Mahout (an open-source scalable ma-
chine learning library) as an ML engine. Even in Mahout, the spe-
cific implementation of naïve Bayesian classifier has been changed
since its initial release.

4.3. Dependency across layers

Here, we use the training process of Naïve Bayes in Mahout to
illustrate the dependencies across layers as shown in Fig. 4. Red
lines represent dependencies across different layers while purple
lines represent dependencies within the same layer.

(1) Dependency1: Dependency between ‘‘Complement’’ and
‘‘Data Information’’. Means that the influence of ‘‘Comple-
ment’’ on ‘‘Precision’’ might be affected by ‘‘Data Infor-
mation’’. For instance, the Complementary Naïve Bayesian
method is more effective for classifying unbalanced data
than the balanced data.



586 M. Wang et al. / Future Generation Computer Systems 87 (2018) 580–590

Fig. 4. Dependency across layers. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

(2) Dependency2: Dependency between ‘‘Memory’’ and ‘‘Max-
imum Memory for a Mapper or a Reducer’’. It means that
‘‘Memory’’ in IaaS layer has to cooperate with ‘‘Maximum
Memory for a Mapper or a Reducer’’ in order to manage
speed of executing of analytics tasks. Specifically, without
tuning the ‘‘MaximumMemory for a Mapper or a Reducer’’,
Memory available at the IaaS layer cannot affect the per-
formance of the underlying TDT application. On the other
hand ‘‘Maximum Memory for a Mapper or a Reducer’’ has
an upper bound. For instance, if the total available Memory
(IaaS) is 1000 MB and the total number of Reducers and
Mappers are 10, the ‘‘Maximum Memory’’ cannot be over
100 MB, and otherwise the MapReduce job execution will
not commence.

(3) Dependency 3: Dependency between ‘‘RunSequential’’ and
MapReduce. As wementioned before, theMapReduce train-
ing process can be executed only when this parameter is
false.

(4) Dependency 4: Dependency between ‘‘Bandwidth’’ and
‘‘HDFS Replication Number’’. When the replication of data
is not enough, the node might need to copy required data
from another node to process. In this situation, ‘‘Band-
width’’ has a more significant role to play in the speed
of the system, for the reason that low Bandwidth might
lead to the slow speed of copying data from one node to
another.

(5) Dependency5: It is an inner Dependency within the SaaS
layer. The parameter ‘‘Number of MapReduce jobs’’ is deter-
mined by the parameter ‘‘Name of Algorithm’’. In a Naïve
Bayesian performance analysis it is 3 for training set (in the
new edition of Mahout) and 1 for the testing (classifying)
part, and for another classification algorithm (e.g. Random
Forest), it might require a different number of tasks at train-
ing and testing steps/phases.

(6) Dependency6: An inner Dependency within PaaS layer, the
number of mappers is affected by the size of the HDFS block
and the min splitting size of input data.

5. Experimentation and evaluation

5.1. Experimental environment

The environment of our experiments is based on a CSIRO ICT
Cloudwhich is built with OpenStack. There are 10 clusters adopted
in our experiment, shown in Table 6. As explained previously, the
data for our experiments is collected fromTwitter in order to detect
outbreaks of flu.

We did all the experiments that required maximum 4 nodes
at first, then we created snapshots of Clusters 1–4 and we did
experiments on Cluster 5, Cluster 6, Cluster 7, Cluster 10. The
reasonwe run our experiment under these different settings is that
wewill present the effect generated by the IaaS resources upon the
speed of the system.

5.2. Experimental results

5.2.1. IaaS experiment (number of VCPU cores)
Description of Experiment: In accordance with our perfor-

mance analysis, when the CPU resource is enough, increasing of
the CPU resource does not affect the execution time of a TDT
application significantly. However, when the CPU resource is in
shortage, for example, there is only a virtual machine with 1 core
CPU in a cluster and the MapReduce-based data mining algorithm
in a TDT application requiresmore than 5Map tasks, the increasing
of CPU resource might lead to the increasing of the speed of such a
TDT application.

Because our system is built on CSIRO Cloud where we do not
have the highest level of access privilege, we can only change the
number of VCPU (Virtual CPU) cores. As we mentioned in this
chapter, we built cluster 1–10 (Shown in Table 6). To eliminate
the effect of memory, we kept the memory size of each Mapper
or Reducer unchanged and the number of Mappers or Reducers
unchanged. In this experiment, we chose Naive Bayesian as our
algorithm, Fig. 5 shows the result of the experiment.

The first figure shows that the speed increased with the in-
creasing of the CPU core number, but the second figure shows



M. Wang et al. / Future Generation Computer Systems 87 (2018) 580–590 587

Table 6
Clusters adopted in experiments in CSIRO ICT Cloud.

Cluster Specification

Cluster 1 1 node, pseudo-distributed Hadoop 2, HDFS 2, 1 CPU,
Cluster 2 2 nodes, 1 master node (Namenode, ResourceManager, JobTracker), 1

slave node (DataNode, NodeManager, TaskTracker), Hadoop2.4.1,
Mahout 1.0, 2 CPU cores (2.40 GHz)

Cluster 3 3 nodes, 1 master node, 2 slave nodes, Hadoop2.4.1, Mahout 1.0, 3 CPU
cores (2.40 GHz)

Cluster 4 4 nodes, 1 master node, 3 slave nodes, Hadoop2.4.1, Mahout 1.0, 4 CPU
cores (2.40 GHz)

Cluster 5 5 nodes, 1 master node, 4 slave nodes, Hadoop2.4.1, Mahout 1.0, 5 CPU
cores (2.40 GHz)

Cluster 6 6 nodes, 1 master node, 5 slave nodes, Hadoop2.4.1, Mahout 1.0, 6 CPU
cores (2.40 GHz)

Cluster 7 7 nodes, 1 master node, 6 slave nodes, Hadoop2.4.1, Mahout 1.0, 7 CPU
cores (2.40 GHz)

Cluster 8 8 nodes, 1 master node, 7 slave nodes, Hadoop2.4.1, Mahout 1.0, 8 CPU
cores (2.40 GHz)

Cluster 9 9 nodes, 1 master node, 8 slave nodes, Hadoop2.4.1, Mahout 1.0, 9 CPU
cores (2.40 GHz)

Cluster 10 10 nodes, 1 master node, 9 slave nodes, Hadoop2.4.1, Mahout 1.0, 10
CPU cores (2.40 GHz)

Fig. 5. Result of execution time of Naïve Bayesian trainings with different number of CPU cores.

that the speed was not affected by the increasing of the CPU core
number. The first figure shows a group of experiments based on the
Mapper number of ‘‘18’’ while the second figure represents a group
of experiments based on the Mapper number of ‘‘1’’. Specifically,
in the first group from cluster 1 to 10, the CPU resource of each
clustermight not have themaximumrequiredCPU resource,which
led to the situation that all the Mappers might not be able to
start at the same time. Consequently, with the increasing of CPU
resources, the number of Mappers which could be open in the
meantime increased and this led to the increasing of the speed.
The second group of experiments was based on 10% of the data
of the first group (for saving time), 1 Mapper and 2 Reducer (the
same as with the first group). The Mapper Number is ‘‘1’’ and we
set the parameter ‘‘mapreduce.map.cpu.vcores’’ (number of virtual
cores to request from the scheduler for each map task) as ‘‘1’’
and ‘‘mapreduce.reduce.cpu.vcores’’ (number of virtual cores to
request from the scheduler for each reduce task) as ‘‘1’’.

Conclusion of Experiment: The number of CPU coreswill affect
the speed when the CPU resource is so little that it cannot start
all the Mappers at the same time. When the CPU resource is
sufficient, the increasing of CPU numbers cannot affect the speed
significantly. The result also shows how the influence of differ-
ent parameters: ‘‘Number of CPU’’ (IaaS), ‘‘Mapper Number’’ and

‘‘mapreduce.map.cpu.vcores’’ might affect the speed together. This
has been identified in our performance analysis.

5.2.2. PaaS experiment (number of mappers and reducers)
Description of Experiment: As mentioned in our performance

analysis there is an optimal number of Mappers for the speed of
the system, and the number of Mappers might affect the speed
significantly. We change the number of Mappers and make other
factors fixed. The result can be shown in Fig. 6.

Conclusion of Experiment: From the results, we can conclude
that the number of Mappers can affect the speed of Naïve Bayesian
training and Random Forest Training. Furthermore, there is an op-
timal number of Mappers for a MapReduce-based Naïve Bayesian
and Random Forest (Training). There is an optimal value for map-
per number that can achieve a minimum execution time.

5.2.3. SaaS experiment
Description of Experiment: According to our performance

analysis, the other parameter possessing a significant role to
play in the performance of a TDT application based on Naïve
Bayesian is ‘‘trainComplementary’’ which determines whether the
Naïve Bayesian algorithm is executed as ‘‘Complementary Naïve
Bayesian’’ or ‘‘Standard Naïve Bayesian’’. Complementary Naïve



588 M. Wang et al. / Future Generation Computer Systems 87 (2018) 580–590

Fig. 6. Execution time of Naïve Bayesian training with different mapper numbers.

Fig. 7. Varying precision with different classification algorithms.

Bayesian is a Naïve Bayesian variant overcoming someweaknesses
of the standard Naïve Bayesian. The Naïve Bayesian classifier tends
to classify documents into a category possessing a great number of
documents while the complementary uses data from all categories
apart from the category that is worked on.

This parameter might affect the precision of the system, in
accordancewith our performance analysis. To evaluate the effect of
this parameter, we conducted the following experiment: keeping
other parameters unchanged and seeing the result of precision in
terms of different kinds of classification algorithms. In this exper-
iment, we also compare the precision of Random Forest classifier
with the samedata. The result of this experiment is shown in Fig. 7.

Conclusion of Experiment: The parameter ‘‘Complement’’ can
control whether the classification algorithm is based on C Bayes or
standard Bayes and indirectly affects the precision of the system.
Furthermore, the parameter ‘‘name of classification algorithm’’
can affect the precision of the classification-based system, which
means different classification algorithms have a different precision
based on the same data.

5.3. Evaluation summary

In conclusion, our experiments show that our performance
analysis has achieved the following: (1) Our performance analysis
is capable of capturing metrics which affect the performance of
a CTDT application across all three layers. (2) Our performance
model can illustrate the dependencies between these metrics. (3)
Our performance analysis can reflect on how these factors affect

performance. (4) Our performance analysis can be used to predict
the execution time of a TDT application under various conditions.
As discussed in Section 2 to the best of our knowledge we are the
first to present a performance analysis that considers the perfor-
mancemetrics within all end-to-end layers of a typical CTDT appli-
cation, as well as the dependencies between each of those metrics.

6. Conclusions and future work

Cloud computing technology offers a possible solution to tackle
new challenges of TDT (Topic Detection and Tracking) techniques
in the Big Data era. However, this new combination of Cloud
resources and TDT (CTDT) generates a new issue – how to analyse
the performance of CTDT to meet the demands posted by big
data applications. Our performance analysis framework provides
a practical and generic solution to analyse and model the per-
formance of big data-based CTDT applications. We demonstrate
the effectiveness of the performance analysis framework using
the case study of MapReduce-based TDT applications. Within our
analysis, we have identified key parameters in each cloud layer,
and established the dependencies between these metrics across
the layers. We have also demonstrated and validated the correct-
ness of parameters and their relationship across cloud layers via
experimental evaluations using real-world datasets.

There are a number of issues that require further work. For
example, we need to apply this performance analysis framework
to more MapReduce-based TDT applications using different data
mining algorithms, such as Random Forest, LDA, SVM, etc. More-
over, we will also extend this performance analysis framework to
other classes of Big Data Applications, which can be based on other
types of programming paradigms such as Stream Processing. To
achieve such generalization, we will extend the performance anal-
ysis framework to capture the limited sets of data flow and analytic
patterns generated by different classes of Big Data Applications
(e.g., real-time traffic modelling, and real-time energy modelling).
For example, in context of the StreamProcessing paradigm,wewill
need to consider real-time analytic latency as the most important
performance model parameter (at the PaaS layer), as compared
to batch processing response time of the Hadoop programming
paradigm. In our view, such extensionswill not affect formulations
across the other layers of the BigData stack including SaaS and IaaS.

Acknowledgement

This work is partly funded by SNSF NRP75, Switzerland project
407540_167266.

References

[1] I.A.T. Hashem, I. Yaqoob, N.B. Anuar, S. Mokhtar, A. Gani, S.U. Khan, The rise of
‘‘big data’’ on cloud computing: Review and open research issues, Inf. Syst. 47
(2015) 98–115.

[2] X. Lin, Z. Meng, C. Xu, M. Wang, A practical performance model for Hadoop
MapReduce, in: Proceedings of the 2012 IEEE International Conference on
Cluster Computing Workshops, CLUSTER WORKSHOPS 2012, IEEE Computer
Society, Beijing, China, 2012, pp. 231–239.

[3] M.J. Fischer, X. Su, Y. Yin, Assigning tasks for efficiency in Hadoop: extended
abstract, in: Proceedings of the 22nd Annual ACM Symposium on Parallelism
in Algorithms and Architectures, SPAA 2010, ACM Press, Thira, Santorini,
Greece, 2010, pp. 30–39.

[4] J. Berlińska, M. Drozdowski, Scheduling divisible MapReduce computations, J.
Parallel Distrib. Comput. 71 (3) (2011) 450–459.

[5] E. Solaiman, R. Ranjan, P.P. Jayaraman, K. Mitra, Monitoring internet of things
application ecosystems for failure, IT Prof., IEEE 18 (5) (2016) 8–11.

[6] R. Ranjan, S. Garg, A. Khoskba, E. Solaiman, J. Philip, D. Georgakopoulos,
Orchestrating bigdata analysis workflows, IEEE Cloud Comput. 4 (3) (2017)
20–28.

[7] P.P. Jayaraman, K. Mitra, S. Saguna, T. Shah, D. Georgakopoulos, R. Ranjan,
Orchestrating quality of service in the cloud of things ecosystem, in: 2015 IEEE
International Symposium on Nanoelectronic and Information Systems, 2015,
pp. 185–190. http://dx.doi.org/10.1109/iNIS.2015.64.

http://refhub.elsevier.com/S0167-739X(17)31593-5/sb1
http://refhub.elsevier.com/S0167-739X(17)31593-5/sb1
http://refhub.elsevier.com/S0167-739X(17)31593-5/sb1
http://refhub.elsevier.com/S0167-739X(17)31593-5/sb1
http://refhub.elsevier.com/S0167-739X(17)31593-5/sb1
http://refhub.elsevier.com/S0167-739X(17)31593-5/sb2
http://refhub.elsevier.com/S0167-739X(17)31593-5/sb2
http://refhub.elsevier.com/S0167-739X(17)31593-5/sb2
http://refhub.elsevier.com/S0167-739X(17)31593-5/sb2
http://refhub.elsevier.com/S0167-739X(17)31593-5/sb2
http://refhub.elsevier.com/S0167-739X(17)31593-5/sb2
http://refhub.elsevier.com/S0167-739X(17)31593-5/sb2
http://refhub.elsevier.com/S0167-739X(17)31593-5/sb3
http://refhub.elsevier.com/S0167-739X(17)31593-5/sb3
http://refhub.elsevier.com/S0167-739X(17)31593-5/sb3
http://refhub.elsevier.com/S0167-739X(17)31593-5/sb3
http://refhub.elsevier.com/S0167-739X(17)31593-5/sb3
http://refhub.elsevier.com/S0167-739X(17)31593-5/sb3
http://refhub.elsevier.com/S0167-739X(17)31593-5/sb3
http://refhub.elsevier.com/S0167-739X(17)31593-5/sb4
http://refhub.elsevier.com/S0167-739X(17)31593-5/sb4
http://refhub.elsevier.com/S0167-739X(17)31593-5/sb4
http://refhub.elsevier.com/S0167-739X(17)31593-5/sb5
http://refhub.elsevier.com/S0167-739X(17)31593-5/sb5
http://refhub.elsevier.com/S0167-739X(17)31593-5/sb5
http://refhub.elsevier.com/S0167-739X(17)31593-5/sb6
http://refhub.elsevier.com/S0167-739X(17)31593-5/sb6
http://refhub.elsevier.com/S0167-739X(17)31593-5/sb6
http://refhub.elsevier.com/S0167-739X(17)31593-5/sb6
http://refhub.elsevier.com/S0167-739X(17)31593-5/sb6
http://dx.doi.org/10.1109/iNIS.2015.64


M. Wang et al. / Future Generation Computer Systems 87 (2018) 580–590 589

[8] M. Yun, D. Bragg, A. Arora, H.-A. Choi, Battle event detection using sensor
networks and distributed query processing, in: Proceedings of the 1st Interna-
tionalWorkshop onCyber-Physical Networking Systems, IEEE Press, Shanghai,
China, 2011, pp. 761–766.

[9] C. Kühnert, M. Baruthio, T. Bernard, C. Steinmetz, J.-M. Weber, Cloud-based
event detection platform for water distribution networks using machine-
learning algorithms, Procedia Eng. 119 (2015) 901–907.

[10] H. Deng, Q.-A. Zeng, D. Agrawal, SVM-based intrusion detection system for
wireless ad hoc networks, in: Proceedings of the IEEE 58th Vehicular Tech-
nology Conference, VTC2003-Fall, IEEE Press, Orlando, Florida USA, 2003,
pp. 2147–2151.

[11] M. Bahrepour, N. Meratnia, M. Poel, Z. Taghikhaki, P.J. Havinga, Distributed
event detection in wireless sensor networks for disaster management,
in: Proceedings of the 2nd International Conference on Intelligent Networking
and Collaborative Systems, INCoS 2010, IEEE Computer Society, Thessaloniki,
Greece, 2010, pp. 507–512.

[12] N. Dziengel, G. Wittenburg, J. Schiller, Towards distributed event detection in
wireless sensor networks, in: Proceedings of the 4th IEEE/ACM International
Conference on Distributed Computing in Sensor Systems, DCOSS 2008, 2008,
pp. 507–512.

[13] A. Verma, L. Cherkasova, R.H. Campbell, ARIA: automatic resource inference
and allocation for MapReduce environments, in: Proceedings of the 8th ACM
International Conference on Autonomic Computing, ICAC 2011, ACM Press,
Karlsruhe, Germany, 2011, pp. 235–244.

[14] T. Nykiel, M. Potamias, C. Mishra, G. Kollios, N. Koudas, MRShare: sharing
across multiple queries in MapReduce, Proc. VLDB Endowment 3 (1–2) (2010)
494–505.

[15] X. Cui, X. Lin, C. Hu, R. Zhang, C. Wang, Modeling the performance of MapRe-
duce under resource contentions and task failures, in: Proceedings of the IEEE
5th International Conference on Cloud Computing Technology and Science,
CloudCom 2013, IEEE Computer Society, Bristol, UK, 2013, pp. 158–163.

[16] L. Xu, MapReduce framework optimization via performance modeling,
in: Proceedings of the IEEE 26th International Parallel and Distributed Pro-
cessing Symposium Workshops & PhD Forum, IPDPSW 2012, IEEE Computer
Society, Shanghai, China, 2012, pp. 2506–2509.

[17] H. Herodotou, Hadoop Performance Models, CS-2011-05, Computer Science
Department, Duke University, 2011.

[18] M. Khan, Y. Jin, M. Li, Y. Xiang, C. Jiang, Hadoop performance modeling for job
estimation and resource provisioning, IEEE Trans. Parallel Distrib. Syst. 27 (2)
(2016) 441–454.

[19] H. Tamano, S. Nakadai, T. Araki, Optimizing multiple machine learning jobs on
MapReduce, in: Proceedings of the IEEE 3rd International Conference on Cloud
Computing Technology and Science, CloudCom 2011, IEEE Computer Society,
Athens, Greece, 2011, pp. 59–66.

[20] J. Han, M. Ishii, H. Makino, A Hadoop performance model for multi-rack
clusters, in: Proceedings of the 5th International Conference on Computer
Science and Information Technology, CSIT 2013, IEEE Press, Amman, Jordan,
2013, pp. 265–274.

[21] L. Zhang, L. Jiang, C. Li, G. Kong, Two feature weighting approaches for naive
bayes text classifiers, Know.-Based Syst. 100 (C) (2016) 137–144. http://dx.doi.
org/10.1016/j.knosys.2016.02.017.

[22] L. Bing, K.C. Chan, A paralleled big data algorithmwithMapReduce framework
formining twitter data, in: Proceedings of the 4th International Conference on
Big Data and Cloud Computing, BdCloud 2014, IEEE Computer Society, Sydney,
Australia, 2014, pp. 121–128.

[23] C. Hu, J. Zhao, X. Yan, D. Zeng, S. Guo, A MapReduce based parallel niche
genetic algorithm for contaminant source identification in water distribution
network, Ad Hoc Netw. 35 (2015) 116–126. http://dx.doi.org/10.1016/j.adhoc.
2015.07.011. Special Issue on Big Data Inspired Data Sensing, Processing and
Networking Technologies, http://www.sciencedirect.com/science/article/pii/
S1570870515001468.

[24] R.M. Esteves, C. Rong, Using mahout for clustering wikipedia’s latest ar-
ticles: A comparison between K-means and fuzzy C-means in the cloud,
in: Proceedings of the IEEE 3rd International Conference on Cloud Computing
Technology and Science, CloudCom 2011, IEEE Computer Society, Athens,
Greece, 2011, pp. 565–569.

[25] J. Huang, H. Zhao, J. Zhang, Detecting flu transmission by social sensor in China,
in: Proceedings of the 2013 IEEE International Conference on Green Comput-
ing and Communications and IEEE Internet of Things and IEEE Cyber, Physical
and Social Computing, GREENCOM-ITHINGS-CPSCOM 2013, IEEE Computer
Society, Beijing, China, 2013, pp. 1242–1247.

[26] H. Achrekar, A. Gandhe, R. Lazarus, S.-H. Yu, B. Liu, Predicting flu trends using
twitter data, in: Proceedings of the 1st International Workshop on Cyber-
Physical Networking Systems, IEEE Press, Shanghai, China, 2011, pp. 702–707.

[27] L. Jiang, S. Wang, C. Li, L. Zhang, Structure extended multinomial naive bayes,
Inf. Sci. 329 (C) (2016) 346–356. http://dx.doi.org/10.1016/j.ins.2015.09.037.

Meisong Wang holds a Masters in Philosophy (M.Phil.)
from the Faculty of Engineering and Computer Science,
Australian National University. His research interests are
in Big Data, Cloud Computing, and the Internet of Things.

Prem Prakash Jayaraman is currently a Research Fellow
at Swinburne University of Technology, Melbourne. His
research areas of interest include, Internet of Things, cloud
computing, mobile computing, sensor network middle-
ware and semantic internet of things. He has authored/co-
authored more than 50 research papers in international
Journals and conferences such as IEEE Trans. on Cloud
Computing, IEEE Selected areas in Communication, Jour-
nal of Computational Science, IEEE Transactions on Emerg-
ing Topics in Computing, Future Generation Computing
Systems, Springer Computing, ACM Ubiquity Magazine,

IEEE Magazine. He is one of the key contributors of the Open Source Internet of
Things project OpenIoT that has won the prestigious Black Duck Rookie of the Year
Award in 2013. He has been the recipient of several awards including hackathon
challenges at the 4th International Conference on IoT (2014) at MIT media lab,
Cambridge, MA and IoT Week 2014 in London and best paper award at HICSS
2016/2017 and IEA/AIE-2010. Previously he was a Postdoctoral Research Fellow at
CSIRO Digital Productivity Flagship, Australia from 2012 to 2015.

Ellis Solaiman is a Lecturer at the School of Computing,
Newcastle University. He previously received his Ph.D.
in Computing Science also from Newcastle University,
where he subsequently worked as a Research Associate
and Teaching Fellow. His research interests are mainly
in the areas of Dependability and Trust in Distributed
Systems such as the Cloud and the Internet of Things. He
is also interested in the automated monitoring of these
systems using technologies such as Smart Contracts. He
is a Fellow of the UK Higher Education Academy (FHEA)
since 2016.

Lydia Y. Chen is a performance analyst at the Energy
Management group of IBM Zurich Research Lab. She holds
a Ph.D. in Operations Research and Industrial Engineer-
ing from Penn State University. She completed her un-
dergraduate studies at National Taiwan University and
British Columbia University. Her main research interests
are in the areas of performance evaluation, power and
workloadmanagement, big data and cloud computing and
architecture-aware parallel algorithms.

Zheng Li received his Ph.D. degree and M.E. by Research
degree from the Australian National University (ANU) and
the University of New South Wales (UNSW) respectively.
During the same time, he was a graduate researcher
with the Software Systems Research Group (SSRG) at Na-
tional ICT Australia (NICTA). Before studying abroad, he
had around four-year industrial experience in China af-
ter receiving his M.Sc.Eng. degree from the Beijing Uni-
versity of Chemical Technology and the B.Eng. degree
from the Zhengzhou University. His research interests in-
clude Cloud computing, performance engineering, empir-

ical software engineering, software cost/effort estimation, andWeb service compo-
sition. Jun Song received the Bachelor’s and Master’s degrees

from the China University of Geosciences, Wuhan, China,
and the Ph.D. degree from Wuhan University, all in
computer science. He is currently an associate professor
of computer science with the China University of Geo-
sciences. His area of specialization is cryptography appli-
cation and information security, and his current research
interests include security analysis of cryptography appli-
cation inwireless networks, applied network security, and
cryptography security for big data.

http://refhub.elsevier.com/S0167-739X(17)31593-5/sb8
http://refhub.elsevier.com/S0167-739X(17)31593-5/sb8
http://refhub.elsevier.com/S0167-739X(17)31593-5/sb8
http://refhub.elsevier.com/S0167-739X(17)31593-5/sb8
http://refhub.elsevier.com/S0167-739X(17)31593-5/sb8
http://refhub.elsevier.com/S0167-739X(17)31593-5/sb8
http://refhub.elsevier.com/S0167-739X(17)31593-5/sb8
http://refhub.elsevier.com/S0167-739X(17)31593-5/sb9
http://refhub.elsevier.com/S0167-739X(17)31593-5/sb9
http://refhub.elsevier.com/S0167-739X(17)31593-5/sb9
http://refhub.elsevier.com/S0167-739X(17)31593-5/sb9
http://refhub.elsevier.com/S0167-739X(17)31593-5/sb9
http://refhub.elsevier.com/S0167-739X(17)31593-5/sb10
http://refhub.elsevier.com/S0167-739X(17)31593-5/sb10
http://refhub.elsevier.com/S0167-739X(17)31593-5/sb10
http://refhub.elsevier.com/S0167-739X(17)31593-5/sb10
http://refhub.elsevier.com/S0167-739X(17)31593-5/sb10
http://refhub.elsevier.com/S0167-739X(17)31593-5/sb10
http://refhub.elsevier.com/S0167-739X(17)31593-5/sb10
http://refhub.elsevier.com/S0167-739X(17)31593-5/sb11
http://refhub.elsevier.com/S0167-739X(17)31593-5/sb11
http://refhub.elsevier.com/S0167-739X(17)31593-5/sb11
http://refhub.elsevier.com/S0167-739X(17)31593-5/sb11
http://refhub.elsevier.com/S0167-739X(17)31593-5/sb11
http://refhub.elsevier.com/S0167-739X(17)31593-5/sb11
http://refhub.elsevier.com/S0167-739X(17)31593-5/sb11
http://refhub.elsevier.com/S0167-739X(17)31593-5/sb11
http://refhub.elsevier.com/S0167-739X(17)31593-5/sb11
http://refhub.elsevier.com/S0167-739X(17)31593-5/sb12
http://refhub.elsevier.com/S0167-739X(17)31593-5/sb12
http://refhub.elsevier.com/S0167-739X(17)31593-5/sb12
http://refhub.elsevier.com/S0167-739X(17)31593-5/sb12
http://refhub.elsevier.com/S0167-739X(17)31593-5/sb12
http://refhub.elsevier.com/S0167-739X(17)31593-5/sb12
http://refhub.elsevier.com/S0167-739X(17)31593-5/sb12
http://refhub.elsevier.com/S0167-739X(17)31593-5/sb13
http://refhub.elsevier.com/S0167-739X(17)31593-5/sb13
http://refhub.elsevier.com/S0167-739X(17)31593-5/sb13
http://refhub.elsevier.com/S0167-739X(17)31593-5/sb13
http://refhub.elsevier.com/S0167-739X(17)31593-5/sb13
http://refhub.elsevier.com/S0167-739X(17)31593-5/sb13
http://refhub.elsevier.com/S0167-739X(17)31593-5/sb13
http://refhub.elsevier.com/S0167-739X(17)31593-5/sb14
http://refhub.elsevier.com/S0167-739X(17)31593-5/sb14
http://refhub.elsevier.com/S0167-739X(17)31593-5/sb14
http://refhub.elsevier.com/S0167-739X(17)31593-5/sb14
http://refhub.elsevier.com/S0167-739X(17)31593-5/sb14
http://refhub.elsevier.com/S0167-739X(17)31593-5/sb15
http://refhub.elsevier.com/S0167-739X(17)31593-5/sb15
http://refhub.elsevier.com/S0167-739X(17)31593-5/sb15
http://refhub.elsevier.com/S0167-739X(17)31593-5/sb15
http://refhub.elsevier.com/S0167-739X(17)31593-5/sb15
http://refhub.elsevier.com/S0167-739X(17)31593-5/sb15
http://refhub.elsevier.com/S0167-739X(17)31593-5/sb15
http://refhub.elsevier.com/S0167-739X(17)31593-5/sb16
http://refhub.elsevier.com/S0167-739X(17)31593-5/sb16
http://refhub.elsevier.com/S0167-739X(17)31593-5/sb16
http://refhub.elsevier.com/S0167-739X(17)31593-5/sb16
http://refhub.elsevier.com/S0167-739X(17)31593-5/sb16
http://refhub.elsevier.com/S0167-739X(17)31593-5/sb16
http://refhub.elsevier.com/S0167-739X(17)31593-5/sb16
http://refhub.elsevier.com/S0167-739X(17)31593-5/sb18
http://refhub.elsevier.com/S0167-739X(17)31593-5/sb18
http://refhub.elsevier.com/S0167-739X(17)31593-5/sb18
http://refhub.elsevier.com/S0167-739X(17)31593-5/sb18
http://refhub.elsevier.com/S0167-739X(17)31593-5/sb18
http://refhub.elsevier.com/S0167-739X(17)31593-5/sb19
http://refhub.elsevier.com/S0167-739X(17)31593-5/sb19
http://refhub.elsevier.com/S0167-739X(17)31593-5/sb19
http://refhub.elsevier.com/S0167-739X(17)31593-5/sb19
http://refhub.elsevier.com/S0167-739X(17)31593-5/sb19
http://refhub.elsevier.com/S0167-739X(17)31593-5/sb19
http://refhub.elsevier.com/S0167-739X(17)31593-5/sb19
http://refhub.elsevier.com/S0167-739X(17)31593-5/sb20
http://refhub.elsevier.com/S0167-739X(17)31593-5/sb20
http://refhub.elsevier.com/S0167-739X(17)31593-5/sb20
http://refhub.elsevier.com/S0167-739X(17)31593-5/sb20
http://refhub.elsevier.com/S0167-739X(17)31593-5/sb20
http://refhub.elsevier.com/S0167-739X(17)31593-5/sb20
http://refhub.elsevier.com/S0167-739X(17)31593-5/sb20
http://dx.doi.org/10.1016/j.knosys.2016.02.017
http://dx.doi.org/10.1016/j.knosys.2016.02.017
http://dx.doi.org/10.1016/j.knosys.2016.02.017
http://refhub.elsevier.com/S0167-739X(17)31593-5/sb22
http://refhub.elsevier.com/S0167-739X(17)31593-5/sb22
http://refhub.elsevier.com/S0167-739X(17)31593-5/sb22
http://refhub.elsevier.com/S0167-739X(17)31593-5/sb22
http://refhub.elsevier.com/S0167-739X(17)31593-5/sb22
http://refhub.elsevier.com/S0167-739X(17)31593-5/sb22
http://refhub.elsevier.com/S0167-739X(17)31593-5/sb22
http://dx.doi.org/10.1016/j.adhoc.2015.07.011
http://dx.doi.org/10.1016/j.adhoc.2015.07.011
http://dx.doi.org/10.1016/j.adhoc.2015.07.011
http://www.sciencedirect.com/science/article/pii/S1570870515001468
http://www.sciencedirect.com/science/article/pii/S1570870515001468
http://www.sciencedirect.com/science/article/pii/S1570870515001468
http://refhub.elsevier.com/S0167-739X(17)31593-5/sb24
http://refhub.elsevier.com/S0167-739X(17)31593-5/sb24
http://refhub.elsevier.com/S0167-739X(17)31593-5/sb24
http://refhub.elsevier.com/S0167-739X(17)31593-5/sb24
http://refhub.elsevier.com/S0167-739X(17)31593-5/sb24
http://refhub.elsevier.com/S0167-739X(17)31593-5/sb24
http://refhub.elsevier.com/S0167-739X(17)31593-5/sb24
http://refhub.elsevier.com/S0167-739X(17)31593-5/sb24
http://refhub.elsevier.com/S0167-739X(17)31593-5/sb24
http://refhub.elsevier.com/S0167-739X(17)31593-5/sb25
http://refhub.elsevier.com/S0167-739X(17)31593-5/sb25
http://refhub.elsevier.com/S0167-739X(17)31593-5/sb25
http://refhub.elsevier.com/S0167-739X(17)31593-5/sb25
http://refhub.elsevier.com/S0167-739X(17)31593-5/sb25
http://refhub.elsevier.com/S0167-739X(17)31593-5/sb25
http://refhub.elsevier.com/S0167-739X(17)31593-5/sb25
http://refhub.elsevier.com/S0167-739X(17)31593-5/sb25
http://refhub.elsevier.com/S0167-739X(17)31593-5/sb25
http://refhub.elsevier.com/S0167-739X(17)31593-5/sb26
http://refhub.elsevier.com/S0167-739X(17)31593-5/sb26
http://refhub.elsevier.com/S0167-739X(17)31593-5/sb26
http://refhub.elsevier.com/S0167-739X(17)31593-5/sb26
http://refhub.elsevier.com/S0167-739X(17)31593-5/sb26
http://dx.doi.org/10.1016/j.ins.2015.09.037


590 M. Wang et al. / Future Generation Computer Systems 87 (2018) 580–590

Dimitrios Georgakopoulos is a Prof. in Computer Science
and Director of the Key Lab for IoT at Swinburne Uni-
versity of Technology, Melbourne, Australia. Before that
was Research Director at CSIRO’s ICT Centre and Executive
Director of the Information Engineering Laboratory, which
was the largest Computer Science program in Australia.
Before CSIRO, he held research and management posi-
tions in several industrial laboratories in the US, including
Telcordia Technologies (where he helped found two of
Telcordia’s Research Centers in Austin, Texas, and Poz-
nan, Poland); Microelectronics and Computer Corporation

(MCC) in Austin, Texas; GTE (currently Verizon) Laboratories in Boston, Mas-
sachusetts; and Bell Communications Research in Piscataway, New Jersey. He was
also a full Professor at RMIT University, and he is currently an Adjunct Prof. at the
Australian National University and a CSIRO Adjunct Fellow. Prof. Georgakopoulos
has produced 170+ journal and conference publications in the areas of IoT, process
management, and data management, and has 10,500+ lifetime citations.

Rajiv Ranjan is an Associate Professor (Reader) in Com-
puting Science at Newcastle University, United Kingdom.
Prior to that, he was a Senior Research and Julius Fellow
at CSIRO, Canberra, where he was working on projects
related to Cloud and big data computing. He has been con-
ducting leading research in the area of Cloud and big data
computing developing techniques for: (i) Quality of Ser-
vice basedmanagement and processing ofmultimedia and
big data analytics applications across multiple âĂĺ Cloud
data centers (e.g., CSIRO Cloud, Amazon and GoGrid); and
(ii) automated decision support for migrating applications

to data centers. He has published about 110 papers that include 60+ journal
papers. He serves on the editorial board of IEEE Transactions on Computers, IEEE
Transactions on Cloud Computing, IEEE Cloud Computing, and Future Generation
Computer System Journals. He is one of the highly cited authors (top 0.09%) in
computer science and software engineering worldwide (h-index=43, g-index=94,
and 10,050+ google scholar citations).


	A multi-layered performance analysis for cloud-based topic detection and tracking in Big Data applications
	Introduction
	Motivation and research problem
	Overview of methods and contributions

	Related work
	Multi-layered performance model for CTDT Big Data applications
	Background
	Metrics influencing the performance of CTDT applications
	CTDT Big Data applications: Performance analysis framework

	Using the multi-layered performance analysis framework to understand MapReduce-based TDT applications
	MapReduce based TDT application architecture
	Modelling of the disease detection system
	IaaS layer analysis factors
	PaaS layer analysis factors
	SaaS layer analysis factors

	Dependency across layers

	Experimentation and evaluation
	Experimental environment
	Experimental results
	IaaS experiment (number of VCPU cores)
	PaaS experiment (number of mappers and reducers)
	SaaS experiment

	Evaluation summary

	Conclusions and future work
	Acknowledgement
	References


