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Employing  cloud  computing  to  acquire  the  benefit  of  cloud  by optimizing  various  parameters  that  meet
changing  demands  is  a  challenging  task.  The  optimal  mapping  of tasks to  virtual  machines  (VMs)  and
VMs  to  physical  machines  (PMs)  (known  as  VM placement)  problem  are  necessary  for  advancing  energy
consumption  and  resource  utilization.  High  heterogeneity  of  tasks  as well  as  resources,  great  dynamism
and virtualization  make  the consolidation  issue  more  complicated  in  the  cloud  computing  system.  In this
paper,  a complete  mapping  (i.e., task  VM and  VM  to  PM)  algorithm  is  proposed.  The  tasks  are  classified
loud computing
nergy consumption
M consolidation
ask scheduling

according  to  their  resource  requirement  and  then  searching  for the  appropriate  VM  and  again  searching
for  the  appropriate  PM where  the  selected  VM can be deployed.  The  proposed  algorithm  reduces  the
energy  consumption  by depreciating  the  number  of  active  PMs,  while  also  minimizes  the  makespan  and
task  rejection  rate.  We  have  evaluated  our  proposed  approach  in CloudSim  simulator,  and  the results

ness
akespan demonstrate  the  effective

. Introduction

Cloud is an emerging multi-disciplinary research area with the
im of analyzing the vast amount of data and user requests to
xtract actionable information. Cloud computing has become the
uitable platform for big data processing due to its on-demand
lasticity or flexibility, extremely low-latency and massively par-
llel processing architecture [1]. Almost all IT-industries needs the
ssistance from the flexible cloud-computing platforms, supported
y millions of physical hosts and devices spread in more number
f data centers. Cloud computing system is underpinned by virtu-
lization technology that virtualizes the physical cloud resources.
he virtual cloud environment increases the throughput as well as
calability of the system. The virtual resources in the cloud system
re known as virtual machines (VMs). These VMs  are mapped to

ifferent user requests for the execution of input tasks. Resource
anagement becomes even more complex when resources are

versubscribed, and the cloud users are not cooperative. To han-
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 of  the  proposed  algorithm  over  some  existing  standard  algorithms.
© 2018  Published  by Elsevier  Inc.

dle these situations, the cloud service provider (CSP) has to follow
a proper scheduling mechanism to delivered services. The negotia-
tion between the CSP and the user is technically termed as service
level agreement (SLA). The SLA is a part of quality of service (QoS).
We use PM and host interchangeably in the rest of the paper.

A large number of advances achieved in developing energy-
efficient servers and networking devices. Up to 20% of energy
conservation can be achieved through data centers which save up
to 30% on cooling energy requirements additionally [2]. A standard
cloud deployment consumes a significant amount of energy, and
in turn, increases carbon dioxide (CO2) level indirectly. The energy
issue is a big challenge, and therefore, many cloud providers have
focused on conserving energy by advancing energy-efficient tech-
niques and protocols [3]. The cloud computing is expressed as an
inherently energy-efficient platform due to the scalable view of its
resources and multitenant ability [4]. Low-quality VM placement
in data centers leads to the massive energy consumption [5–7].

The allocation of service requests to a set of virtual machines
running on different hosts while achieving the terms and condi-
tions stated in the SLAs and without degrading the QoS is referred

to as the service allocation problem [8–10]. In this paper, we  con-
centrate on the problem of adaptively allocating VMs  to physical
machines (PMs) in the data center, in the context of unpredictable
dynamic workloads. Precisely, this involves delivering decisions

https://doi.org/10.1016/j.suscom.2018.01.002
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uch as when to allocate VMs, which VMs  to relocate; which VMs
re assigned to which PMs, which PMs  can be turned off. The VMs
re clustered according to their type of resources, and then the clus-
ering output is used for the decision of customized VM instances.
hese decisions can be made with the objective of saving energy
onsumption of the system by changing the state of idle PMs  to
isable. Our proposed solution reduces the resource wastage in the
loud system with the help of virtualization technique and efficient
llocation policies. We  have established various sub-types of VM
ccording to their resource capability. The total input load of the
ata center is the finite number of tasks where each task involves
ith several VMs  for execution. In this work, our aim is to assign

n input task to the existing VM otherwise create VM according to
he task and assigned the newly created VM to an active host.

The major contributions of this work are as follows:

Heterogeneous cloud resources and the input tasks of a cloud
system are modeled, and an energy-aware resource allocation
platform is introduced to optimize the energy consumption of
cloud data centers.
Propose a task-based VM-placement algorithm (ETVMC) to
reduce the energy consumption, minimize the makespan of the
system, and reduce the task rejection rate.
An experimental evaluation to validate the proposed solution
utilizing the CloudSim as simulation framework.

The remaining of the paper is prepared as follows. Section 2
utlines an overview of some related work; Section 3 reviews the
roblem statement; Section 4 describes the cloud system model
nd architecture. Section 5 presents the proposed energy model
or the consolidation problem. Section 6 illustrates our proposed
ork to optimize various parameters in a heterogeneous comput-

ng environment. Section 7, presents simulation results and shows
he effectiveness of our algorithm compared to existing standard
lgorithms. Section 8, concludes the work.

. Related work

Various algorithms have previously been introduced point-
ng to the scheduling issue in the cloud computing environment.
esearchers and companies have done lots of research on this prob-

em to gain a relationship between energy consumption and system
erformance. From an extensive study, we have recognized two
istinguishing issues to optimize the energy consumption of the
loud system. Firstly, the allocation of tasks to the appropriate VMs
8,9,11,12]. Secondly, the VM placement in the cloud [9,13–15].
he literature expressed two distinctive models for the schedul-
ng of tasks. Those are Bag of Task (BoT) [16,17], and Direct Acyclic
raph (DAG) [18]. All BoT-based applications are independent par-
llel task [19]. The DAG-based applications are organized as graph
here nodes (tasks) are connected by edges. In the graph, the node
eight denotes resource requirements and edge weight denotes

equested file size. The VM selection for a specific task is based on
a) the specified SLA (e.g., cost constraint), (b) the CSP to enhance
rofit, (c) other objectives like makespan minimization, throughput
aximization, energy optimization, etc.
A bi-criteria scheduling approach has been proposed to sched-

le DAG-based applications in the cloud to optimize running time
nd cost [18]. Their experimental result shows that their proposed
cheduler is superior to an approach called join the shortest queue
20]. Their proposed work does not guarantee the optimal resource

tilization. Achar et al. [17] have proposed a scheduling algorithm
or BoT-based applications. Initially, they set some priorities to the
asks and VMs, and after that they clustered tasks as well as VMs.
hen, their approach selects an appropriate VM cluster for a specific
ormatics and Systems 20 (2018) 48–55 49

task cluster They have compared their algorithm with first
come first serve which shows high resource utilization with low
makespan.

The VM placement approaches can be static [21] or dynamic
[13,22–25]. In static approach, the allocation is not changed after
the decision once made. But, in dynamic approach, the alloca-
tion of VM to a physical machine (PM) may  change at the time
of execution. The information regarding the actual load is used in
dynamic approach while the information is not available to static
approach. The dynamic approach is more relevant in this work.
Various allocation decisions of VM to PM, based on dynamic VM
placement techniques have been proposed to save energy con-
sumption [23,26]. In this paper, we  have tried to increase the profit
of the service providers by the optimal allocation of VM to PM as
well as the task to VM that take into account the energy usage is
minimum.

Mosa and Paton [25] have proposed a dynamic genetic algo-
rithm based VM placement approach to optimize the energy usage
along with fewer SLA violation rate. They have considered CPU
time as the resource to represent the utility function. The load
of a VM is the CPU time requirement of all the tasks assigned
to that VM.  According to the load of the VM,  the migration will
be performed. Arianyan et al. [27] have focused on consolidation
problem to enhance resource utilization and efficiency to cause
energy conversion in cloud data centers. They have proposed new
resource management technique according to three parameters:
energy consumption, live migration, and SLA violation. They split
the whole problem into two  sub-problems. Firstly, obtain the over-
loaded hosts, and secondly, find a suitable VM for migration by
using multi-criteria decision-making techniques.

A solution for the consolidation of VMs  based on Bernoulli tri-
als has been presented by Carlo et al. [28]. The solutions have two
principal characteristics that include a self-organizing and adap-
tive method that makes it efficient for handling the large data
centers. By using Bernoulli trials and local information, the server
determines the possibility of the execution applications. One of the
best advantages of the solution is the balancing of CPU-bound and
memory-bound applications. Vakilinia et al. [29] have proposed a
VM placement platform to minimize the power consumption of
the data center. In that, one scheduler works on expected load and
another on unpredictable load.

A novel taxonomy for the resource allocation in the cloud
is presented by Hameed et al. [9]. They have identified various
open research challenges correlated with energy efficient alloca-
tion resources in a data center. The scheduling problem of scientific
workflows in the cloud system is addressed by Casas et al. [8] and
employed a genetic-based algorithm. The scheduler optimized the
makespan and monetary cost of the system for computational and
data-intensive scientific tasks [8]. An entropy-based VM placement
algorithm is proposed by Chen et al. [13] to reduce the energy and
thermal cost, also minimizes the number of hot spots in the sys-
tem. Their algorithm consolidates with Dynamic Voltage Frequency
Scaling (DVFS) to optimize the energy consumption of the system.

From this related work, we remark that most schedulers gen-
erate scheduling plans based on a fixed number of resources (e.g.,
VMs). Some schedulers are designed for a BoT type application with
no dependencies between tasks. This factor prevents them from
being used in scheduling of user requests (tasks) on clouds. In order
to address the limitations of existing scheduling solutions, we  have
proposed ETVMC, an algorithm to optimize various performance
metrics. In summary, ETVMC (1) has a well-organized structure
to efficiently map  VMs, (2) enables service providers to optimize

the energy consumption and reduce task rejection rate of the sys-
tem, and (3) enables cloud users to optimize execution time and
monetary cost.
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. Problem statement

VM-placement plays an important role for efficient utilization of
nergy in cloud data center. There are m finite heterogeneous hosts
n the cloud system. Each host is in one state among the two states:
ctive or sleep state and all hosts are in sleep state initially. There are

 types of virtual machines classified based on their resources (like
rocessing speed, main memory, secondary storage, bandwidth).
imilar to the VM types, tasks are also classified so that tasks of the
ame tasks group can fit to one type of virtual machines. The task
anager has complete information about the tasks in the queue and

lso about the incoming tasks. Therefore, according to the need as
entioned by the task manager for the incoming tasks, new VMs

re created in some specific hosts. So, the appropriate assignment
f new virtual machines to some hosts is an assignment problem
nd a well known NP-complete problem. The sub-optimal solution
or the mentioned assignment problem with the aim of optimized
nergy consumption is the primary objective of this work.

. System model and architecture

In this section, we present a scheduling model for a Cloud envi-
onment that includes the host model, VM model and task model
n a Cloud data center as shown in Fig. 1. The cloud system has m
eterogeneous hosts (say set H = {Host1, Host2, . . .,  Hostm}). These
osts are heterogeneous in terms of their resource capacities. The
asks originated from the cloud users over the Internet is referred
o as service request. Users request services from the cloud service
rovider (CSP). They submit their tasks (heterogeneous in nature)
o the task queue of the cloud system. The task manager classi-
es those tasks to four different categories of tasks (CPU-intensive,
emory-intensive, I/O-intensive, and Communication-intensive)

o map  tasks to virtual machines. The tasks manager has also known
bout the types of virtual machines and also its sub-type. There are
hree types of VM:  VMType1 is fit for CPU-intensive tasks, VMType2 is
t for memory-intensive tasks, VMType3 is fit for I/O-intensive tasks,

nd VMType4 is fit for communication-intensive tasks. Within a spe-
ific VM-type, a finite set of VM-sub-type are available (where VMij
epresents jth VM of ith type). All the tasks from the three sub-
ueues are submitted to the host manager. The host manager also

Fig. 1. Cloud syst
ormatics and Systems 20 (2018) 48–55

has the complete information about the VM-type. In this system,
the host manager is responsible for the creation of VMs  (means the
creation of a specific type of VM on the top of a specific host) to
meet certain service level agreements (SLAs).

Initially, all hosts of the system are in the sleep state. The host
manager chooses a VM-type according to the task-type and creates
an appropriate VM in a host where energy and makespan to be
optimized. If any active host has sufficient resources for the creation
of required VM,  then create the VM on the top of the active host
with minimum energy consumption. On the other hand, if no active
host can provide resources for the creation of required VM,  then
the host manager goes for another host which is in the sleep state
and change its status to the active state and create the required
VM.  Here, the deadline of the task is considered as SLA. The service
delivered to the cloud users based on hard-deadline constraint. If
the SLA between the cloud user and CSP permits to wait for some
time (i.e., the time required to complete the execution of previously
assigned tasks to the target VM)  for the execution of the new task,
then the new task is in the local queue of that VM. When there are
no tasks in the local queue of a VM,  then the VM is deallocated from
the host and the resources are free. I/O-intensive task mostly waits
for the network, filesystem, and database [15].

5. Energy model

We  have considered m independent heterogeneous, uniquely
addressable computing entity (hosts) in a cloud system. We  have a
set of V = {V1, V2, . . .,  Vm}, (p × m)  heterogeneous VMs, where Vj =
{vmx

j1, vmx
j2, vmx

j3, . . .,  vmx
jpj
} and pj is the number of VMs  running

on jth host (p = p1 + p2 + · · · + pj + · · · + pm). Here, vmx
jk

is the kth VM
of jth host of x-type and x = {1, 2, 3, 4}, i.e., x = 1 means the VM is
of CPU-type, x = 2 means the VM is of memory-type, x = 3 means
the VM is of I/O-type, and x = 4 means the VM is of communication-
type. Let there be T = {t1, t2, · · ·,  tn}, n heterogeneous service requests
(tasks), where each task ti has a service length Li in terms of a million

instructions (MI).

The energy consumption by a task ti, 1 ≤ i ≤ n is represented by
Eijk, i.e., the energy consumed by ith task on jth VM of kth host. This
energy consumption is calculated by adding the energy consump-

em model.
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ion due to required data transfer (Etran
ijk

) and the energy consumed

ue to the execution of the task (Eproc
ijk

).

ijk = Etran
ijk + Eproc

ijk
(1)

he required file transfer for the ith task consumed some amount
f energy which is calculated by the product of the sum of trans-
er time of all required files with the average power consumption
or the transfer of data (Pavg). Let the power consumed by kth
ctive host is denoted as Pactivek

. Hence, the average power con-
umed by the host (Pavg) in data center can be calculated as Pavg =∑m

k=1Pactivek
).

tran
ijk =

{
h∑

l=1

Timetran(f l
ijk)

}
× Pavg (2)

he energy consumed by the execution of ith task on jth VM (x-
ype) of kth host is the product of the execution time of task (ETx

ijk)
nd the average power consumption of jth VM (x-type) of kth host,
.e., Px

jk
.

proc
ijk
= ETx

ijk × Px
jk (3)

The energy consumption of a VM is the sum of energy consump-
ion of the same type of VM on the same host by all assigned tasks
s represented as Ex

jk
, x = {1, 2, 3, 4}.

x
jk =

n∑
i=1

{
ETx

ijk × TATij

}
(4)

AT is the temporarily allocated task matrix for all the tasks on
ifferent VMs  of each host. Each host has their TAT matrix and is
epresented as follows.

ATij =
{

0, If ti is not assigned to jth VM of that host

1, If ti is assigned to jth VM of that host.
(5)

he energy consumed by a physical host is the sum of energy con-
umed by all VMs  on that host (in the active state) and the energy
onsumed by the background applications (in an idle state). The
nergy consumed by the kth host is represented as Ek and estimated
s follows.

k = Idlek × PIdlek
+

pj∑
j=1

Ex
jk (6)

ere, PIdlek
is the energy consumed by the kth host in idle state and

dlek is the amount of time the kth host is in idle state in millisecond,
hich is calculated using the following equation.

dlek = Makespan −
m∑

k=1

pj∑
j=1

n∑
i=1

ETijk (7)

he makespan of the system is the maximum amount of time
equired by a host to execute all input tasks in the system. In other
ords, the maximum amount of time a host is in active state.

akespan = max1≤k≤m

⎧⎨
⎩

pj∑
j=1

n∑
i=1

ETijk

⎫⎬
⎭ (8)

he total energy consumption of the system is the sum of energy
onsumed by all the hosts using the following equation.
 =
m∑

k=1

Ek (9)
ormatics and Systems 20 (2018) 48–55 51

The objective is to minimize the energy consumption in a data
center. This energy optimization problem in the data center with
m hosts can be presented as follows.

Minimize

{
m∑

k=1

Ek

}
(10)

6. Energy-aware Task-based Virtual Machine Consolidation
Algorithm

In this paper, we have presented the complete path to consoli-
date virtual machines to physical machines based on input task. A
task can be represented as 5-tuples i.e., ti = {Li, di, Mi, IOi, �i}. Here,
Li is the length of the ith task in terms of Million Instruction (MI). di
is the deadline of ith task in terms of second. Mi is the main memory
requirement of ith task in terms of Mb. IOi is the input/output (IO)
requirement of ith task. �i is the bandwidth requirement of ith task
in terms of Mb.

The VM consolidation algorithm is presented in Algorithm 1. A
finite number of tasks (with n number of task set, T) along with
their deadlines D, the host set H with m hosts, and the VM-types
according to their resource capabilities. This algorithm releases the
makespan of the system and total energy consumption. Makespan
is the time taken by the host to perform execution of all input tasks.
Here, the objective is to minimize this makespan value along with
the energy consumption of the cloud system.

Algorithm 1. Energy-aware Task-based Virtual Machine Consol-
idation (ETVMC)

Input: Task set: T = {t1, t2, . . .,  tn}, Deadline of task: D = {d1,  d2, . . .,  dn}, Host
set: H = {Host1, Host2, . . .,  Hostm}, VM Types: VMType = VMType1, VMType2, VMType3,
VMType4}.
Output: Makespan, Energy.
1: Update TQ ←− SortQTask(T, D) using Algorithm 2.
2:  [Qa , Qb , Qc , Qd] ←− ClassifyTasks(TQ) using Algorithm 3.
3:  for each task ti ∈ T do
4:  FreeVMs() Algorithm 4
5:  FreeHosts() Algorithm 5
6: vm ←− SelectVMType(ti , Type(ti . T)) Using Algorithm 6
7:  h ←− SelectHost(vm) Using Algorithm 7
8:  Allocate ti to vm deployed on host h.
9: end for

10: FreeVMs() Algorithm 4
11: FreeHosts() Algorithm 5

In step-1 of Algorithm 1, the sub-algorithm (Algorithm 2) is
called by providing the set of tasks and their deadlines as input.
The Algorithm 2 (SortTask) sort all the tasks in ascending order of
their deadlines. The RemoveMin function in step-2 of Algorithm 2
will remove the task with minimum deadline value from the array
of tasks and store in the queue, TQ to the step-1 of Algorithm 1. The
need of Algorithm 2 is same as building a Min-heap of the tasks
on the basis of their deadlines. The Min-heap is built based on the
deadline as key value so that task with least deadline to be removed
first.

Algorithm 2. SortQTask

Input: Task set: T = {t1, t2, . . .,  tn}, Deadline of task: D = {d1,  d2, . . .,  dn}.
Output: TQ.
1: for i = 1 to n do
2: TQ[i] ←− RemoveMin(Ti)
3: RemoveMin(Ti) will remove the task which has minimum di value.
4:  end for
5: Return TQ

The step-2 of Algorithm 1 calls the sub-algorithm (Algorithm
3) to classify all the tasks into four categories. The sorted task

queue, TQ is provided as input to the algorithm. Also the resource
requirement and parameters of tasks, RPTi along with their lower
and upper bounds are provided to the Algorithm 3. Here, RPTi = {Li,
di, Mi, IOi, �i}. CL and CU are the lower and upper bounds for the
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ength of the tasks respectively. DL and DU are the lower and upper
ounds for the deadline of the tasks respectively. ML and MU are
he lower and upper bounds for the main memory requirement
f the tasks respectively. IOL and IOU are the lower and upper
ounds for the IO requirement of the tasks respectively. BL and
U are the lower and upper bounds for the bandwidth require-
ent of the tasks respectively. The Algorithm 3 returns four task

ets: CPUintensive, Memoryintensive, IOintensive, Communicationintensive.
n step-1, the upper bound for the processing speed (UC) of the
rocessor is calculated. A loop is started from step-2 and ended
t step-14, and in ith iteration, the ith task is placed in one of the
our categories of task. Here, the value of wci

, wmi
, wioi

, w�i
are

n between 0 and 1. The summation of all these value is 1, i.e.,
ci
+ wmi

+ wioi
+ w�i

= 1. In step-6, xi is calculated and then all
ci

, wmi
, wioi

, w�i
values are updated by multiplying xi. Max is the

aximum value among those updated 4 values. Based on the Max
alue, the task category is determined.

lgorithm 3. ClassifyTasks

nput: Task set: T = {t1, t2, . . .,  tn}, Resource requirement and parameters of
asks: RPTi = {Li , Di , Mi , IOi , �i}, Range of all parameters of tasks: CPU: {CL, CU},
eadline: {DL, DU}, Main Memory: {ML, MU}, I/O: {IOL, IOU}, Bandwidth: {BL,
U}.
utput: CPUintensive , Memoryintensive , IOintensive , Communicationintensive .

1:  UC ←− CU/DU
2: for each task ti ∈ T do
3: Ci ←− Li

Di

4: wci
←− Ci

UC , wmi
←− Mi

MU

5: wioi
←− IOi

IOU , w�i
←− �i

BU

6: xi ←− 1
wci
+wmi

+wioi
+w�i

7: wci
= xi × wci

, wmi
= xi × wmi

8: wioi
= xi × wioi

, w�i
= xi × w�i

9: Max  = {wci
, wmi

, wioi
, w�i

}
0: ti ∈ CPUintensive iff wci

= Max
1: ti ∈ Memoryintensive iff wmi

= Max
2: ti ∈ IOintensive iff wioi

= Max
3: ti ∈ Communicationintensive iff w�i

= Max
4: end for
5: Return CPUintensive , Memoryintensive , IOintensive , Communicationintensive

A loop starts from the step-3 and ends at step-9 of Algorithm 1.
his loop will run for n (number of tasks) iterations. The free virtual
achines those are in the active state are transformed to sleep/off

tate and resources of those VMs  are handover to the corresponding
ost. The active host set with their VM lists are provided as input
o Algorithm 4. This algorithm updates or reduces the number of
ctive VMs  (AV) of the system. Here, a checking will be done for
ach VM to update the VM set AV.

lgorithm 4. FreeVMs()

nput: Active host set: AH = {Ah1, Ah2, . . .,  Ahk}, VM set: AV = {Av11,
v12, . . .,  Av1p , . . .,  Av21, Av22, . . .,  Av2p}.
utput: Updated AV.
:  for each active host Ahi ∈ AH do
:  for each VM Avij ∈ Ahi do
:  if Avij is idle then
:  Deallocate resources of Avij to Ahi .
:  end if
: end for
: end for

After performing FreeVMs in Algorithm 4, FreeHosts will be
one in Algorithm 5. Here also the host set (AH) with the active VM
et (AV) are provided as input. The AH set will be updated through
his algorithm. The loop from step-1 to step-5 will convert the state
f the host from active to sleep if that host is in the idle state at that

oint of time. Then, an another loop will be there from step-7 to
tep-18, and in those steps, the state of the host will be changed
ased on VM-migration. If all the virtual machines on a less loaded
ost can be migrated to other active hosts, then all the current state
ormatics and Systems 20 (2018) 48–55

VMs  are migrated to other active hosts and then the state of that
host is changed to the sleep state.

Algorithm 5. FreeHosts()

Input: Active host set: AH = {Ah1, Ah2, . . .,  Ahk}, Active VM set: AV = {Av1, Av2, . . .,  Avp}.
Output: Updated AH.
1: for each active host Ahi ∈ AH from Ahk to Ah1 do
2:  if Ahi is idle then
3:  Transform the host Ahi from idle state to sleep state.
4: end if
5: end for
6: VMStatus = 0
7: for each active host Ahi ∈ AH from Ahk to Ah1 do
8:  for each VM Avij ∈ Ahi do
9: if Migration of Avij to AH − Ahi then

10:  VMStatus = VMStatus + 1.
11:  Migrij←− targeted host ID
12: end if
13: end for
14: if VMStatus == j − 1 then
15: Migrate all VMs  using Migrij

16: Transform the host Ahi from idle state to sleep state.
17: end if
18: end for

The step-6 of Algorithm 1 will choose an appropriate VM-
type based on the task type and the resource requirement of
the task. The task along with the task type (or queue type of
the task) is passed as input to the Algorithm 6. We  have con-
sidered four types of VM:  VMType1, VMType2, VMType3, VMType4 for
CPUintensive, Memoryintensive, IOintensive, Communicationintensive. These
VM-types are provided as input to Algorithm 5 along with their
sub-types. There are k number of VM sub-types within one VM-
type for one type of tasks. The VM-types within a type (VMType1)
are in ascending of their resource capacity (RC). It means that
RC(VMType11) ≤ RC(VMType12) ≤ · · · ≤ RC(VMType1k). This property is
following by all VM-type sets. For example, if the required resource
of a task is not available in VMType11, then the checking procedure is
forwarded to VMType12 and if the resource requirement of the task
is matched with the VMType12 resource, then the algorithm stops
there and return VMType12. This is the way  to choose a VM-type for
all four types of tasks.

Algorithm 6. SelectVMType()

Input: task t, task type TT,  VMType = {VMType1, VMType2, VMType3, VMType4},
VM sub-types: VMType1 = {VMType11, VMType12, . . .,  VMType1k},
VMType2 = {VMType21, VMType22, . . .,  VMType2k}, VMType3 = {VMType31,
VMType32, . . .,  VMType3k}, VMType4 = {VMType41, VMType42, . . .,  VMType4k}.
Output: VMType
1: All VM sub-types are sorted within VMType .
2:  for each VM sub-type VMTypeTTi ∈ VMTypeTT do
3:  if t is fit in VMTypeTTi then
4: VMType ←− VMTypeTTi

5: Return VMType and Stop.
6:  end if
7: end for

The step-7 of Algorithm 1 perform the selection of best-matched
host according to the VM-type. The type of VM found in step-
6 is passed to the Algorithm 7 (SelectHost) along with the active
state host set (AH = {Ah1, Ah2, . . .,  Ahk}) and sleep state host set
(SH = {Sh1, Sh2, · · ·,  Shr}). Here, the RC(Ah1) ≤ RC(Ah2) ≤ · · · ≤ RC(Ahk),
and RC(Sh1) ≤ RC(Sh2) ≤ · · · ≤ RC(Shr), and the total host m = k + r.
This Algoritm-7 returns the host where the new VM is deployed. A
loop from step-1 to step-6 of Algorithm 7 searches the active state
host where the specified VM can deploy. If there is no active state
host where the VM can create, then searching for the sleep state

host in the loop from step-7 to step-13. Here, we  have proposed
two heuristic algorithms (Algorithm 6 and Algorithm 7) to select
VM type and to select host respectively. The main aim is that we
are trying to find an active state host instead of sleep state host.
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Fig. 3. Comparison of energy consumption of the system for ETVMC, EERACC,
Round-Robin and FCFS, when number of tasks is fixed and the number of VMs  is
varied.
ig. 2. Comparison of energy consumption of the system for ETVMC, EERACC,
ound-Robin and FCFS, when number of VMs  is fixed and the number of tasks is
aried.

lgorithm 7. SelectHost()

nput: VMType , Active host set: AH = {Ah1, Ah2, . . .,  Ahk}, Sleep host set:
H  = {Sh1, Sh2, . . .,  Shr}.
utput: Host

1: for each Ahi ∈ AH do
2: if VM of VMType is fit in Ahi then
3: Host ←− Ahi

4: Return Host and Stop.
5: end if
6: end for
7: for each Shi ∈ SH do
8: if VM of VMType is fit in Shi then
9:  Host ←− Shi

0: Transform state of Shi to active state.
1: Return Host and Stop.
2: end if
3: end for

. Experimental results

The experiments are carried out with the help of CloudSim 3.03
imulator. Xen is used as the virtual machine monitor (hypervisor).
he proposed Energy-aware Task-based Virtual Machine Consol-
dation (ETVMC) algorithm is implemented in Java and tested on

 Dell workstation with Intel i7 3.07 GHz CPU and 24 GB mem-
ry. Our simulations are performed over a set of heterogeneous
loud resources, i.e., hosts as well as VMs, and heterogeneous input
ervice requests. The resource requirement and the length of the
ervice requests are also generated randomly. In each test case, the
umber of hosts is fixed and the number of VMs  varies from 20
o 200. The resources for the VMs  are generated randomly and the
esources of all the VMs  deployed on a host is less than the resource
apacity of that host. To evaluate the efficiency of our proposed
lgorithm, we have compared the proposed ETVMC algorithm with
CFS, Round-Robin, and EERACC proposed in [29] algorithms in
erms of energy consumption of the system.

To evaluate the performance, we have compared the aggregate
alues for the energy consumption of all VMs  with the energy con-
umption values estimated for the whole server one by one. There
re 10 different numbers of runs of all the algorithms for a specific
et of input tasks in the simulation to avoid transient anomalies.

e  have considered four ranges of the task length (input file size
f the task) for one set of input task. The ranges are [3000–5000],
6000–8000], [8000–9500], and [9500–11,000]. Each input task set
as 25% of tasks from one range of task length.
The results as presented in Figs. 2–7 demonstrate that ETVMC
lgorithm performs better than all existing compared algorithms.
he proposed algorithm gives better average energy consumption
han FCFS, Round-Robin, and EERACC algorithms. The energy con-
Fig. 4. Comparison of makespan of the system for ETVMC, EERACC, Round-Robin
and FCFS, when number of VMs  is fixed and the number of tasks is varied.

sumption of the system increases linearly for all approaches as
shown in Figs. 2 and 3. The bar-graphs show a small gap between
energy consumption of all the algorithms when the number of tasks
or VMs  is less whereas they show a big difference when the number
of tasks or VMs  increases.

The makespan of the system for the proposed algorithm is worst
among all other compared algorithms when the number of input
tasks is less. This is because ETVMC algorithm always trying to use
less number of hosts and those hosts should use maximally. But
in general, the number of input tasks to a cloud system is much
more and during those cases, ETVMC algorithm gives satisfactory
makespan value as shown in Fig. 4. The number of tasks is fixed to
300 and for this case, the proposed algorithm does not perform well
as shown in Fig. 5. But, for the less number of VMs, ETVMC gives
satisfactory makespan value. Therefore, for the case of a large num-
ber of tasks and less number of available resources, our proposed
algorithm have a better makespan as compared to others.

The task rejection rate is the rate of tasks rejected by the system.
The task rejection rate is related to the load of each VM.  Because,
when the load of individual VM is more, the rate of task rejection
rate also increases. The rejection rate also measures the system
scalability. The task rejection rate is inversely proportional to the
scalability features. It means if the rejection rate is more, the system
is less scalable, and vice-versa. Fig. 6 shows the task rejection rate
for all four algorithms including our proposed one when the num-

ber of task varies and the number of VMs  is fixed. Fig. 7 shows the
task rejection rate for all the algorithms when the number of VM
varies and the number of task is fixed. From the simulation results,
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Fig. 5. Comparison of makespan of the system for ETVMC, EERACC, Round-Robin
and FCFS, when number of tasks is fixed and the number of VMs is varied.

Fig. 6. Comparison of task rejection rate of the system for ETVMC, EERACC, Round-
Robin and FCFS, when number of VMs  is fixed and the number of tasks is varied.
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ig. 7. Comparison of task rejection rate of the system for ETVMC, EERACC, Round-
obin and FCFS, when number of tasks is fixed and the number of VMs is varied.

e remark that the proposed algorithm ETVMC perform superior
s compared to FCFS, Round-Robin, and EERACC algorithms.

. Conclusion

We  have presented a task-based VM-placement algorithm
ETVMC) by introducing heterogeneous tasks, VMs, and hosts

n the cloud system. The goal is to efficiently allocate tasks to
Ms  and then VMs  to hosts so that the allocation minimizes
nergy consumption, makespan, and task rejection rate. Its solu-
ion performance is compared to FCFS, Round-Robin, and EERACC

[

ormatics and Systems 20 (2018) 48–55

[29] algorithms. We  have got results for systems where resource
requirements of service requests may  vary dynamically during
their service time. The simulation results show that ETVMC is pre-
ferred to those algorithms.
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