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Emerging availability (and varying complexity and types) of Internet of 
Things devices, along with the large data volumes that such devices 
(can potentially) generate, can have a significant impact on our lives, 
fueling the development of critical next-generation services and 
applications in a variety of application domains (e.g., health care, smart 
grids, finance, disaster management, agriculture, transportation, and 
water management). Deep learning technology, which has been used 
successfully in computer vision and language modeling, is finding 
application in new domains driven by the availability of diverse and large 
datasets. One such example is the advances in medical diagnostics and 
prediction that use deep learning technology to improve human health. 
However, timely and reliable transfer of large data streams (a requirement 
of deep learning technologies for achieving high accuracy) to centralized 
locations, such as cloud datacenter environments, is being seen as a key 
limitation of expanding the application horizons of such technologies. 
To this end, various paradigms, including osmotic computing, have been 

proposed that promote distribution of data analysis tasks across cloud and edge computing 
environments. However, these existing paradigms fail to provide a detailed account of how 
technologies such as deep learning can be orchestrated and take advantage of the cloud, 
edge, and mobile edge environments in a holistic manner. This Blue Skies piece analyzes 
the research challenges involved with developing a class of holistic distributed deep 
learning algorithms that are resource and data aware and are able to account for underlying 
heterogeneous data models, resource (cloud vs. edge vs. mobile edge) models, and data 
availability while executing—trading accuracy for execution time, etc.

ADVANCES in hybrid high-end computing—
processing capabilities offered by a combination of 
central processing unit (CPU) and graphics pro-
cessing unit (GPU)—and cloud computing have 
fueled the deployment and adoption of machine 
learning technology that powers many aspects of 

modern society, from social media to recommen-
dation systems on websites.1,2 Deep learning is one 
such branch of machine learning that “achieves 
great power and flexibility by learning to represent 
the knowledge as nested hierarchy of concepts, with 
each concept defined in relation to simpler concepts, 
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and more abstract representations computed in 
terms of less abstract ones.”3

Traditionally, deep learning has successfully 
been used in many application domains, includ-
ing computer vision (e.g., facial recognition) and 
language modeling (e.g., speech recognition), and 
medical image analysis. However, these complex 
and well-engineered approaches required substan-
tial effort in selecting handcrafted features.4 The 
recent advent of technologies such as the Inter-
net of Things (IoT), high-speed communication, 
and mobile devices with the capability of run-
ning machine learning frameworks (e.g., the Apple 
iPhone Core Machine Learning [Core ML] toolkit) 
has dramatically increased the availability of differ-
ent types of medical data. These include electronic 
health records (EHRs), imaging (e.g., x-ray and 
ultrasound), sensor data (including that from wear-
able devices), text data (e.g., doctors’ scripts), social 
media, blogs, online surveys, and traditional reposi-
tories. Increased access to such biomedical data 
underpinned by advances in deep learning technolo-
gies (such as the new Inception v3 model based on 
GoogLeNet) has renewed interest in deep learning 
in the world of biomedicine by providing solutions 
and helping researchers analyze medical data to 
understand, treat, and predict diseases.4,5

Deep-learning-based applications (applications 
that have been developed using deep learning tech-
nologies) have been highly reliant on the availability 
of hybrid high-end machines with an array of GPUs. 
Cloud computing has played an important role by 
providing the necessary high-end processing capabil-
ities on demand to support the growing array of deep-
learning-based applications. Moreover, though deep 
learning technologies have been proven to produce 
higher levels of accuracy, especially when analyzing 
medical imaging datasets, the algorithms generally 
need to be trained with significantly large amounts 
of data. For example, well-known Apple Siri and 
Google Now6 are typical examples of cloud-reliant,  
deep-learning-based applications. These cloud-only  
approaches require large amounts of data to be 
sent to the cloud over wireless networks. This not 
only places enormous stress on the wireless net-
work but—as we move into more complex applica-
tions, such as in the biomedical domain—also raises 
several security and privacy concerns (e.g., sharing 

data over public wireless networks). The approach 
to move data to the cloud to facilitate deep analysis 
is expensive and proving to be infeasible because of 
limitations in Internet bandwidth, as well as because 
of concerns pertaining to data security and privacy.

To overcome the issue imposed by a cloud-only 
architecture, distributed deep learning approaches 
have started to emerge in the literature.7,8 Some of 
these approaches take advantage of edge comput-
ing, wherein the deep learning model is distributed 
across edge and end devices. These developments 
are underpinned by advances in edge and mobile 
edge device technologies such as federated learn-
ing by Google,9 Apple’s latest Core ML toolkit that 
provides capability for Apple’s mobile devices to run 
machine learning algorithms using pretrained mod-
els, compressed versions of deep learning frame-
works such as tensor flow and caffe (with some of 
these expected to be available on mobile platforms 
soon), ARM’s improvement to its GPU platform, 
and Intel’s movidius platform.10 In parallel, there 
have been several advances in the cloud and edge 
computing area11,12 with the introduction of several 
paradigms to orchestrate cloud- and edge-based 
applications. Osmotic computing is one such para-
digm that was discussed in the recent IEEE cloud 
computing Blue Skies column.13 Though these para-
digms provide high-level architectural principles 
of developing and deploying cloud- and edge-based 
applications, they fail to provide a detailed account 
of how technologies such as deep learning can be 
orchestrated and take advantage of the cloud, edge, 
and mobile edge environments.

Springboarding on advances in cloud, edge, and 
mobile edge frameworks, coupled with developments 
in distributed deep learning, we present in this 
Blue Skies column our vision of a distributed deep 
learning approach for cloud, edge, and mobile edge 
environments. In particular, we present a detailed 
account of issues and challenges in developing and 
deploying deep-learning-based applications in an 
osmotic computing environment.13 Specifically, we 
focus on biomedical applications because of the 
intricate nature of such new types of applications. 
However, the challenges identified in this paper 
apply to a wider class of distributed deep-learning-
based applications (and with some level of abstrac-
tion, include other distributed machine learning).
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Motivation: The Case for Distributed 
Deep Learning in an Osmotic Computing 
Environment
Consider a typical biomedical application, such as 
telemedicine. Sam Robert, age 35, suddenly suffers 
from chest pain. Upon visiting his regular general 
practitioner (GP), he is prescribed an electrocar-
diogram (ECG), blood test, and x-ray. The GP also 
logs the patient’s information into his EHR. Gener-
ally, the EHR is stored locally within the clinic and 
is only shared with other clinics or hospitals upon 
return request because of concerns related to pri-
vacy. The results from various tests are in several 
forms: ECG report with corresponding data (time 
series), blood test report (key value pairs), and x-ray 
(image). Coupled with the EHR, this enables the 
GP to diagnose the issue (e.g., muscle sympathetic 
nerve activity [MSNA]),14 make further checks (e.g., 
determine body mass index [BMI] and blood pres-
sure), and recommend a treatment plan. In such 
a scenario, a deep learning model trained on x-ray 
images may accurately classify the x-ray but may fail 
to detect the MSNA problem.15 The IoT also throws 
in a new dimension in available datasets as increas-
ingly smart health devices produce data that can 
be used to understand the personal context of the 

user (e.g., sleep data from Fitbit). To realize the com-
plete potential of deep learning, such as diagnosing 
MSNA problems that may lead to heart attack, there 
is the need for a holistic approach that (1) can dis-
tribute different layers of the deep learning model, 
(2) provide integration capability to fuse output of 
one deep learning model with another, and (3) be 
able to do this in an edge, mobile edge, and cloud 
environment to manage geographical distribution 
and reduce movement of data.

A Holistic Distributed Deep Learning 
Approach in Cloud, Edge, and Mobile Edge
Figure 1 presents our vision of a holistic distributed 
deep learning (HDDL) approach that provides the 
necessary integration capability for different types 
of data stemming from a variety of sources across 
cloud, edge, and mobile edge environments. Our 
vision is to develop a usable HDDL approach that 
can be deployed and orchestrated on (1) mobile 
edge, such as mobile smartphones that can per-
form local processing of user data (e.g., sleep data 
from Fitbit); (2) edge, such as Cisco IOX routers, 
OpenFlow-based software-defined networks provid-
ing the necessary data preprocessing and local deep 
learning capability (e.g., deep learning model for 
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FIGURE 1. Vision of an HDDL approach.
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x-ray image processing); and (3) cloud, providing the 
necessary integration between various deep learning 
models and underlying heterogeneous datasets.

However, developing such an HDDL approach 
imposes several complications:

	 1.	 A key issue with deep learning is the complexity 
introduced by increasing amounts of heteroge-
neous datasets stemming from several geograph-
ically distributed data sources. As deep learning 
technologies try to learn high-level features 
from data by constructing low-level, midlevel, 
and high-level features from the underlying 
datasets, heterogeneity in the underlying datas-
ets introduces significant complexity in training 
and developing deep learning models.

	 2.	 Different terminologies have been used to express 
the same context by different deep learning  
models. For example, a patient diagnosis of 
MSNA can be identified by blood test, x-ray, and 
clinical notes made by a doctor. A designated 
domain expert can look at the clinical variables 
and find the patterns. But, it is difficult to pro-
cess these clinical data and text data when using 
a deep learning algorithm to identify patterns 
and produce predictive models for real-world 
applications.

	 3.	 If we assume each site (e.g., doctor’s clinic and 
radiologist clinic) to be an edge node, the ques-
tion is, How can a distributed deep-learning-
based application be deployed and configured 
across the edge and cloud nodes? Works that 
propose distributed deep learning approaches7,8 
consider the distribution of a centrally devel-
oped deep learning model to different locations 
across edge and cloud. For such approaches to be 
successfully, the centrally developed model will 
need to have access to an enormous amount of 
data that is distributed geographically (e.g., doc-
tor’s clinic and radiologist clinic). The challenge 
is to take advantage of the layered approach of 
deep learning and be able to dynamically gen-
erate a holistic model that can integrate inputs 
and outputs from several independently trained 
and developed deep learning approaches.

	 4.	 It is difficult to determine which deep learning 
framework is suitable for the application, because 
several deep learning frameworks (i.e., tensor 

flow, Theano, CNTK, MXnet, Chainer, Torch,  
Caffe and Keras )already exist. However, the 
harder challenge is to capture the notion of the 
semantics behind the model and data among  
the different edge nodes.

	 5.	 With access to different data sources, deep 
learning models developed by a particular insti-
tution may not be accessible by another institu-
tion. For example, the doctor’s clinic may not 
have access to the deep learning model for x-ray 
used by the radiologist clinic (because of various 
factors, including geographical distribution, pri-
vacy, and security). Hence, developing an inte-
grated, centralized deep learning model may no 
longer be feasible. Thus, it may make sense to 
share the outcomes rather than the model used 
for computation.

Challenges in Realizing the Vision of an 
HDDL Approach in an Osmotic Computing 
Environment
In the previous section, we presented our vision of 
an HDDL approach (exemplified using a biomedical 
application scenario). In this section, we elaborate 
on the challenges of realizing such a vision from 
two key perspectives: (1) an HDDL perspective and 
(2) the osmotic computing environment (i.e., cloud, 
edge, and mobile edge) perspective. These two per-
spectives introduce several diverse challenges that 
cover a range of areas, from distributed data man-
agement, semantic data representation, distributed 
deep learning, and big data to cloud, edge, and 
mobile edge resource orchestration, monitoring, and 
management.

Challenges in Developing HDDL
Many applications have been developed14,16,17 by 
using distributed deep learning. However, building 
the training model from raw datasets is a key chal-
lenge. In the medical domain, sharing patient data 
often has limitations because of technical, legal, or 
ethical concerns, and the number of patients world-
wide with a specific disease is limited.8 To overcome 
the situation, an HDDL model18 can be an alterna-
tive path for any organization to share information 
for better health outcomes (in the case of medical 
applications).
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The following challenges are involved in devel-
oping an HDDL:

•	 Semantics of the learning model and interoper-
ability. Understanding the underlying seman-
tics that help to identify the input and output 
parameters of the deep learning models is 
critical so that other models can plug in and 
out easily.8 Hence, we need an ecosystem that 
has model integration capabilities based on 
the semantic taxonomies. Clinical informa-
tion is sensitive, and organizations often do 
not want to share their information. How-
ever, sharing the outcomes of the deep learn-
ing model can address any privacy issues. The 
key here is interoperability. The interoperable 
models can save computational complexity 
and time.5,18 Such an interoperable model can 
also be configured individually to reflect orga-
nizational rules.

•	 Data volume. Deep learning is a highly compu-
tational model that connects the deep layers’ 
neural network with tons of network param-
eters required to consider and compute the 
final outcome. For that reason, a huge amount 
of data and many high-performance machines 
are needed for the model computation process 
that can find and save patterns from the input 
data. Though there is no standard guideline 
about the training dataset, it is better to con-
sider a decent volume of data. That is why deep 
learning has been successful in the domains of 
computer vision, speech recognition, and natu-
ral language processing. However, the medical 
domain is the opposite; we have approximately 
7.5 billion people worldwide, and a significant 
number of people do not have access to basic 
healthcare facilities. The number of patients is 
limited, and many institutions do not believe in 
the open data concept. As a result, it is difficult 
to fit the small number of data when developing 
a comprehensive deep learning model. More-
over, understanding diseases and their variabil-
ity is more complicated than other tasks, such 
as image and speech recognition. Consequently, 
from a big data perspective, the amount of med-
ical data that is needed to train an effective and 
robust deep learning model would be too low 

compared with other applications of deep learn-
ing (e.g., speech recognition).5,6,16

•	 Data quality. The data in the medical domain, 
and other domains, are highly heterogeneous, 
ambiguous, noisy, and incomplete. For example, 
monitoring the patient’s heart through the ECG 
machine often gives a huge number of missed 
signals that can create significant challenges 
to machine learning algorithms such as those 
used in deep learning. Because medical data 
are sensitive, it is important to understand the 
semantics of the data. However, doctors’ notes 
are not clearly explained and not publicly avail-
able; apart from that, health professional are 
reluctant to add associated metadata. So, a criti-
cal challenge is to have good metadata that can 
guide further analysis. Training a good deep 
learning model with such massive and verify 
datasets is challenging and needs to consider 
several issues, such as data sparsity, redun-
dancy, and missing values.5,18

•	 Lack of semantic ontology and expert knowledge. 
The context of expert knowledge is an invalu-
able part of any dataset. More specifically, expert 
knowledge is an important part of health care, 
because a limited amount of medical data is 
shared for research and often exhibits poor qual-
ity (e.g., incomplete data and noise). To overcome 
the shortcomings, incorporating expert knowl-
edge in distributed deep learning can significantly 
affect the accuracy of the final output.5,14 For 
example, publicly available medical encyclopedias 
(e.g., https://medlineplus.gov/encyclopedia.html), 
DBpedia (http://wiki.dbpedia.org), and PubMed 
(https://www.ncbi.nlm.nih.gov/pubmed/) should 
be analyzed to extract valuable content that can 
guide the distributed deep learning architecture. 
Furthermore, experienced health professional 
knowledge needs to be captured in a formal way 
and used to build an ontology based on the exist-
ing ontology—i.e., Cyc (http://www.opencyc.
org), Gene Ontology (http://www.geneontology. 
org), and Descriptive Ontology for Linguistic and 
Cognitive Engineering (DOLCE) (http://www.
loa.istc.cnr.it/old/DOLCE.html)—that can help 
to analyze the quality of data. However, no deep 
learning techniques have made use of the ontol-
ogy constraint between labels in classification 
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and recognition tasks or the potential semantic 
relations in features of the space of object rec-
ognition tasks. Furthermore, no deep learning 
model has addressed the problem of modeling 
high-level cognitive intelligence ability, such as 
reasoning, inferencing, or validating.

•	 Temporality. Deep learning models cannot handle 
temporality in data. For example, the 2016 thun-
derstorm flu in Melbourne, Australia, affected 
35,940 people in this year.19 Existing deep learn-
ing models cannot handle the emergence of new 
knowledge influenced by time factors. The state 
of the art of deep learning says it needs to design 
a new solution or method of deep learning that 
can handle temporal healthcare data.1,5,16

•	 Privacy. Privacy is an important feature of any sys-
tem, particularly in approaches such as distributed 
deep learning over healthcare data, which needs 
to deal with extremely private information. The 
attack on all authentication and access control 
mechanisms breaks the model and personal pri-
vacy. Preserving privacy of distributed deep learn-
ing models is challenging because of its inherent 
scale and number of possible attacks.7,10,11

Challenges in Deploying HDDL in an Osmotic 
Computing Environment
Figure 2 provides an overview of a typical osmotic 
computing environment16 that comprises a cloud, 
edge, and mobile edge ecosystem. Deep learning 
uses cascades of multiple layers of nonlinear units 
for feature extraction and transformation to be able 
to develop an HDDL approach wherein a layer could 
be an independently trained deep learning model 
whose output will be integrated by the holistic deep 
learning model (at a different layer) or could be a 
distributed part of a centrally trained deep learn-
ing model. Figure 3b provides an illustration of a 
holistic deep learning approach deployed over an 
osmotic computing environment. Next, we highlight 
challenges that are imposed by the development and 
deployment of distributed deep learning algorithms 
in an osmotic computing environment.

Deep Learning Model Performance 
Benchmarking
Figure 3a provides an abstract graph view of the 
deployed holistic deep learning approach. Each 

node in the graph is responsible for running and 
managing a particular layer of the deep learning 
model. Hence, understanding the performance of 
this model is important to provision and make deci-
sions about the types and scale of each node (e.g., 
the mobile edge, edge, and cloud). The mobile edge 
in this case could be static sensor platforms or gate-
ways or mobile smart devices such as smartphones.

Deep Learning Application Composition  
and Deployment
Consider the distributed deployment of deep learn-
ing layers as presented in Figure 3a. We take a 
graph-based illustration to exemplify the distribu-
tion of the multiple layers of the holistic deep learn-
ing model. In such a scenario, we introduce the term 
microservice, which represents each deep learning 
model that runs on the mobile edge, edge, or cloud 
node. Depending on the application, and the inputs 
and outputs of the deep learning model, one or more 
of the microservices (deployed on the nodes) could 
be used to process the data. These microservices 
would generally be selected based on their geo-
graphical distribution within the network, with the 
aim of reducing latency and bandwidth consump-
tion. Furthermore, the microservices will drive the 
resource selection and optimization problem based 
on the demands imposed by the deep learning appli-
cation and underlying data security and privacy con-
cerns. The holistic model will provide the necessary 
interoperability capability for multiple deep learning 
models residing on the nodes to work toward a com-
mon outcome.
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Holistic Data Management and Indexing
In the era of resource-constrained edge devices (IoT 
gateways) and high-velocity, high-volume, and high-
variety data, no single database approach is optimal 

for data management challenges relevant to the deep 
learning applications that need to be provisioned 
in a highly distributed osmotic computing environ-
ment. Hence, there is a need to investigate hybrid 
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big data management platforms for which different 
database architectures are optimal for managing 
disparate data sources that feed into the learning 
models. To support seamless access to data distrib-
uted across different architectures (mapped to dif-
ferent parts of the osmotic computing environment), 
an integrated, federated application programming 
interface (API) will need to be developed18 that can 
(1) seamlessly provide access to heterogeneous data 
sources required for training and retraining the 
deep learning models and (2) dynamically respond 
to changes in data volume and velocity by control-
ling the scalability features of the underlying data-
base architecture and resource infrastructure (edge 
vs. cloud vs. mobile edge). In addition, a query lan-
gauge will also need to be developed that can talk 
across the different deep learning models.  

State of the Art
Machine learning is an old branch of artificial 
intelligence that can learn relationships from the 
data.1,5,8,17,20 Generally, machine learning algo-
rithms contain four steps: data harmonization, 
representation of learning, model fitting, and evalu-
ation.8 In contrast, deep learning1,2,8 is different 
from traditional machine learning in how multiple 
layers (i.e., input and hidden layers) are learned from 
the raw data. Deep learning consists of multiple hid-
den layers based on the tradition that a neural net-
work allows models to learn the representation of 
data with multilevel abstraction and automatically 
extract the multiview features from the data without 
human involvement.

The literature5,8,16,17,21 shows various deep 
learning algorithms that have been used for various 
data in the medical field. An example would be the 
deep belief network used for analyzing microRNA, 
protein structure, fundus images, wearable devices, 
electroencephalography (EEG), ECG, implantable  
devices, EHRs, and red, green, and blue plus depth 
(RGB-D) camera data. The deep autoencoder 
method is used for analyzing gene expression, mag-
netic resonance imaging (MRI) and functional 
magnetic resonance imaging (fMRI), microscopy, 
and social media data. Another method, called the 
convolution neural network, is used for analyzing 
MRI and computed tomography (CT) images, video, 
wearable devices, geotagged images, and blood 

and lab test data. The recurrent neural network is 
used for analysis of EHRs and mobile device data. 
Restricted Boltzmann machines (RBMs) are used 
for MRI and CT images and mobile and EHR data. 
Moreover, one review5 illustrates that there are no 
studies using deep learning to combine all of these 
data sources or part of them in a joint representation 
for medical analysis and prediction.

The preceding deep learning algorithms have 
already been used for analyzing data locally in the 
cloud environment. But this has some associated 
challenges, such as communication cost, latency 
issues, data semantic and privacy concerns, that 
cannot be ignored. As a result, a distributed machine 
learning approach3,7,22 has been considered. In addi-
tion, a single dataset contains a limited number of 
features—not enough to extract useful information. 
More specifically, the number of patients is limited 
worldwide, and we need more features to build a 
better predictive model.

Studies show that deep learning models7,17,21 are 
a new trend to gain complex and highly dimensional 
knowledge. Figure 4 shows the growth of the learn-
ing layers in a deep learning framework, which vig-
orously affects various tasks, such as a huge amount 
of image analysis in the medical domain.7 The lit-
erature5,7 does not provide studies that attempt to 
combine the different data sources by using deep 
learning across an osmotic computing environment 
(cloud, edge, and mobile edge).

Conclusion
In the last few years, we have seen significant 
research efforts from the distributed systems com-
munity toward developing resource management 
tools and techniques for cloud, edge, and mobile 
edge computing environments. Similarly, the arti-
ficial (machine) intelligence community has been 
exploring virtually all aspects of machine learning, 
including deep learning, as well as enhancing clas-
sical algorithms. With the emergence of big data, 
we are witnessing an increasing number of machine 
learning algorithms being ported to cloud datacen-
ters, supported by tools such as Watson Machine 
Learning, MLbase, Google TensorFlow, and Apache 
Mahout.

However, limited methodologies and tools 
are available in the literature that can exploit the 
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convergence of the osmotic computing environment 
with the new generation of resource- and data-aware 
machine learning algorithms.

In this Blue Skies column, we have identified 
some challenges in realizing an edge-cloud-driven dis-
tributed deep learning approach. We exemplified the 
need for such an approach using a medical scenario, 
but numerous other use cases could benefit from such 
an approach. We proposed a high-level architecture of 
our approach that we envisage could serve as a blue-
print for further research and development. 
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