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• This paper proposes the two-tier VM placement algorithm that generates the most energy-saving solution with satisfactory feasibility to tolerate
resource request variations of VMs.

• The proposed algorithm includes the feasibility driven stochastic VM placement algorithm and the ILP-based variation-unaware VM placement
algorithm.

• This work improves the energy cost by 62.7% on average from the algorithm proposed in Gao et al. (2013).
• For the proposed algorithm, the average feasibility reaches 98.0%.
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a b s t r a c t

As themost promising computing paradigm, cloud computing opens up newhorizons for the area of high-
performance distributed computing. Cyber-physical Systems (CPSs) present novel digital systems, which
integrate computation, communication and the control of physical resource. Applied CPSs architecture
in cloud computing can provide real-time and scalable resource monitoring and offer time-critical
applications. With unrivaled scalability and flexibility, the CPSs based cloud services brings significant
convenience to customers in need of elastic computing power. The quality of CPSs based cloud services
is, to an large extent, determined by the performance of Virtual Machine (VM) placement algorithm for
the data center. VMplacement also effect the communication between applications and physical resource
distribution in cloud computing CPSs.

The traditional VM placement algorithm is built upon the two-tier architecture. With the presence of
multi-media applications, the application level controller cannot accurately quantify the varying amount
computing resources required by VMs at runtime. Consequently, lacking accurate resource demand
for each VM, controller at the data center level cannot generate the VM placement with satisfactory
feasibility. This architecture no longer fits the modern data centers. In this paper, the two tier VM
placement framework is proposed to resolve this technical challenge. Our LP-based variation-unaware
VM placement algorithm generates the VM placement with minimized energy consumption. On the
other hand, our feasibility driven stochastic VM placement (FDSP) algorithm works seamlessly with the
LP-based algorithm to achieve desirable feasibility of the placement. Our experimental results show
that the LP-based variation unaware VM placement algorithm improves the energy consumption by
15.3% on average from the baseline algorithm. For test cases with resource request variations, the
FDSP algorithm saves 15.7% energy cost compared to the ‘‘worst case scenario’’ of the traditional VM
placement paradigm. On the other hand, it improves the feasibility by 50.0% compared to the ‘‘best case
scenario’’.
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1. Introduction

Cloud computing is reshaping the landscape of high-
performance distributed computing [1]. As a state-of-the-art com-
puting paradigm, it offers unparalleled flexibility and computing
power to geographically dispersed customers. Commercial cloud
service providers, such as Google Compute Engine,Microsoft Azure
and Amazon Web Services, are making their cloud computing ser-
vices affordable and accessible to every individual. Cyber-Physical
Systems (CPSs) are the next computing revolution which integrate
computing, communication, and storage capabilities with the con-
trol of physical world [2]. They are being used in many applica-
tion domains, including health management, vehicular networks
and smart highways, physical infrastructure monitoring [3]. Cloud
computing embraced with CPSs as a large-scale distributed com-
puting paradigm can overcome the key challenges in supporting
CPSs.

The main challenges for the evolution of CPSs are the reduction
of power costs, the enhancement of design, the real-time scalable
resource monitoring, the real-time scheduling in hypervisors and
high availability [4]. Cloud computing integrates the computation
resource, storage and software service to perform real-time paral-
lel computation formassive data [5]. CPSs architecture based cloud
computing cooperate seamlessly, themodel are shown as Fig. 1. As
shown that the architecture of CPSs based cloud computing can be
looked as a ecosystem with information flow loops among various
physical devices and applications. VM placement in data center
controls the physical resource (CPU, memory et al.) distribution,
and then changes the performance of applications in a higher layer.
The tremendous success of cloud computing lies in the concept
of resource sharing and reconfiguration through virtual machines
(VM) [6]. The VM is an artificial machine without physical identity,
offering computing services directly to end customers. Once the
VM completes its computing tasks, the computing resources are
returned to the physical server in the data center, and thus can be
reused by other customers.

It is the responsibility of the data center tomaintain satisfactory
Quality of Service (QoS) to all customers at any time [8]. In other
words, the VM placer in cloud computing CPSs has to guarantee
that each server, hosting multiple VMs, is able to supply sufficient
computing resources. On the other hand, in order to reduce op-
eration cost, the cloud computing CPSs tends to minimize energy
consumption of the physical servers by shutting down those in
the idle state [9]. It requires servers to host more VMs, potentially
sacrificing QoS of the cloud service. In this work, the two-tier VM
placement algorithm for the cloud data center is proposed. Our
algorithm resolves the technical challenge of minimizing the en-
ergy consumption of the servers in cloud computing CPSs without
sacrificing QoS of the service.

The problem of VM placement optimization has been exten-
sively studied. A number of meta-heuristic algorithms are pro-
posed to optimize the VMplacementwithmultiple objectives [10],
including maximizing computing resource usage [11,12], reduc-
ing energy consumption [13], and improving network scalabil-
ity [14,15]. The genetic algorithm (GA) [16] based heuristic is
proposed in [17] to model the VM placement problem as the
classic grouping problem with the fuzzy-logic controller serving
as the cost function in the GA. The traffic-aware VM placer is
proposed in [18,19] to minimize the communication cost of the
hosting servers without modifying the network architecture. A set
of dynamic load distribution policies is proposed in [20] to reduce
the electricity energy cost, as an attempt to save operational cost
of the data center.

As the state-of-the-art VM placer, the Ant Colony System (ACS)
based meta-heuristic is proposed in [21]. The algorithm tries to
generate the VM placement solution with minimized energy con-
sumption and computing resource wastage in the data center.

According to the problem formulation, the server is mapped to the
colony and the VM is mapped to the food source. The assignment
of the VM to the server is modeled as the pheromone trail in the
ACS algorithm.At each iteration, eachpheromone trail is evaluated,
among which the most promising ones are selected by the pro-
posed decision-making heuristic. The algorithm terminates when
the assignment for all VMs is complete.

Most previous works rely on the two-tier VM placement
scheme. The local controller at the application level determines the
computing resource requirement on each VM. Subsequently, the
global one assigns eachVM to the servers at the data center, assum-
ing each VM demands fixed amount of resources. This architecture
overlooks the fluctuation of resource requirement of VMs, which is
quite common in thepractice. Recently, VMsplay an important role
at the server side with various multi-media applications. The re-
source required by these applications can be significantly impacted
by users from the client side. Meanwhile, the workload of VMs
can be also various with different online requires. Thus, when the
VMsunexpectedly demandmore resources from the server hosting
them, the expensive live migration becomes inevitable to avoid
the deterioration of the quality of the cloud service. Therefore,
the VM placement without considering variations on resource
requirement could dramatically increase the operational cost of
the data center.

In this paper, we propose an innovative two-tier VM place-
ment algorithm with the flexibility to tolerate the variation on
resource requirements of VMs. Our feasibility-driven stochastic
VM placement (FDSP) algorithm guarantees the feasibility of the
VMplacement solution. As the basis of the FDSP algorithm, our ILP-
based variation-unaware VM placement algorithm generates the
VM placement solution with the minimum energy consumption.
Our contributions are as follows.

• We propose the two-tier VM placement algorithm that
generates the most energy-saving solution with satisfac-
tory feasibility to tolerate resource request variations of
VMs. The two-tier algorithm includes the feasibility-driven
stochastic VM placement (FDSP) algorithm and the ILP-
based variation-unaware VMplacement algorithm. They are
seamlessly integrated to achieve our optimization target.

• The ILP-based variation-unaware VM placement algorithm
transforms the VM placement problem into the classical LP
problem. Given high-performance LP solvers, we improve
the energy cost by 62.7% on average from the algorithm
proposed in [21]. Meanwhile, the runtime is reduced by 7.6
times for the largest test case.

• For FDSP algorithm, the average feasibility reaches 98.0%.
The energy cost is saved by 15.7% on average from theworst
case design and the feasibility is improved by 50.0% on
average from the best case design.

The remainder of the paper is organized as follows. Section 2
includes the background information and problem formulation.
Section 4 introduces the proposed Feasibility Driven Stochastic VM
Placement (FDSP) algorithm in cloud computing CPSs. Our experi-
mental results are presented in Section 5. Section 6 concludes the
paper.

2. Preliminary

2.1. CPSs based cloud computing

CPSs based Cloud Computing provides the appropriate services
to users via themost appropriate devices. This computationmodel
combines the advantages of cloud computing with CPSs [22], and
VMs placement links the application layer and physical layer. This
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Fig. 1. Cyber-Physical System based Cloud Computing Model [7].

combination not only connect the physical world and virtual com-
putation, but also use the resources efficiently, adapt the environ-
ment at every scale, provide rapid scalability and reliable. Cloud
computing based on CPSs architecture changes the traditional
computation pattern and resource scheduling.

2.2. Virtual cloud environment

The virtual cloud environment is the computing infrastructure
which consists of a cluster of networkedmachines. The computing
cluster is physically located at the data center of the cloud ser-
vice provider [23]. Each machine hosts multiple virtual machines
(VMs), artificial machines without physical form directly manipu-
lated by customers. Each VM runs the guest Operating System (OS)
and a number of applications of the user. The computing resources
requested by the VMs, including CPU, memory and storage, are
supplied by the physical server onwhich the VMs are hosted. Since
each VM instance is independent from each other, the computing
resource required by VM i can be interpreted as (τi, νi), in [21],
where both τi and νi are normalized percentage values which de-
notes the CPU andmemory utilization, respectively. For example, if
a VM is characterized by the tuple (25%, 30%), it will consume 25%
CPU resources and 30% of memory resources of the server.

2.3. Energy consumption model

Studies in [21] and [24] have shown that the power consump-
tion is linearly proportional to the CPU utilization. In the data
center, the server can be shut downwhen its idle. Hence the energy
consumption of server j can be defined as

Ej = Es,j + C ·

∑
i

τi (1)

in which Es,j is the static energy consumption and C is constant.

3. Problem formulation

This work focuses on resolving the VMs placement problem in
cloud computing CPSs such that the energy consumption of data
center is minimized. One motivative example is shown in Fig. 2.
The resource requirement of VM i is denoted by VMi(τi, νi). The
target is to place the five VMs onto a given number of servers, each
supplying up to 90% CPU resource and 90% memory resource to

the VMs running on it, different placement will result in different
users distribution in cloud computing CPSs. Fig. 2(a) shows one
valid placement solution, in which each server fulfills the resource
demand from each VM. The optimal solution is shown in Fig. 2(b),
which places all VMs with two servers. Compared to the non-
optimal solution, the optimal oneminimizes the number of servers
used. Thus it saves approximately 1/3 of energy cost by shutting
down one server.

The weakness of traditional VM placement algorithm is their
inability to precisely predict the resource requirement of each
VM. With the presence of multi-media applications, VMs demand
varying amount of resources at run time. Therefore, the practicality
of traditional algorithms suffer as the expensive live migration
becomes necessary, when the server cannot provide sufficient CPU
or memory resource. In cloud computing CPSs, computation abili-
ties will change sharply as physical resource distribution varying.
The example of VM placement with resource request variations
is shown in Fig. 3. Assuming each VM requires fixed amount of
resources, traditional VM placers optimize the VM placement by
placing all VMs on the single server, as shown in Fig. 3(a). Since
the memory requirement on VM2 decreases from 40% to 30% at
runtime, no VM migration is necessary. In the other scenario,
shown in Fig. 3(b), VM2 requests 10% more memory at runtime.
Consequently, according to the original VM placement, the server
cannot provide enough memory resource to the two VMs. In order
to maintain the Quality of Service (QoS), either of the two VMs has
to be migrated to other servers, incurring significant operational
cost.

To overcome the weakness of traditional VM placement algo-
rithms, we formulate the new VM placement problem as follows.
Given a set of VMs V = {v1, v2, v3, . . . , vn} and a set of servers
S = {S1, S2, S3, . . . , SΩ}, our VM placement algorithm aims at
generating the VM placement solution such that the total power
consumption Etotal is be minimized. Our algorithm is subject to the
following constraints.

• For each server hosting multiple VMs, the summation of
computing resources requested by all VMs may not exceed
the maximum amount provided by it.

• The VM placement solution has to achieve desirable feasi-
bility, regardless of variations on the amount of resources
required by VMs.

4. Feasibility driven stochastic VM placement (FDSP) algorithm

We propose the variation aware VM placement optimization
framework for cloud computing CPSs. Our algorithm aims at gen-
erating the VMplacement solutionwith theminimum total energy
consumption,without sacrificing theQuality of Service (QoS) of the
cloud computing CPSs service. On one hand, our algorithm intelli-
gently employs the maximum amount of computing resources on
every server for the VMs running on it. On the other hand, it guar-
antees that, under most circumstances, the resource requirement
on every server does not exceed the maximum amount offered by
it.

The algorithm flow is shown in Fig. 4. Our algorithm runs in
two hierarchical phases. The VM placement optimization phase
features the Integer Linear Programming (ILP) formulation of the
variation unaware VM placement problem. The QoS optimization
phase iteratively queries themost appropriate computing resource
requirement for the VMs. At each iteration, the previous opti-
mization phase is triggered and the VM placement solution is
evaluated against QoS, in an attempt to obtainthe most feasible
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(a) VMs placement solution 1.

(b) VMs placement solution 2.

Fig. 2. VM placement examples on two different solutions.

solution. In cloud computing CPSs, this algorithm iteratively adjust
the placement of VMs and effect the usage of CPU andMemory, and
then optimize the performance of application layer.

4.1. Variation-unaware VM placement

Given the fixed computing resource (CPU and memory) re-
quirement for every VM, we transform the variation-unaware VM
placement problem into the ILP optimization problem. Thus it
can be efficiently handled by standard Linear Programming (LP)
solvers, like LP-Solve and IBM ILOGCPLEXOptimization Studio. The
ILP formulation is as follows.

Denote the set of Ω servers as S = {S1, S2, S3, . . . , SΩ} and the
set of n VMs as V = {v1, v2, v3, . . . , vn}. The VM placement solu-
tion can be represented by the binary variable set A = {Ai,j, 1 ≤

i ≤ n, 1 ≤ j ≤ Ω} , in which Ai,j indicates that VM vi is assigned
to server Sj. The set of binary variables B = {B1, B2, B3, . . . , BΩ} is
introduced to indicate the availability of each server. If Bj is 0, the
server Sj is considered unavailable and no VM can be assigned on it.
The optimization target is determine Awhile minimizing the total
energy consumption, Etotal, under the following constraints.

The total energy constraint defines the total energy consump-
tion as the summation of the energy consumption of each server.
Mathematically, it is

Etotal =

Ω∑
j=1

Ej, (2)

where Ej is the energy consumption of server Sj.
Ej is modeled as the summation of dynamic and static energy

consumption of server Sj. The former is proportional to the amount
of utilized computing resources while the latter is present only if
the server is in use. Denote pi,j as the energy cost contributed by
the resource usage of VM vi on server Sj. The Ej can be formulated
as

Ej =

n∑
j=1

Ai,j · pi,j + Bj · pdj ∀ 1 ≤ j ≤ Ω (3)

To ensure the total CPU resource on each server is not used up
by all the VMs running on it, we introduce the CPU resource con-
straint. It guarantees that the summation of CPU resource required
by all VMs on the server does not exceed the maximum amount
provided by the server, denoted as Cj for server Sj. Denote ci,j as the
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(a) CPU usage variations. (b) Memory usage variations.

Fig. 3. VM usage variations impact the VMs placement.

CPU resource requirement of VM vi on server Sj. Mathematically
the constraint can be represented as

n∑
i=1

Ai,j · ci,j ≤ Cj · Bj ∀ 1 ≤ j ≤ Ω (4)

Denote mi,j as the memory required by VM vi on server Sj.
Similarly, the memory resource constraint can be represented as

n∑
i=1

Ai,j · mi,j ≤ Mj · Bj ∀ 1 ≤ j ≤ Ω (5)

The single assignment constraint is introduced to make sure
that every VM is assigned to exactly one server. Thus,

Ω∑
j=1

Ai,j = 1∀ 1 ≤ i ≤ n (6)

According to the definition of the setA andB, the following two
binary constraints are introduced.

Ai,j = 0, 1 ∀ 1 ≤ i ≤ n, 1 ≤ j ≤ Ω (7)

Bj = 0, 1 ∀ 1 ≤ j ≤ Ω (8)

In practice, The straight forward implementation of the ILP
formulation results in [25] prohibitively long run time for the
standard ILP solver. To resolve the issue, the iterative rounding
technique proposed in is applied to accelerate the ILP solving
procedure. According to [25], the binary constraints in Eqs. (7) and

(8) are replaced with Eqs. (9) and (10)

0 ≤ Ai,j ≤ 1 ∀ 1 ≤ i ≤ n, 1 ≤ j ≤ Ω (9)
0 ≤ Bj ≤ 1 ∀ 1 ≤ j ≤ Ω (10)

In other words, the formulated ILP problem is treated as the LP
problem. Initially, every variable is not determined. At each itera-
tion, variables in the setV = {v | v ∈ A∪B, v > 1−δ} are rounded
to 1,where δ is a user defined parameter. IfV = ∅, the onewith the
smallest rounding error is rounded to either 1 or 0, depending on its
affinity with either 1 or 0. These rounding conditions are feed into
the subsequent iterations as additional constraints. Consequently,
at least one variable is determined at each iteration so that the
entire algorithm converges in at most κ iterations, in which κ is
the cardinality of the set A ∪ B.

As defined by the setA and B, the solution to the ILP problem is
directly mapped to the VM placement solution. Therefore, as long
as the standard LP solver finds the optimized solution to the ILP
problem, the VM placement is obtained, given the fixed CPU and
memory requirement for each VM.

4.2. Feasibility driven stochastic VM placement (FDSP)

The ILP based variation-unaware VM placement is not practical
as the CPU and memory resource required by each VM constantly
changes. Ignoring the variation of computing resource require-
ment jeopardize the usability of the computing cloud. If the re-
source requirement is overestimated, the computing infrastruc-
ture is forced to operate at high energy cost. The reason is that VMs
are sparsely distributed over the servers, some of which could be
in the idle state to save power if VMs are optimally placed. On the
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Fig. 4. Basic architecture of our algorithmic framework. Assume there are 3 servers in the data center and 4 VMs to be placed. The FDSP algorithm iteratively updates
adaption variables α and β and calls the LP-based variation unaware VM placement algorithm, until the feasibility of the VM placement solution is satisfactory.

contrary, if the resource requirement for VMs is underestimated,
QoS of the computing cloud suffers since some servers cannot
offer sufficient computing resources to the VMs running on them.
The resource estimation is a key technique that improves the
utilization of resources in cloud computing CPSs and isolates the
applications and physical resources.

To overcome this limitation, we propose the feasibility driven
VM placement algorithm that seamlessly integrates the variation-
unaware VM placement in cloud computing CPSs. Our algorithm
intelligently queries the most appropriate resource requirements
for the VMs iteratively such that the energy cost is minimized
without degrading the QoS of the computing infrastructure.

Our algorithm is based on the observation that the computing
resource required by the VM has limited variation. Denote cbi,j
and cwi,j the minimum and maximum CPU resource required by
VM vi on server Sj, respectively. We observe that cbi,j ≤ ci,j ≤

cwi,j always holds. Similarly, mbi,j ≤ mi,j ≤ mwi,j holds for
memory resources, in which mbi,j and mwi,j are minimum and
maximum memory required by VM vi running on server Sj. For
better illustration, two adaption variables α and β are introduced
such that 0 ≤ α, β ≤ 1. ci,j andmi,j can then be represented as

ci,j = α · cbi,j + (1 − α) · cwi,j (11)
mi,j = β · mbi,j + (1 − β) · mwi,j (12)

As long as α and β are determined, the CPU and memory require-
ments for all VMs are obtained. Therefore, the ILP based variation-
unaware VM placement algorithm can be carried out, given any

fixed pair of {α, β}. The target of our algorithm is to find the
optimal pair such that the energy cost corresponding to the VM
placement is minimized while the feasibility requirement of the
placement solution is met. The feasibility of the VM placement is
defined as the probability that the computing resource require-
ments for all VMs aremet, for different caseswith different amount
of resources requested.

The algorithm proceeds as follows. At the beginning, both α

and β are initialized to 0. Since {α, β} pair is fixed, the ILP based
variation-unaware VM placement is called to generate a VM place-
ment solution. Subsequently, its feasibility is assessed by our fea-
sibility evaluator using Monte-Carlo method. If the feasibility is
satisfactory, the algorithm is terminated and the VM placement
solution is returned. Otherwise,α andβ are updated using Eqs. (13)
and (14).

α = α + δα (13)
β = β + δβ (14)

δα and δβ are user defined parameters under the constraint 0 <

δα, δβ < 1. In this way, every VM is assumed to request more re-
sources iteratively. As a consequence, the feasibility requirement is
increasingly likely to bemet. At the iterationwhere it is sufficiently
satisfactory, the algorithm terminates. Apparently, the algorithm is
guided by the feasibility evaluator based on Monte-Carlo method.
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4.2.1. Feasibility evaluation
Every VM placement solution given the {α, β} pair is evaluated

for feasibility. Monte-Carlo method is used. For each sample, the
CPU resource requirement for each VM, csample

i,j , is randomly gen-
erated with the constraint cbi,j ≤ csample

i,j ≤ cwi,j. If VM vi is not
assigned to server Sj according to the placement, then csample

i,j is set
to 0. The memory resource requirement for each VM is generated
in the similar manner. After generating k samples, whether each
sample is feasible can be easily examined by comparing the total
amount of resources required at each server and the maximum
amount provided by it. The feasibility of a given VM placement is
determined by kv/k, where kv is the number of feasible samples
among all the generated k samples.

4.2.2. Latin Hypercube Sampling (LHS) method
The run time of the straight forward implementation of the

FDSP algorithm is prohibitively high. The reason is that the time-
consuming Monte-Carlo method is used in every iteration. To
resolve this practicality issue, we introduce the Latin Hypercube
Sampling (LHS) method which dramatically speed up the Monte-
Carlo method. The reason is that LHS method is able to maintain
the statistical performance of the Monte-Carlo method with only
limited number of samples. From our observation, it has little
impact on our experimental results to replace 5000 Monte-Carlo
samples with only 200 samples generated by LHS method.

The essence of LHS method lies in uniform distribution of sam-
ples in the entire sample space. In practice, each pair of samples
is not allowed to be the same in each dimension. Since they are
evenly distributed, they are able to characterize the sample space
to the desirable extent, despite the limited number of them. An
example of sampling on the 2-D space is shown in Fig. 5 (a1).
Since the dimension is 2, the requirement of LHS method is that
each sample covers one unique row and column on the 2-D grid.
With only 5 samples, the sample space is sufficiently explored.
In contrast, randomly selecting 5 samples results in the situation
shown in Fig. 5 (a2). Apparently, the samples are not uniformly
distributed over the 2-D space, with significant amount of space
uncovered. The other comparison, with more samples, between
LHS method with traditional sampling is shown in Fig. 5 (b1)
and (b2). It is clear that LHS sampling explores the sample space
comprehensively with limited number of samples.

5. Experimental results

Our experiments are performed on a set of heterogeneous
computing clusters with different number of nodes/servers. The
processors of the machines are fabricated with 70 nm technology.
To avoid transient anomalies, the total number of VMs used in the
experiment is 500. Each VM carries t computing tasks, where t is
a randomly selected integer in the range of [5, 30]. The entire set
of 500 VMs are divided into 5 subsets, each containing VMs with
similar number of tasks. For each subset, the maximum difference
in the number of tasks of VMS is set to be 5. Since the number of
tasks of VMs follows uniform distribution, the cardinality of each
subset is similar to each other. In our experiments, each test case
contains one subset of VMs, to be placed on clusters with various
number of nodes/servers.

5.1. ILP based variation-unaware VM placement

To demonstrate the superiority of our ILP based variation-
unaware VM placement algorithm, we ran the same set of test
cases on our algorithm and the ant colony algorithm proposed
in [21], as a baseline algorithm. In this experiment, the computing
resource requirements on VMs are assumed to be fixed. Table 1
summarizes energy cost of the generated VM placement and run

Table 1
Comparisons of energy consumption and runtime between the ant colony system
algorithm and the proposed LP based algorithm.

Task set Target Ant colony system LP based algorithm

size platform CPU (s) Energy CPU (s) Energy Imp.

5–10 2 nodes 0.12 4872.1 1.80 4016.2 17.6%
11–15 4 nodes 0.82 9668.0 3.29 8002.2 17.2%
16–20 6 nodes 3.60 15390.5 5.32 13234.9 14.0%
21–25 6 nodes 9.96 21441.6 7.47 18557.8 13.4%
26–30 8 nodes 23.34 27949.1 9.71 23970.8 14.2%

time of both algorithms. ‘‘Task set size’’ indicates the range in
the number of tasks of VMs in each VM subset. ‘‘Target platform’’
suggests the number of nodes/servers in the computing cluster
hosting the VMs. ‘‘Imp.’’ demonstrates the percentage of improve-
ment from the baseline algorithm. In the table, ‘‘CPU’’ is in second
while ‘‘Energy’’ is in kWh. We have the following observations.

• The average improvement on energy cost is 15.3% from
the ant colony algorithm, thanks to our ILP formulation.
The VM placement problem is transformed into the ex-
tensively studied linear programming problem. There exist
high-performance ILP solvers that efficiently resolves the ILP
formulation with near-optimality.

• The runtime of our algorithm grows linearly with problem
size while the baseline algorithm grows exponentially. The
reason is still due to the problem transformation. Thematu-
rity of LP solvers guarantees the efficiency of our algorithm.
It implies the potential of our algorithm to be successfully
deployed in the real-world data centers.

5.2. Feasibility driven stochastic VM placement (FDSP)

For assessment of the performance of the feasibility driven VM
placement, two greedy algorithms for handling variations on com-
puting resources request from VMs serve as baseline algorithms.
One of them assumes that every task on any VMs requires the
minimum amount of CPU and memory resources. On the contrary,
the other assumes every task requests the maximum amount. All
three algorithms, including the proposed one, call the ILP basedVM
placement algorithm, after variation issue is resolved. The same
set of 5 test cases in Section 5.1 are applied on each algorithm,
with variation on resource requirement of VMs considered. Table 2
summarizes the statistics of the VMplacement solutions generated
by each algorithm. In the table, ‘‘Best Case Design’’ and ‘‘Worst Case
Design’’ indicate the greedy algorithms assuming minimum and
maximumcomputing resource request fromVMs, respectively.We
have the following observations.

• ‘‘Best Case Design’’ generates the VM placement with
the lowest energy consumption and lowest feasibility. It
matches our expectation. The variation-unaware VM place-
ment algorithm assigns most VMs to limited number of
servers so that others can be shut down to save energy.
As the VMs demands more computing resources, servers
with large number of VMs cannot fulfill the requirements.
Therefore, in the VM placement evaluation, more than half
of samples generated by the Monte-Carlo method are not
feasible. It results in the low feasibility for all 5 test cases.

• ‘‘Worst Case Design’’ generates the VM placement with the
energy cost as high as 48784.52 kW and 100% feasibil-
ity. Since each VM is assumed to consume the maximum
amount of resources, the VM placement guarantees that
each server provides sufficient computing resources to the
VMs running on it, under any circumstances. Therefore, the
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Table 2
Comparisons of energy consumption, feasibility probability and runtime among the worst case design, the best case design and the proposed FDSP algorithm with varying
sizes when tasks are assigned to a cluster system.

Task set Target Best Case Deign Worst Case Deign Proposed FDSP

size platform Energy Feasibility CPU (s) Energy Feasibility CPU (s) Energy Feasibility CPU (s) Energy Imp.

5–10 2 nodes 2247.9 48.8% 3.40 14313.9 100% 9.40 12075.2 98.0% 44.81 15.6%
11–15 4 nodes 4471.1 48.2% 6.11 28679.9 100% 20.95 24174.6 98.0% 62.67 15.7%
16–20 6 nodes 7431.1 48.0% 9.74 47797.4 100% 23.68 40260.1 98.0% 101.43 15.8%
21–25 8 nodes 10391.1 47.5% 12.89 66993.6 100% 29.88 56396.8 98.0% 142.25 15.8%
26–30 8 nodes 13351.1 47.3% 14.92 86137.8 100% 38.88 72549.9 98.0% 186.80 15.8%
Average 7578.5 48.0% 9.41 48784.52 100% 24.56 41091.32 98.0% 107.59 15.7%

Fig. 5. An example of LHS method on a two-dimensional samples region. (a) Latin Hypercube Sampling. (b) Random Sampling.

Fig. 6. Feasibility-Energy tradeoff curve for a VM.

feasibility is always 100%, regardless of the variation on the
amount of resource requirement of each VM. Apparently,
the drawback of this assumption is the inevitable high en-
ergy consumption. Since VMs are distributed over a number
of servers, only limited number of them can be in the idle
state. In other words, the static energy cost contributes
significantly to the total energy consumption.

• Our algorithm saves 15.7% energy cost on average from
the ‘‘Worst Case Design’’ and improves the feasibility by
50.0% from the ‘‘Best Case Design’’. Our algorithm generates
the VM placement that minimizes the energy consumption
and maximizes the feasibility. At each iteration, the algo-
rithm assumes that the tasks on each VM consumes more
computing resources. In other words, at each iteration, the
feasibility of the VM placement solution improves, at the
cost of higher energy cost. Eventually, the balance between
energy consumption and feasibility is reached. In this way,
we obtain the VM placement solution with both two factors
optimized.

To better illustrate the trade-off relationship between feasibil-
ity and energy consumption of the VM, we plot the Feasibility-
Energy curve, as shown in Fig. 6. We have the following observa-
tions.

• Apparently, ‘‘Best Case Design’’ and ‘‘Worst Case Design’
represents the lower left and upper right corner of the curve,

respectively. For either case, it is difficult to obtain the VM
placement solution with desirable feasibility and energy
consumption simultaneously.

• When the feasibility is low, the energy cost increases slowly
with it. Therefore, the feasibility of ‘‘Best Case Design’’ can
be significantly improved without incurring large energy
consumption.

• When feasibility approaches 100%, the energy cost increases
almost exponentially with it. That explains why our algo-
rithm improves the energy cost by 15.7% from the ‘‘Worst
Case Design’’, at the cost of only ‘‘2.0%’’ decrease in feasibil-
ity.

6. Conclusion

Variation in the amount of resources requested by virtual ma-
chines (VMs) remains a technical challenge for VM placement
algorithms for cloud computing data centers. Power reduction,
real-time scalable resource monitoring and real-time scheduling
are main challenges of CPSs. In this paper, we focus on cloud
computing CPSs, and propose the two-tier algorithm framework to
resolve the challenges mentioned before. Our LP-based variation
unaware VM placement algorithm optimizes the VM placement
in terms of energy consumption. Our feasibility driven stochastic
VM placement (FDSP) algorithm iteratively interact with the LP-
based algorithm, to generate the VM placement with satisfactory
feasibility. The experimental results show that the LP-based al-
gorithm reduces the energy consumption by 15.3% on average
from the baseline algorithm in cloud computing CPSs. The FDSP
algorithm achieves the feasibility of 98.0% on average. Compared
to ‘‘worst case scenario’’, the energy consumption is reduced by
15.7% on average. Compared to ‘‘best case scenario’’, the feasibility
is improved by 50.0% on average.
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