
62	 I EEE CLO U D CO M P U T I N G P U B L I S H ED BY T H E I EEE CO M P U T ER S O CI E T Y � 2 3 2 5 - 6 0 9 5/ 1 7/$ 3 3 . 0 0 © 2 0 1 7 I EEE

Khaled Alwasel and Yinhao Li
Newcastle University, UK

Prem Prakash Jayaraman
Swinburne University of
Technology, Australia

Saurabh Garg
University of Tasmania,
Australia

Rodrigo N. Calheiros
Western Sydney University,
Australia

Rajiv Ranjan
Newcastle University, UK

Programming SDN-Native
Big Data Applications:
Research Gap Analysis

Software-Defined Networking has involved as a preferred abstraction
for sharing network resources within a cloud datacenter in response to
simultaneous data retrieval and computation demands from around the
world. However, several research challenges need to be investigated
before SDN powered-cloud datacenters are able to efficiently process
big data as defined by its “4V” characteristics. Big data enabled-
systems have to be able to respond to concurrent requests and allocate
computing (e.g., virtual machine instances), storage (e.g., disk space) and
networking (e.g., bandwidth) resources efficiently and effectively.

Traditionally, most cloud
datacenters are based on
monolithic networking sys-
tems where network intel-
ligence is distributed among
forwarding devices (switches
and routers), that require very
complex protocols to oper-
ate and low-level configura-
tion management (e.g., via
command-line interface).3 As a

result, it is widely accepted in industry and academia
that traditional monolithic networking systems
impose significant limitations on cloud datacenters
hosting big data applications. These include: (1) pro-
moting monopoly and silos by introducing propri-
etary, dedicated network infrastructure hardware;
(2) raising the cost for obtaining and maintaining
several hundred to thousands of heterogonous and

complex network components; (3) lacking capabili-
ties to meet application quality of service (QoS) and
service level agreement (SLA) demands at run-time;
and (4) requiring specialized expertise and specific
training to integrate and maintain networks from
different vendors. Software-defined networking
(SDN) has emerged as a promising solution to over-
come such drawbacks of the traditional datacenter
network approach.

Software-Defined Networking—Overview
SDN is a networking approach originally derived
from the work of Martin Casado in 2005. It became
popular with the invention of the OpenFlow (OF)
SDN protocol in 2007.4–6 OF is the new protocol
to control the flows of streams of packets in the net-
work. SDN was initially designed to serve a specific
purpose, which was to simplify the process of net-
work management and configuration for network

BLUE SKIES

S EP T E M B ER /O C TO B ER 2 0 1 7 	 I EEE CLO U D CO M P U T I N G� 6 3

administrators. The four main pillars1,3 of SDN
include:

•	 Separation of control and data planes
•	 The network devices can be programmed

through software applications and/or applica-
tion programming interfaces (APIs)

•	 Logical centralization of (possibly physically dis-
tributed) network control (e.g., routing logic,
bandwidth assignment) logic to an SDN controller
which has global view of data flow across network

•	 Forwarding decisions are flow-based (stream of
packets) rather than packet-based

SDN breaks the ideology of self-driven device
decisions (distributed intelligence) and integrates
the network intelligence into a logically central-
ized SDN controller.3 Decoupling network control
mechanisms from devices (switches and routers)
may allow datacenter operators to achieve a global
network view, superior network QoS optimization,
fine-grained control, improved network consistency,
partial/total reconfiguration of networks, and fast
failure detection/recovery. It may also enable optimal
performance, either solely through network-based
load balancing in anycast service environments, or
through selection of an anycast service node using a
combination of network and server conditions such
as congestion.7

Figure 1 shows an example of the SDN archi-
tecture, which consists of three layers: data, control,
and management.3 First, the data layer contains for-
warding devices that implements the OF protocol.
OF allows the remote management and access of
heterogonous forwarding devices without exposing
their low-level, internal designs and functionalities.
Every forwarding device maintains an OF routing
table, allowing an SDN controller to dynamically
configure the state of devices such as add, retrieve,
remove, and/or update routing entries (rule, action,
and stats) on behalf of respective management layer
network manipulation functions (e.g., routing, mon-
itoring, traffic load-balancing, etc.).

Second, the control plane contains an SDN con-
troller, which exposes southbound and northbound
APIs to the data and management layers, respec-
tively. The SDN controller leverages OF table (as
shown in Figure 1) of OF protocol for sending data

flow rules (rule, action, stats) to network devices at
the data plane layer. The OF talbe can be dynami-
cally updated across network devices, which is what
they (router and switches) use for routing frame and
packets across the network.

 Third, the management layer plane consists of
various network applications to configure (e.g., firm-
ware updates), deploy, control, and orchestrate the
entire network, without having direct communica-
tions with forwarding devices in the data plane.

Though the SDN paradigm provides a well-
defined communication standard (OF) and pro-
gramming interface (northbound and southbound
APIs) to the datacenter network, the availability
of software frameworks and algorithmic techniques
to dynamically configure and optimize the SDN-
based datacenter network for improving big data
application performance and availability is still
nascent.

In the SDN landscape, network configuration
is accomplished using one or multiple SDN control-
lers by deploying network policies, protocols, and
algorithms. In a broader sense, SDN controllers
have default network configuration mechanisms
for resource discovery and maintenance of network
devices. From such default configurations, SDN
controllers operate and orchestrate traffic flows
once their intended networks are up and running.
As discussed in Figure 1, the management layer
is the place where configuration parameters are
specified by network management applications
(routing, load balancing, etc.) and injected into SDN
controllers, resulting in network behavior changes.
In other words, SDN can enable scheduling net-
work resources in terms of network paths based on
packets and flows of respective server/host/virtual
machine (VM) IP addresses and implemented net-
work algorithms (equal-cost multi-path, priorities,
etc.). SDN technology, in a broader sense, should be
leveraged to improve the run-time QoS of all types
of cloud-hosted applications (e.g., content delivery
networks, n-tier web applications, and scientific
applications). However, each of these different appli-
cation types has diverse data and control flow com-
plexities as well as heterogeneous QoS demands.
This article, therefore, will point to the challenges
in programming, configuring, deploying and man-
aging SDN-native big data applications. It is well

64	 I EEE CLO U D CO M P U T I N G� W W W.CO M P U T ER .O R G /CLO U D CO M P U T I N G

BLUE SKIES

understood and validated by industry and academic
experts that big data application workflows8 incur
excessive resource demands on datacenter network,
storage, and compute resources.

Programming of Big Data Application
Workflows—Overview
Big data frameworks (such as Apache Hadoop,
Apache Spark, Apache Storm, and Apache Kafka)
are increasingly recognized as powerful solutions
to develop and deploy big data applications in cloud
datacenters. Due to their ability to handle the 4Vs
of big data, they are considered as suitable alter-
natives to traditional data processing frameworks
(e.g., Microsoft Excel, MySQL, Oracle, etc.). Each
big data framework deals with different aspects
of big data requirements. For example, a batch-
processing framework (such as Apache Hadoop;
http://hadoop.apache.org) analyses data in simulta-
neous and stateless fashions, while a stream process-
ing framework (such as Apache Storm; http://storm.
apache.org) handles continuous big data streams

in a consecutive and stateful manner.1 Such big
data frameworks have found application in several
domains such as public healthcare, business sectors
and financial trading for solving problems, such as
curing chronic diseases, understanding consumer
behaviors, and detecting frauds, to name a few.

Big data management systems (BDMS), also known
as resource negotiators or data operating systems, pro-
vide a generic programming layer for managing lifecy-
cle operations related to big data application workflows
(e.g., composition, mapping, QoS monitoring, and
dynamic reconfiguration).8 These BDMSs such as
Apache Hadoop YARN (https://hadoop.apache.org/
docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html)
and MESOS (http://mesos.apache.org/) implement
intelligent algorithmic techniques to obtain superior
performance among diverse big data applications hosted
on shared datacenter resources (see Figure 2). Program-
ing BDMSs and the underlying big data frameworks in
a SDN-native fashion would lead to several advantages,
such as the amount of network resources allocated to
each big data framework hosted on a cloud dataceenter

Management
layer Load balancing

SDN controller

Northbound APIs

Southbound APIs

Data plane Data plane

MonitoringRouting

Data plane

Control
layer

Data
layer

O
p

en
Fl

o
w

Stats
(counters)

Port

IP source

IP

destination

…

Rule
(match fields)

Drop
packets

…

Action
(instructions)

Packets &
bytes

Forward
packets to

port(s)

OpenFlow table

FIGURE 1. Software-defined networking and OpenFlow.

S EP T E M B ER /O C TO B ER 2 0 1 7 	 I EEE CLO U D CO M P U T I N G� 6 5

can be controlled and dynamically reconfigured to meet
changes in data flows (4Vs). It will enable explicit alloca-
tion of bandwidth to one or more big data frameworks
in periods of high data flow, and release bandwidth
in favour of one or more other big data frameworks in
periods of low data flow.

Consider a disaster management big data appli-
cation workflow such as flood monitoring, detec-
tion and response as described in Center for Earth
Systems Research9 and Ranjan et al.8 managed by a
BDMS such as YARN. Such an application workflow
is dependent on data from multiple sources including
weather stations, traffic flow, water depth, and water
flow sensors. Other information sources include pop-
ulation of the area, emergency evacuation and alert-
ing plans, location of emergency response teams, etc.
It is clear that heterogeneous8 big data frameworks
will process each of these data sources.

During the normal mode of operations, the sen-
sors and other data sources transmit data at mod-
erate volume and velocity to big data frameworks
hosted in cloud datacenters via a network of routers
and switches. In case of the occurrence of a flood-
ing event, the sensors and other data sources stream
data into the cloud at much higher volume and veloc-
ity in order to parametrize, calibrate, and validate
the flood prediction models in real-time. However,
this leads to new run-time QoS requirements for net-
work providers. These include (1) the ability to obtain
data from the location of flooding at a higher velocity

and volume; (2) reconfiguring the inter-networking
routes to provide priority paths to the data origi-
nating from data sources near to the flooding area;
(3) reconfiguring the sensor and data sources to pro-
duce data at a higher frequency; and (4) additional
resources to be allocated to big data frameworks in
the cloud for managing and processing the big data
stemming from multiple data sources.

To address the aforementioned challenges and
the QoS demands imposed by big data application
workflows such as flood modeling programmed
using multiple big data frameworks on cloud data-
centers, the BDMSs and the underlying network
need to work collaboratively in a coordinated fash-
ion. However, achieving this is a non-trivial activ-
ity and requires seamless exchange of data, QoS
requirements, application demands, data sources
capabilities across each layer of the cloud, and
the inter-networks (in case of an SDN, this will
include the data, control, and management plane as
described earlier).

Why Program SDN-Native Big Data
Applications?
SDN is a promising technology and when tightly
integrated with the resource management capa-
bilities offered by datacenters’ server hypervisors
BDMSs (e.g., Apache YARN, Apache MESOS) can
provide significant benefits as regards to improv-
ing application and network QoS. In a broader

Big data resource manager (BDRM)

Container

Container

Container

Slave nodeSlave node Slave node

Container

Hadoop application
master (AM)

ContainerContainer

Storm application
master (AM)

Node
manager (NM)

Node
manager (NM)

Node
manager (NM)

FIGURE 2. Big data cluster (resource management).

66	 I EEE CLO U D CO M P U T I N G� W W W.CO M P U T ER .O R G /CLO U D CO M P U T I N G

BLUE SKIES

sense, making cloud applications (including big data
applications) SDN-native can provide remarkable
benefits including: (1) avoiding traditional network
issues (route congestion and network bottlenecks);
(2) enhanced scheduling decisions via cross-layer
(server-to-network and vice versa) QoS optimiza-
tion (availability, load, throughput, available budget,
etc.) at run-time; (3) creating dynamic routes for
application-specific data flows; (4) higher degree
of run-time control of quality of services (through-
put, delay and packet loss), software quality assur-
ance (e.g., fault-tolerance, reliability, etc.), and
SLAs; (5) availability of APIs for run-time network
traffic engineering (isolation, aggregation, charac-
terization, and route reservation); and (6) dynamic
network reconfiguration in response to physical net-
work link failures and improper network behaviors.

Big Data Management System (BDMS)—
Overview
Let’s focus on YARN in order to illustrate a typi-
cal BDMS that can be used to program large-
scale application workflows. YARN decouples the
resource management responsibilities and big data
programming frameworks into two separate compo-
nents. It consists of four elements: a central resource
manager, node managers, application masters (e.g.,
Apache Hadoop’s master node, Apache Storm’s mas-
ter node, etc.), and worker containers, as shown in
Figure 2. The big data resource manager (BDRM)
is a central authority that schedules and reconciles
resource contention among different application
masters. A node manager (NM) is responsible for
managing node resources (memory, CPU, etc.) and
reporting node failures/availability to BDRM. Every
newly deployed big data framework has an applica-
tion master (AM), which is in charge of the applica-
tion lifecycle and resource negotiations with BDRM
(e.g., number of containers, priorities, and preferred
locations). Last, a container is a lightweight, virtu-
alized resource deployed on a slave node to run an
application master-specific data processing task.

From the user point of view scheduling and
resource allocation, each big data framework
application-master explicitly specifies the amount of
memory, CPUs, and queues to be allocated for its
containers and application master to the YARN’s
BDRM. Following that, the BDRM tries to reserve

such resource requirements using resource avail-
ability information obtained from the NM. The
resource allocation decision can be affected by
many factors such as SLA (e.g., data processing
deadlines, available budget) requirements. YARN
has a built-in configuration management compo-
nent in order to automatically configure and deploy
resources and applications. In order to configure
YARN, numerous XML files need to be configured
based on users’ requirements, such as yarn-site.
xml (https://hadoop.apache.org/docs/r2.7.0/hadoop-
yarn/hadoop-yarn-common/yarn-default.xml), hdfs-
site.xml, mapred-site.xml, etc. Every file contains
hundreds of parameters that need to be specified
explicitly, such as the amount of memory and CPU
for every container. Once the configuration files are
in place, YARN starts the deployment automati-
cally (e.g., RM, NM, containers, etc.). Furthermore,
for configuring YARN in cloud environments (e.g.,
EC2), users can leverage the power of deployment
tools such as Fabric and Puppet, which leads to
greater flexibility and automation.

Integration of BDMS with SDN—Current
State of the Art
As big data applications can be compute-intensive,
data-intensive, or both, it is of importance to tune
network and server component configurations con-
stantly. To achieve this, BDMSs such as YARN and
MESOS should be able to schedule and allocate both
compute and network resources accordingly. From
the system point of view, scheduling and resource
allocation spans many levels—from the allocation
of storage (e.g., HDFS), to allocation of virtualized
compute (server) resources among different types of
application containers (e.g., Hadoop, Storm, Spark,
etc.), to allocation of network bandwidth and routes
to application masters and containers depending
on the data flow behaviors. However, from the net-
work point of view, YARN and other BDMSs have no
authority to configure, schedule, and dynamically
allocate network resources; instead, it assumes the
networks’ best-effort delivery for the data flow across
the application containers. Moreover, YARN and
other BDMSs have no built-in intelligence for man-
aging network traffic; hence, it delegates such tasks
to underlying network controllers. To summarize,
existing BDMSs have no capabilities that can allow

S EP T E M B ER /O C TO B ER 2 0 1 7 	 I EEE CLO U D CO M P U T I N G� 6 7

them to leverage the power of SDN in order to opti-
mize the datacenter network scheduling and alloca-
tion based on data flow across big data frameworks.

Nevertheless, current SDNs are network-
centric, having no embedded capabilities to support
requirements posed by higher-level big data applica-
tion workflows and their respective BDMSs. More-
over, existing SDNs do not directly provide support
for any network scheduling capabilities to BDMSs.
Therefore, further work is required to develop holistic
integration between SDN-BDMSs that considers dif-
ferent scheduling requirements of big data application
workflows, users QoS/SLA, and run-time data flows.

For the last few years, some research has been
conducted in the context of integrating a particular
type of big data framework (e.g., Apache Hadoop)
with SDN for achieving faster and efficient data
processing. However, there have been very few
efforts that really propose any framework or system
to achieve this. Qin et al.10 proposed a scheduling
system called BASS (Bandwidth Aware Schedul-
ing with SDN) which integrates the scheduling
engine of Hadoop with SDN Controller. It utilizes
an SDN controller to obtain the bandwidth avail-
ability and allocates tasks locally or remotely based
on network bandwidth. This work shows promis-
ing results. Han et al.11 proposed an architecture
of an SDN-enabled content delivery network sys-
tem. They utilized a Social TV analytics applica-
tion on Hadoop as the use case and utilized the
flow forwarding feature of SDN. However, none of
the existing algorithmic techniques (for scheduling
and resource allocation) available in the literature
are able to exploit the full potential of SDN in
context of complex big data application workflows
(that combines multiple big data frameworks and
heterogeneous data flows from multiple sources)
managed by systems such as YARN and MESOS.
In the next section, we propose a novel architec-
ture for programming an SDN-native BDMS that
combines the resource management capabilities of
BDMSs with the network control and management
capabilities of SDN.

An Architecture for Programming SDN-Native
Big Data Application Workflows
To the best of our knowledge, there has been rela-
tively little research on the development of a holistic

programming architecture for making BDMSs SDN-
native. To this end, we propose a system-level
description of SDN-native BDMS architecture
(Figure 3), which focuses on three main compo-
nents: configuration management, scheduling, and
traffic management.

As shown in Figure 3, the key layers of an SDN-
native BDMS architecture are resource, control
and management, and application. The application
layer is made of diverse big data application work-
flows that leverage instances of one or more big data
frameworks. The resource layer contains compute,
storage, and networking resources. The compute
and storage resources will be managed by traditional
BDMS APIs and network resources are managed
by an SDN controller using southbound APIs. The
requirements of these different application work-
flows and current resource availability will be moni-
tored by the middle layer (control and management
layer). This layer will interact with an SDN control-
ler to manage network resources. This management
layer is comprised of a new, intelligent BDRM (to be
realized within Apache YARN or Apache MESOS),
containing three components (scheduling, traffic,
and configuration managers).

Scheduling manager: The role of scheduling
manager is to make decisions about which appli-
cation master and containers (an instance of big
data processing framework) should utilize which
storage, server, and network resources and at what
time. It will also need to dynamically provision
(on some instances reprovision) network resources
based on data flow and analytics workload seen
across the big data processing frameworks. In order
to dynamically allocate network resources, the
scheduling management will need to constantly
monitor the data flow across big data processing
frameworks using a new class of APIs that con-
nects to both BDMSs as well as the SDN control-
ler. The scheduling manager will need to counter
various scenarios including contention and diverse
QoS/SLA requirement across multiple application
workflows (priorities, fairness, deadline, budget,
urgency, etc.). In general, such scheduling prob-
lems are NP-hard, thereby requiring computation-
ally complex heuristics, which must act in near-real
time, increasing the overall challenges of building
such systems.

68	 I EEE CLO U D CO M P U T I N G� W W W.CO M P U T ER .O R G /CLO U D CO M P U T I N G

BLUE SKIES

Traffic manager: The traffic manager moni-
tors the network availability by interacting with the
SDN controller using BDMS APIs. Given the net-
work requirements may vary over time, the traffic
manager will need to update the network informa-
tion regularly. The more up-to-date the information
is the better the network resource allocation deci-
sion the scheduling manager will be able to take. To
this end, the traffic manager will need to monitor
network link congestion, failure, and bandwidth
utilization.

Configuration manager: A configuration man-
ager is one of the most important components of the
system architecture, which performs various system
operations and configurations on behalf of users. In
a general sense, it is responsible for configuring the
entire resource stack (e.g., big data processing frame-
works, server, storage, and network). It should pro-
vide a simpler and automated application deployment
with higher accuracy, flexibility, and fault tolerance
compared with manual scripting-based methods. The
configuration manager will obtain the application
deployment graph (topology connecting application
masters and containers) from the scheduling manager
to configure compute, storage, and network resources
in a very flexible and efficient manner. As configura-
tions should be performed programmatically, there is
less chance of errors and inconsistencies.

Future Research Directions for Programming
SDN-Native Big Data Applications
To implement the proposed SDN-aware BDMS
and conduct scheduling, traffic, and configuration
management in holistic manner, there are several
research challenges that need be tackled:

•	 Integrating network requirements of diverse
application workflows: It is important to first
understand data flows in the life cycle of a big
data application, then based on this, to define
network requirements for each data processing
component (batch processing vs. stream pro-
cessing vs. transactional). For example, BDMS-
MapReduce batch processing applications often
require good network performance during the
mapping phase (copying of initial data to map
functions) and shuffling phase (copying of
intermediate data to reduce functions). In com-
parison, stream applications often demand con-
tinuous, excellent network performance as they
process unbounded real time data.

•	 Simultaneous consideration of volume and veloc-
ity in SDN-BDMS: With more and more applica-
tion workflows concentrating on real-time data
ingestion and processing, there is a requirement
to investigate techniques that not only enable
scheduling decisions considering volume aspects

strategies

Network
control

Cross-layer
information

Resource management

APIsAPIs

Data plane

Southbound APIs

Data plane

Big data resource manager (BDRM)

Configuration
manager Scheduler

Tra�c
manager

BDRM APIs

APIs

MESOS

SDN
controller

Big data frameworks

Big data applications

YARN B
D

R
M

 A
P

Is

Northbound APIs

Application
layer

Control and
management
layer

Infrastructure
and data layer

FIGURE 3. SDN-native big data application programming architecture.

S EP T E M B ER /O C TO B ER 2 0 1 7 	 I EEE CLO U D CO M P U T I N G� 6 9

as done in previous studies but also velocity. The
new class of scheduling technique will need
to reconcile high-speed (including burstiness)
arrival of data to the BDMS that needs to be pro-
cessed in a timely manner along with large vol-
umes historical data. The former aspect, typically
addressed by streaming frameworks (such as
Apache Spark and Heron), demands fine-grained
resource management and scheduling: As the
arriving flow of data varies in intensity, different
amount of storage, server, and network resources
need to be allocated to process this real-time data.
These frameworks usually manage it at operator
level, where an operator is a small computation
that is applied to each received tuple, and the
stream application is composed of a workflow
of such operators. The SDN controller needs to
constantly optimize network resources to handle
different operator workflows and variation in
the velocity of data arrival, while maintaining
enough resources for batch processing frame-
works (e.g., Apache Hadoop) that need to co-exist
in the BDMS. Research is needed towards a new
class of scheduling algorithms to enable such
advanced, cross-layer, cross-framework resource
management. Computing optimal configuration
across network, storage, server, and big data pro-
cessing frameworks in response to changing data
volume and velocity is NP-complete individu-
ally. In other words scheduling problems in the
context of SDN-native big data applications can
be classified as strongly NP-complete ones,12 as
can even the simple problem of compute or stor-
age resource allocation in distributed computing
architectures.13

•	 Conflicting resource requirements of multiple
applications: In a large distributed environment
such as a cloud datacener, multiple big data
application workflows are simultaneously com-
peting for the resources. Many of the applica-
tions’ resource requirements change over time
and depend on the time and space. For example,
during non-emergency periods, it is not essen-
tial to store or process all the weather data, as
discussed earlier. However, during emergency
situations, the collected data needs to be fine
grained to enable better disaster management.
Thus there is a need of deriving new, dynamic

scheduling policies to deal with resource man-
agement based on various factors (priorities,
fairness, etc.). This is made even harder due to
the conflicting objectives of minimizing aggre-
gate resource requirements while attempting to
provide “near-infinite” elasticity to each individ-
ual workload.

•	 Real-time network monitoring and configuration:
In general, it is almost impossible to perma-
nently reserve network resources in a large cloud
datacenter where many application workflows
will be sharing resources based on dynamic
resource allocation and mapping/binding. As a
massive number of application workflows ran-
domly and continuously run on cloud networks,
it is impossible to assure network configurations
are stable. Network links will be congested,
failed, over-utilized, and under-utilized at some
point due to random workload distribution of
application workflows. Thus, new classes of
monitoring techniques should be investigated
for dynamically monitoring routes and band-
widths based on a number of options (e.g., user-
level, application-level, flow-level, etc.). The data
provided by such monitoring techniques can be
used to formulate failure recovery techniques
and mechanisms, as well as developing models
for predicting performance anomalies.

•	 New application-level and SDN level API: In
order to allow every layer to communicate and
coordinate with its adjacent layers, new dedi-
cated APIs must be developed. For example,
southbound APIs (which drive the interaction
between the controller and network devices)
need to be extended to allow management and
monitoring of both network, and compute and
storage resources. The new communication
and coordination protocols between the schedul-
ing manager and SDN controller is also needed
for obtaining real-time resource utilization/
availability and enforcing policies.

•	 Accurate application demand and network traf-
fic prediction: Scheduling is not a trivial task
when several diverse factors are involved which
vary with time and space. Thus, the scheduling
decision should not be changed very frequently.
This requires not only the accurate estimation
of current demand but also prediction of future

70	 I EEE CLO U D CO M P U T I N G� W W W.CO M P U T ER .O R G /CLO U D CO M P U T I N G

BLUE SKIES

demand and resource availability. Some work
has been done to date regarding partitioning
and transitioning microflows to smoothly evolve
the configuration of subnetworks under chang-
ing conditions.14

•	 Scalable control and management layer:
Depending on how rapid and frequent updates
are required within a system, decision making
delays should be minimal. Now, in reality this
layer needs to monitor and configure several
thousands of applications and resources with
numerous configurations. Thus, this layer needs
to make decisions efficiently which requires
decentralized and scalable implementation,
especially in the case of hyperscale cloud data-
centers which may have hundreds of thousands
of interconnected physical servers.

With the advancement of software-defined
networking technology, datacenter networks are
emerging as the premier resource and/or infrastruc-
ture which make it possible to make the applica-
tion stack SDN-native by programming the network
stack all the way from physical topology to flow level
traffic control. In this Blue Skies piece, we proposed
tight integration of application stack (i.e., big data
programming models) and network stack for jointly
optimizing big data application performance and
SDN performance at run-time. How to fully lever-
age and integrate SDN capabilities with existing
BDMSs (e.g., YARN, MESOS) and how program big
data applications in an SDN-native manner requires
a number of important advancements. To this end,
we attempted to briefly explore the research chal-
lenges and open issues related to integration of SDN
and BDMSs, and discuss future research directions
that need to be further investigated.

References
1.	 L. Cui, F. Yu, and Q. Yan, “When Big Data

Meets Software-Defined Networking: SDN for
Big Data and Big Data for SDN,” IEEE Network,
vol. 30, no. 1, 2016, pp. 58–65.

2.	 G. Wang, T. Ng, and S. Anees, “Programming
Your Network at Run-Time for Big Data Appli-
cations,” Proceedings of the First Workshop on
Hot Topics in Software Defined Networks, 2012,
pp. 103–108.

3.	 D. Kreutz et al., “Software-Defined Networking:
A Comprehensive Survey,” Proc. IEEE, vol. 103,
no. 1, 2015, pp. 14–76.

4.	 M. Casado and N. McKeown,”The Virtual Net-
work System,” ACM SIGCSE Bull., vol. 37, no. 1,
2005, pp. 76–80.

5.	 N. McKeown et al., “OpenFlow: Enabling Inno-
vation in Campus Networks,” ACM SIGCOMM
Computer Comm. Rev., vol. 38, no. 2, 2008.
pp. 69–74.

6.	 M. Casado et al., “Ethane: Taking Control of
the Enterprise,” ACM SIGCOMM Computer
Comm., vol. 37, no. 4, 2007, pp. 1–12.

7.	 J. Weinman, “Better Together: Quantifying
the Benefits of the Smart Network,” 3 March
2013; http://www.joeweinman.com/Resources/
SmartNetwork.pdf.

8.	 R. Ranjan et al., “Orchestrating BigData Analy-
sis Workflows,” IEEE Cloud Computing, vol. 4,
no. 3, 2017, pp. 20–28.

9.	 Centre for Earth Systems Engineering Re-
search at Newcastle University, October 2017;
http://www.ncl.ac.uk/ceser/research/integrated-
systems/cities/citycat.

10.	 P. Qin et al., “Bandwidth-Aware Scheduling with
SDN in Hadoop: A New Trend for Big Data,”
IEEE Systems J., vol. PP, no. 99, 2015, pp. 1–8.

11.	 H. Hu et al, “Toward an SDN-Enabled Big Data
Platform for Social TV Analytics,” IEEE Net-
work, vol. 29, no. 5, 2015, pp. 43–49.

12.	M. Garey and D.S. Johnson, “Computers and
Intractability: A Guide to the Theory of NP-
Completeness,” WH Free, 1978, pp. 90–91.

13.	 J. Weinman, “Cloud Computing is NP-
Complete,” 21 February 2011; http://www.
JoeWeinman.com/Resources/Joe_Weinman_
Cloud_Computing_Is_NP-Complete.pdf.

14.	 R. Wang, D. Butnariu, and J. Rexford,
“OpenFlow-Based Server Load Balancing Gone
Wild;” http://static.usenix.org/event/hotice11/
tech/full_papers/Wang_Richard.pdf.

KHALED ALWASEL has a BS and MS in infor-
mation technology from Indiana University–Purdue
University Indianapolis (2014) and from Florida
International University (2015), USA. He is currently
working toward a Ph.D. in the School of Computing
Science at Newcastle University, UK. Khaled’s interests

S EP T E M B ER /O C TO B ER 2 0 1 7 	 I EEE CLO U D CO M P U T I N G� 7 1

lie in the areas of software-defined networking (SDN),
Big Data, and Cloud Computing. Contact him at
K.S.A.Alwasel2@newcastle.ac.uk

YINHAO LI is a PhD student in the School of Com-
puting at Newcastle University, UK. His research in-
terests include Cloud Computing, Edge Computing
and Internet of Things. He previously received his
MSc in Computer Science from the China University
of Geoscience. Contact him at y.li119@ncl.ac.uk

PREM PRAKASH JAYARAMAN is a research fel-
low at the Swinburne University of Technology. His
research interests include Internet of Things, cloud
computing, big data analytics, and mobile comput-
ing. Jayaraman has a PhD in computer science from
Monash University. Contact him at prem.jayaraman
@gmail.com or http://www.premjayaraman.com.

SAURABH GARG is currently working as a lec-
turer in the Department of Computing and Informa-
tion Systems at the University of Tasmania, Hobart,
Tasmania. He was one of the few Ph.D. students who
completed in less than three years from the Univer-
sity of Melbourne in 2010. He has published more
than 30 papers in highly cited journals and confer-
ences with Hindex 20. His doctoral thesis focused on
devising novel and innovative market-oriented metas-
cheduling mechanisms for distributed systems under
conditions of concurrent and conflicting resource de-
mand. He has gained about three years of experience
in the Industrial Research while working at IBM Re-
search Australia and India. Contact him at Saurabh.
Garg@utas.edu.au.

RODRIGO N. CALHEIROS is a Lecturer in the
School of Computing, Engineering and Mathemat-
ics, Western Sydney University, Australia. He works
in the field of Cloud computing and related areas
since 2008, and since then he has been carrying out
R&D supporting research in the area. His research
interests also include Big Data, Internet of Things,
Fog Computing, and applications of these technolo-
gies. Contact him at R.Calheiros@westernsydney.
edu.au.

RAJIV RANJAN is an associate professor (reader)
in the School of Computing Science at Newcastle

University, UK, and a visiting scientist at Data61,
Australia. His research interests include cloud
computing, content delivery networks, and big data
analytics for Internet of Things (IoT) and multime-
dia applications. Ranjan has a PhD in computer sci-
ence and software engineering from the University of
Melbourne (2009). He has published more than
200 scientific papers. Contact him at raj.ranjan@ncl
.ac.uk or http://rajivranjan.net.

Read your subscriptions through
the myCS publications portal at
http://mycs.computer.org.

