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Software-Defined Networking has involved as a preferred abstraction 
for sharing network resources within a cloud datacenter in response to 
simultaneous data retrieval and computation demands from around the 
world. However, several research challenges need to be investigated 
before SDN powered-cloud datacenters are able to efficiently process 
big data as defined by its “4V” characteristics. Big data enabled-
systems have to be able to respond to concurrent requests and allocate 
computing (e.g., virtual machine instances), storage (e.g., disk space) and 
networking (e.g., bandwidth) resources efficiently and effectively. 

Traditionally, most cloud 
datacenters are based on 
monolithic networking sys-
tems where network intel-
ligence is distributed among 
forwarding devices (switches 
and routers), that require very 
complex protocols to oper-
ate and low-level configura-
tion management (e.g., via 
command-line interface).3 As a 

result, it is widely accepted in industry and academia 
that traditional monolithic networking systems 
impose significant limitations on cloud datacenters 
hosting big data applications. These include: (1) pro-
moting monopoly and silos by introducing propri-
etary, dedicated network infrastructure hardware; 
(2) raising the cost for obtaining and maintaining 
several hundred to thousands of heterogonous and 

complex network components; (3) lacking capabili-
ties to meet application quality of service (QoS) and 
service level agreement (SLA) demands at run-time; 
and (4) requiring specialized expertise and specific 
training to integrate and maintain networks from 
different vendors. Software-defined networking 
(SDN) has emerged as a promising solution to over-
come such drawbacks of the traditional datacenter 
network approach.

Software-Defined Networking—Overview
SDN is a networking approach originally derived 
from the work of Martin Casado in 2005. It became 
popular with the invention of the OpenFlow (OF) 
SDN protocol in 2007.4–6 OF is the new protocol 
to control the flows of streams of packets in the net-
work. SDN was initially designed to serve a specific 
purpose, which was to simplify the process of net-
work management and configuration for network 
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administrators. The four main pillars1,3 of SDN 
include:

•	 Separation of control and data planes
•	 The network devices can be programmed 

through software applications and/or applica-
tion programming interfaces (APIs)

•	 Logical centralization of (possibly physically dis-
tributed) network control (e.g., routing logic, 
bandwidth assignment) logic to an SDN controller 
which has global view of data flow across network

•	 Forwarding decisions are flow-based (stream of 
packets) rather than packet-based

SDN breaks the ideology of self-driven device 
decisions (distributed intelligence) and integrates 
the network intelligence into a logically central-
ized SDN controller.3 Decoupling network control 
mechanisms from devices (switches and routers) 
may allow datacenter operators to achieve a global 
network view, superior network QoS optimization, 
fine-grained control, improved network consistency, 
partial/total reconfiguration of networks, and fast 
failure detection/recovery. It may also enable optimal 
performance, either solely through network-based 
load balancing in anycast service environments, or 
through selection of an anycast service node using a 
combination of network and server conditions such 
as congestion.7

Figure 1 shows an example of the SDN archi-
tecture, which consists of three layers: data, control, 
and management.3 First, the data layer contains for-
warding devices that implements the OF protocol. 
OF allows the remote management and access of 
heterogonous forwarding devices without exposing 
their low-level, internal designs and functionalities. 
Every forwarding device maintains an OF routing 
table, allowing an SDN controller to dynamically 
configure the state of devices such as add, retrieve, 
remove, and/or update routing entries (rule, action, 
and stats) on behalf of respective management layer 
network manipulation functions (e.g., routing, mon-
itoring, traffic load-balancing, etc.).

Second, the control plane contains an SDN con-
troller, which exposes southbound and northbound 
APIs to the data and management layers, respec-
tively. The SDN controller leverages OF table (as 
shown in Figure 1) of OF protocol for sending data 

flow rules (rule, action, stats) to network devices at 
the data plane layer. The OF talbe can be dynami-
cally updated across network devices, which is what 
they (router and switches) use for routing frame and 
packets across the network.

 Third, the management layer plane consists of 
various network applications to configure (e.g., firm-
ware updates), deploy, control, and orchestrate the 
entire network, without having direct communica-
tions with forwarding devices in the data plane.

Though the SDN paradigm provides a well-
defined communication standard (OF) and pro-
gramming interface (northbound and southbound 
APIs) to the datacenter network, the availability 
of software frameworks and algorithmic techniques 
to dynamically configure and optimize the SDN-
based datacenter network for improving big data 
application performance and availability is still 
nascent. 

In the SDN landscape, network configuration 
is accomplished using one or multiple SDN control-
lers by deploying network policies, protocols, and 
algorithms. In a broader sense, SDN controllers 
have default network configuration mechanisms 
for resource discovery and maintenance of network 
devices. From such default configurations, SDN 
controllers operate and orchestrate traffic flows 
once their intended networks are up and running. 
As discussed in Figure 1, the management layer  
is the place where configuration parameters are 
specified by network management applications 
(routing, load balancing, etc.) and injected into SDN 
controllers, resulting in network behavior changes. 
In other words, SDN can enable scheduling net-
work resources in terms of network paths based on 
packets and flows of respective server/host/virtual 
machine (VM) IP addresses and implemented net-
work algorithms (equal-cost multi-path, priorities, 
etc.). SDN technology, in a broader sense, should be 
leveraged to improve the run-time QoS of all types 
of cloud-hosted applications (e.g., content delivery 
networks, n-tier web applications, and scientific 
applications). However, each of these different appli-
cation types has diverse data and control flow com-
plexities as well as heterogeneous QoS demands. 
This article, therefore, will point to the challenges 
in programming, configuring, deploying and man-
aging SDN-native big data applications. It is well 
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understood and validated by industry and academic 
experts that big data application workflows8 incur 
excessive resource demands on datacenter network, 
storage, and compute resources.

Programming of Big Data Application 
Workflows—Overview
Big data frameworks (such as Apache Hadoop, 
Apache Spark, Apache Storm, and Apache Kafka) 
are increasingly recognized as powerful solutions 
to develop and deploy big data applications in cloud 
datacenters. Due to their ability to handle the 4Vs 
of big data, they are considered as suitable alter-
natives to traditional data processing frameworks 
(e.g., Microsoft Excel, MySQL, Oracle, etc.). Each 
big data framework deals with different aspects 
of big data requirements. For example, a batch- 
processing framework (such as Apache Hadoop; 
http://hadoop.apache.org) analyses data in simulta-
neous and stateless fashions, while a stream process-
ing framework (such as Apache Storm; http://storm.
apache.org) handles continuous big data streams 

in a consecutive and stateful manner.1 Such big 
data frameworks have found application in several 
domains such as public healthcare, business sectors 
and financial trading for solving problems, such as 
curing chronic diseases, understanding consumer 
behaviors, and detecting frauds, to name a few.

Big data management systems (BDMS), also known 
as resource negotiators or data operating systems, pro-
vide a generic programming layer for managing lifecy-
cle operations related to big data application workflows  
(e.g., composition, mapping, QoS monitoring, and 
dynamic reconfiguration).8 These BDMSs such as 
Apache Hadoop YARN (https://hadoop.apache.org/ 
docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html) 
and MESOS (http://mesos.apache.org/) implement 
intelligent algorithmic techniques to obtain superior 
performance among diverse big data applications hosted 
on shared datacenter resources (see Figure 2). Program-
ing BDMSs and the underlying big data frameworks in 
a SDN-native fashion would lead to several advantages, 
such as the amount of network resources allocated to 
each big data framework hosted on a cloud dataceenter 
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can be controlled and dynamically reconfigured to meet 
changes in data flows (4Vs). It will enable explicit alloca-
tion of bandwidth to one or more big data frameworks 
in periods of high data flow, and release bandwidth  
in favour of one or more other big data frameworks in 
periods of low data flow.

Consider a disaster management big data appli-
cation workflow such as flood monitoring, detec-
tion and response as described in Center for Earth 
Systems Research9 and Ranjan et al.8 managed by a 
BDMS such as YARN. Such an application workflow 
is dependent on data from multiple sources including 
weather stations, traffic flow, water depth, and water 
flow sensors. Other information sources include pop-
ulation of the area, emergency evacuation and alert-
ing plans, location of emergency response teams, etc. 
It is clear that heterogeneous8 big data frameworks 
will process each of these data sources.

During the normal mode of operations, the sen-
sors and other data sources transmit data at mod-
erate volume and velocity to big data frameworks 
hosted in cloud datacenters via a network of routers 
and switches. In case of the occurrence of a flood-
ing event, the sensors and other data sources stream 
data into the cloud at much higher volume and veloc-
ity in order to parametrize, calibrate, and validate 
the flood prediction models in real-time. However, 
this leads to new run-time QoS requirements for net-
work providers. These include (1) the ability to obtain 
data from the location of flooding at a higher velocity 

and volume; (2) reconfiguring the inter-networking 
routes to provide priority paths to the data origi-
nating from data sources near to the flooding area;  
(3) reconfiguring the sensor and data sources to pro-
duce data at a higher frequency; and (4) additional 
resources to be allocated to big data frameworks in 
the cloud for managing and processing the big data 
stemming from multiple data sources.

To address the aforementioned challenges and 
the QoS demands imposed by big data application 
workflows such as flood modeling programmed 
using multiple big data frameworks on cloud data-
centers, the BDMSs and the underlying network 
need to work collaboratively in a coordinated fash-
ion. However, achieving this is a non-trivial activ-
ity and requires seamless exchange of data, QoS 
requirements, application demands, data sources 
capabilities across each layer of the cloud, and 
the inter-networks (in case of an SDN, this will 
include the data, control, and management plane as 
described earlier).

Why Program SDN-Native Big Data 
Applications?
SDN is a promising technology and when tightly 
integrated with the resource management capa-
bilities offered by datacenters’ server hypervisors 
BDMSs (e.g., Apache YARN, Apache MESOS) can 
provide significant benefits as regards to improv-
ing application and network QoS. In a broader 
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sense, making cloud applications (including big data 
applications) SDN-native can provide remarkable 
benefits including: (1) avoiding traditional network 
issues (route congestion and network bottlenecks); 
(2) enhanced scheduling decisions via cross-layer 
(server-to-network and vice versa) QoS optimiza-
tion (availability, load, throughput, available budget, 
etc.) at run-time; (3) creating dynamic routes for  
application-specific data flows; (4) higher degree 
of run-time control of quality of services (through-
put, delay and packet loss), software quality assur-
ance (e.g., fault-tolerance, reliability, etc.), and 
SLAs; (5) availability of APIs for run-time network 
traffic engineering (isolation, aggregation, charac-
terization, and route reservation); and (6) dynamic 
network reconfiguration in response to physical net-
work link failures and improper network behaviors.

Big Data Management System (BDMS)—
Overview
Let’s focus on YARN in order to illustrate a typi-
cal BDMS that can be used to program large-
scale application workflows. YARN decouples the 
resource management responsibilities and big data 
programming frameworks into two separate compo-
nents. It consists of four elements: a central resource 
manager, node managers, application masters (e.g., 
Apache Hadoop’s master node, Apache Storm’s mas-
ter node, etc.), and worker containers, as shown in 
Figure 2. The big data resource manager (BDRM) 
is a central authority that schedules and reconciles 
resource contention among different application 
masters. A node manager (NM) is responsible for 
managing node resources (memory, CPU, etc.) and 
reporting node failures/availability to BDRM. Every 
newly deployed big data framework has an applica-
tion master (AM), which is in charge of the applica-
tion lifecycle and resource negotiations with BDRM 
(e.g., number of containers, priorities, and preferred 
locations). Last, a container is a lightweight, virtu-
alized resource deployed on a slave node to run an 
application master-specific data processing task.

From the user point of view scheduling and 
resource allocation, each big data framework  
application-master explicitly specifies the amount of 
memory, CPUs, and queues to be allocated for its 
containers and application master to the YARN’s 
BDRM. Following that, the BDRM tries to reserve 

such resource requirements using resource avail-
ability information obtained from the NM. The 
resource allocation decision can be affected by 
many factors such as SLA (e.g., data processing 
deadlines, available budget) requirements. YARN 
has a built-in configuration management compo-
nent in order to automatically configure and deploy 
resources and applications. In order to configure 
YARN, numerous XML files need to be configured 
based on users’ requirements, such as yarn-site.
xml (https://hadoop.apache.org/docs/r2.7.0/hadoop- 
yarn/hadoop-yarn-common/yarn-default.xml), hdfs-
site.xml, mapred-site.xml, etc. Every file contains 
hundreds of parameters that need to be specified 
explicitly, such as the amount of memory and CPU 
for every container. Once the configuration files are 
in place, YARN starts the deployment automati-
cally (e.g., RM, NM, containers, etc.). Furthermore, 
for configuring YARN in cloud environments (e.g., 
EC2), users can leverage the power of deployment 
tools such as Fabric and Puppet, which leads to 
greater flexibility and automation.

Integration of BDMS with SDN—Current 
State of the Art
As big data applications can be compute-intensive, 
data-intensive, or both, it is of importance to tune 
network and server component configurations con-
stantly. To achieve this, BDMSs such as YARN and 
MESOS should be able to schedule and allocate both 
compute and network resources accordingly. From 
the system point of view, scheduling and resource 
allocation spans many levels—from the allocation 
of storage (e.g., HDFS), to allocation of virtualized 
compute (server) resources among different types of 
application containers (e.g., Hadoop, Storm, Spark, 
etc.), to allocation of network bandwidth and routes 
to application masters and containers depending 
on the data flow behaviors. However, from the net-
work point of view, YARN and other BDMSs have no 
authority to configure, schedule, and dynamically 
allocate network resources; instead, it assumes the 
networks’ best-effort delivery for the data flow across 
the application containers. Moreover, YARN and 
other BDMSs have no built-in intelligence for man-
aging network traffic; hence, it delegates such tasks 
to underlying network controllers. To summarize, 
existing BDMSs have no capabilities that can allow 
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them to leverage the power of SDN in order to opti-
mize the datacenter network scheduling and alloca-
tion based on data flow across big data frameworks.

Nevertheless, current SDNs are network- 
centric, having no embedded capabilities to support 
requirements posed by higher-level big data applica-
tion workflows and their respective BDMSs. More-
over, existing SDNs do not directly provide support 
for any network scheduling capabilities to BDMSs. 
Therefore, further work is required to develop holistic 
integration between SDN-BDMSs that considers dif-
ferent scheduling requirements of big data application 
workflows, users QoS/SLA, and run-time data flows.

For the last few years, some research has been 
conducted in the context of integrating a particular 
type of big data framework (e.g., Apache Hadoop) 
with SDN for achieving faster and efficient data 
processing. However, there have been very few 
efforts that really propose any framework or system 
to achieve this. Qin et al.10 proposed a scheduling 
system called BASS (Bandwidth Aware Schedul-
ing with SDN) which integrates the scheduling 
engine of Hadoop with SDN Controller. It utilizes 
an SDN controller to obtain the bandwidth avail-
ability and allocates tasks locally or remotely based 
on network bandwidth. This work shows promis-
ing results. Han et al.11 proposed an architecture 
of an SDN-enabled content delivery network sys-
tem. They utilized a Social TV analytics applica-
tion on Hadoop as the use case and utilized the 
flow forwarding feature of SDN. However, none of 
the existing algorithmic techniques (for scheduling 
and resource allocation) available in the literature 
are able to exploit the full potential of SDN in 
context of complex big data application workflows 
(that combines multiple big data frameworks and 
heterogeneous data flows from multiple sources) 
managed by systems such as YARN and MESOS. 
In the next section, we propose a novel architec-
ture for programming an SDN-native BDMS that 
combines the resource management capabilities of 
BDMSs with the network control and management 
capabilities of SDN.

An Architecture for Programming SDN-Native 
Big Data Application Workflows
To the best of our knowledge, there has been rela-
tively little research on the development of a holistic 

programming architecture for making BDMSs SDN-
native. To this end, we propose a system-level 
description of SDN-native BDMS architecture  
(Figure 3), which focuses on three main compo-
nents: configuration management, scheduling, and 
traffic management.

As shown in Figure 3, the key layers of an SDN-
native BDMS architecture are resource, control 
and management, and application. The application 
layer is made of diverse big data application work-
flows that leverage instances of one or more big data 
frameworks. The resource layer contains compute, 
storage, and networking resources. The compute 
and storage resources will be managed by traditional 
BDMS APIs and network resources are managed 
by an SDN controller using southbound APIs. The 
requirements of these different application work-
flows and current resource availability will be moni-
tored by the middle layer (control and management 
layer). This layer will interact with an SDN control-
ler to manage network resources. This management 
layer is comprised of a new, intelligent BDRM (to be 
realized within Apache YARN or Apache MESOS), 
containing three components (scheduling, traffic, 
and configuration managers).

Scheduling manager: The role of scheduling 
manager is to make decisions about which appli-
cation master and containers (an instance of big 
data processing framework) should utilize which 
storage, server, and network resources and at what 
time. It will also need to dynamically provision 
(on some instances reprovision) network resources 
based on data flow and analytics workload seen 
across the big data processing frameworks. In order 
to dynamically allocate network resources, the 
scheduling management will need to constantly 
monitor the data flow across big data processing 
frameworks using a new class of APIs that con-
nects to both BDMSs as well as the SDN control-
ler. The scheduling manager will need to counter 
various scenarios including contention and diverse 
QoS/SLA requirement across multiple application 
workflows (priorities, fairness, deadline, budget, 
urgency, etc.). In general, such scheduling prob-
lems are NP-hard, thereby requiring computation-
ally complex heuristics, which must act in near-real 
time, increasing the overall challenges of building 
such systems.
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Traffic manager: The traffic manager moni-
tors the network availability by interacting with the 
SDN controller using BDMS APIs. Given the net-
work requirements may vary over time, the traffic 
manager will need to update the network informa-
tion regularly. The more up-to-date the information 
is the better the network resource allocation deci-
sion the scheduling manager will be able to take. To 
this end, the traffic manager will need to monitor 
network link congestion, failure, and bandwidth 
utilization.

Configuration manager: A configuration man-
ager is one of the most important components of the 
system architecture, which performs various system 
operations and configurations on behalf of users. In 
a general sense, it is responsible for configuring the 
entire resource stack (e.g., big data processing frame-
works, server, storage, and network). It should pro-
vide a simpler and automated application deployment 
with higher accuracy, flexibility, and fault tolerance 
compared with manual scripting-based methods. The 
configuration manager will obtain the application 
deployment graph (topology connecting application 
masters and containers) from the scheduling manager 
to configure compute, storage, and network resources 
in a very flexible and efficient manner. As configura-
tions should be performed programmatically, there is 
less chance of errors and inconsistencies.

Future Research Directions for Programming 
SDN-Native Big Data Applications
To implement the proposed SDN-aware BDMS 
and conduct scheduling, traffic, and configuration 
management in holistic manner, there are several 
research challenges that need be tackled:

•	 Integrating network requirements of diverse 
application workflows: It is important to first 
understand data flows in the life cycle of a big 
data application, then based on this, to define 
network requirements for each data processing 
component (batch processing vs. stream pro-
cessing vs. transactional). For example, BDMS-
MapReduce batch processing applications often 
require good network performance during the 
mapping phase (copying of initial data to map 
functions) and shuffling phase (copying of 
intermediate data to reduce functions). In com-
parison, stream applications often demand con-
tinuous, excellent network performance as they 
process unbounded real time data.

•	 Simultaneous consideration of volume and veloc-
ity in SDN-BDMS: With more and more applica-
tion workflows concentrating on real-time data 
ingestion and processing, there is a requirement 
to investigate techniques that not only enable 
scheduling decisions considering volume aspects 
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as done in previous studies but also velocity. The 
new class of scheduling technique will need 
to reconcile high-speed (including burstiness) 
arrival of data to the BDMS that needs to be pro-
cessed in a timely manner along with large vol-
umes historical data. The former aspect, typically 
addressed by streaming frameworks (such as 
Apache Spark and Heron), demands fine-grained 
resource management and scheduling: As the 
arriving flow of data varies in intensity, different 
amount of storage, server, and network resources 
need to be allocated to process this real-time data. 
These frameworks usually manage it at operator 
level, where an operator is a small computation 
that is applied to each received tuple, and the 
stream application is composed of a workflow 
of such operators. The SDN controller needs to 
constantly optimize network resources to handle 
different operator workflows and variation in 
the velocity of data arrival, while maintaining 
enough resources for batch processing frame-
works (e.g., Apache Hadoop) that need to co-exist 
in the BDMS. Research is needed towards a new 
class of scheduling algorithms to enable such 
advanced, cross-layer, cross-framework resource 
management. Computing optimal configuration 
across network, storage, server, and big data pro-
cessing frameworks in response to changing data 
volume and velocity is NP-complete individu-
ally. In other words scheduling problems in the 
context of SDN-native big data applications can 
be classified as strongly NP-complete ones,12 as 
can even the simple problem of compute or stor-
age resource allocation in distributed computing 
architectures.13

•	 Conflicting resource requirements of multiple 
applications: In a large distributed environment 
such as a cloud datacener, multiple big data 
application workflows are simultaneously com-
peting for the resources. Many of the applica-
tions’ resource requirements change over time 
and depend on the time and space. For example, 
during non-emergency periods, it is not essen-
tial to store or process all the weather data, as 
discussed earlier. However, during emergency 
situations, the collected data needs to be fine 
grained to enable better disaster management. 
Thus there is a need of deriving new, dynamic 

scheduling policies to deal with resource man-
agement based on various factors (priorities, 
fairness, etc.). This is made even harder due to 
the conflicting objectives of minimizing aggre-
gate resource requirements while attempting to 
provide “near-infinite” elasticity to each individ-
ual workload.

•	 Real-time network monitoring and configuration: 
In general, it is almost impossible to perma-
nently reserve network resources in a large cloud 
datacenter where many application workflows 
will be sharing resources based on dynamic 
resource allocation and mapping/binding. As a 
massive number of application workflows ran-
domly and continuously run on cloud networks, 
it is impossible to assure network configurations 
are stable. Network links will be congested, 
failed, over-utilized, and under-utilized at some 
point due to random workload distribution of 
application workflows. Thus, new classes of 
monitoring techniques should be investigated 
for dynamically monitoring routes and band-
widths based on a number of options (e.g., user-
level, application-level, flow-level, etc.). The data 
provided by such monitoring techniques can be 
used to formulate failure recovery techniques 
and mechanisms, as well as developing models 
for predicting performance anomalies.

•	 New application-level and SDN level API: In 
order to allow every layer to communicate and 
coordinate with its adjacent layers, new dedi-
cated APIs must be developed. For example, 
southbound APIs (which drive the interaction 
between the controller and network devices) 
need to be extended to allow management and 
monitoring of both network, and compute and 
storage resources. The new communication  
and coordination protocols between the schedul-
ing manager and SDN controller is also needed 
for obtaining real-time resource utilization/
availability and enforcing policies.

•	 Accurate application demand and network traf-
fic prediction: Scheduling is not a trivial task 
when several diverse factors are involved which 
vary with time and space. Thus, the scheduling 
decision should not be changed very frequently. 
This requires not only the accurate estimation 
of current demand but also prediction of future 
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demand and resource availability. Some work 
has been done to date regarding partitioning 
and transitioning microflows to smoothly evolve 
the configuration of subnetworks under chang-
ing conditions.14 

•	 Scalable control and management layer: 
Depending on how rapid and frequent updates 
are required within a system, decision making 
delays should be minimal. Now, in reality this 
layer needs to monitor and configure several 
thousands of applications and resources with 
numerous configurations. Thus, this layer needs 
to make decisions efficiently which requires 
decentralized and scalable implementation, 
especially in the case of hyperscale cloud data-
centers which may have hundreds of thousands 
of interconnected physical servers.

With the advancement of software-defined 
networking technology, datacenter networks are 
emerging as the premier resource and/or infrastruc-
ture which make it possible to make the applica-
tion stack SDN-native by programming the network 
stack all the way from physical topology to flow level 
traffic control. In this Blue Skies piece, we proposed 
tight integration of application stack (i.e., big data 
programming models) and network stack for jointly 
optimizing big data application performance and 
SDN performance at run-time. How to fully lever-
age and integrate SDN capabilities with existing 
BDMSs (e.g., YARN, MESOS) and how program big 
data applications in an SDN-native manner requires 
a number of important advancements. To this end, 
we attempted to briefly explore the research chal-
lenges and open issues related to integration of SDN 
and BDMSs, and discuss future research directions 
that need to be further investigated.
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