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Abstract—With the evolution of Internet and extensive us-
age of smart devices for computing and storage, cloud com-
puting has become popular. It provides seamless services
such as e-commerce, e-health, e-banking, etc., to the end
users. These services are hosted on massive geodistributed
data centers (DCs), which may be managed by different ser-
vice providers. For faster response time, such a data explo-
sion creates the need to expand DCs. So, to ease the load on
DCs, some of the applications may be executed on the edge
devices near to the proximity of the end users. However,
such a multiedge-cloud environment involves huge data
migrations across the underlying network infrastructure,
which may generate long migration delay and cost. Hence,
in this paper, an efficient workload slicing scheme is pro-
posed for handling data-intensive applications in multiedge-
cloud environment using software-defined networks (SDN).
To handle the inter-DC migrations efficiently, an SDN-based
control scheme is presented, which provides energy-aware
network traffic flow scheduling. Finally, a multileader mul-
tifollower Stackelberg game is proposed to provide cost-
effective inter-DC migrations. The efficacy of the proposed
scheme is evaluated on Google workload traces using var-
ious parameters. The results obtained show the effective-
ness of the proposed scheme.

Index Terms—Cloud data centers, edge computing, en-
ergy efficiency, software-defined networks (SDNs), Stackel-
berg game.

NOMENCLATURE

n,m, f Number of cloud DCs, edge DCs, job type.
X,Y Delay-tolerant, delay-sensitive workloads.
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F Job with requirements: atype, breq, creq.
atype Type of application.
breq, creq Communication and computing requirement.
α(t) Arrival rate at time slot t.
Qf

i (t + 1) Size of queue for type f jobs at time (t + 1).
Qf

i (t) Size of queue for type f jobs at time (t).
Qpr

i (t) Present size of queue at the ith DC at time (t).
λ

f
i (t) Number of type f jobs routed at the ith DC.

Si Number of servers allocated.
μi Processing speed of each server.
SLAv

p SLA violations of the pth server.
tthr
p Threshold utilization time.

tact
p Total active time of the server.

Dmig
p Performance degradation due to migration.

tres
i , tres

max Response time and desirable response time.
Dcomm

i , Di Communication and overall delays.
Dmig

i , Dproc
i Migration and processing delays.

dnet Delay incurred due to underlying networks.
Dedge

i Delay incurred for handling jobs at edge devices.
vi, ai Service and arrival rate at the ith edge device.
Ei,E

p
i Energy consumption of the ith DC and the pth

server of the ith DC.
Ec

i , Eo
i Energy consumed for cooling and other activities

of the ith DC.
Enet

i Network energy consumption of the ith DC.
Enet

sw , Enet
port Energy consumption of switches and ports.

Ep
idl Energy consumption of the idle pth server.

Ep
max Maximum energy consumption of the pth server.

Up
i Utilization of the pth server of the ith DC.

Rp(t) Resources consumed at time t at the kth server.
Rp

max Resources consumed at time t at the kth server.
xedge

i Job requests handled by edge devices.
Eedge

i Energy consumed by the ith edge device.
ai, bi , ci Predefined parameters for edge devices.
Cf

i Cost for handling type f job at the ith DC.
C tot

i Cost for handling type f job after migration.
Ccomp

i Cost related to computing at the ith DC.
Ccomm

i Cost related to at the ith DC.
Ceng

i Cost related to energy at the ith DC.
Cpen

i Cost related to SLA violations at the ith DC.
Cmig

i→k Migration cost.
Pi,Mi, Si Processor, memory, storage required.
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ρ, ρe Price coefficient for resources and energy.
CL

i , C IDC
i Local and Inter-DC communication cost.

Cband
i Communication cost.

bnet Bandwidth cost coefficient.
bcomm
i Bandwidth requirement for communication.

Ef
i Energy required to handle type f job.

Y f
i (t) Number of migrating jobs at time t.

Cslav
p SLA violation cost per unit time.

T slav
p Duration of SLA violation for the pth processor.

Ui, Uk Utility function of the ith and kth DC.
Rf Revenue received for handling type f job.
Rmig Revenue received for hosting f job migrated.
�̂

map
ijk , Uijk Utility map function of ijk pair.

ηavi Delay of the network with new load.
τ av
i Throughput with new load.

d i→k
j

Distance from the ith to the kth DC at j.
zijk Decision variable.

I. INTRODUCTION

C LOUD computing (CC) is one of the most powerful tech-
nologies to provide shared pool of resources such as

servers, storage, and networks to the end users. Such resources
are hosted at massive data centers (DCs) located geographically
across the globe [1]. In recent years, data-intensive applications
such as e-health, e-commerce, and e-banking have generated a
huge volume of heterogeneous data, which vary with time [2].
To handle such massive data streams generated from these ap-
plications, the existing DC’s infrastructure has been expanded
in recent times. As per a recent survey [3], nearly 12 million
servers are deployed in almost 3 million DCs in order to handle
the online activities across the U.S. only. Moreover, with the
advent of Internet of things (IoT), the big data generated from
different applications have increased exponentially, which cre-
ates a need to design new effective solutions for improvement
of the existing network infrastructure. So, such data explosion
has created the demand for big data processing using large-scale
geodistributed DCs.

Recent developments in the CC sector has provided a mul-
ticloud environment, which provides multiple cloud services
through single heterogeneous computing architecture. Such a
multicloud environment provides low latency, high data rate,
and nondisruptive services with respect to big data process-
ing to the end users [2]. In this direction, large cloud service
providers (CSPs) such as Google, Microsoft, and Amazon have
also stepped into big data processing using large-scale DCs lo-
cated at various geographic locations [4]. To manage this huge
amount of data, Google introduced the MapReduce framework
supported by 13 DCs spread in eight countries across four conti-
nents [5]. Similarly, Netflix utilize Amazons EC2 infrastructure
distributed across 11 regions over the globe to deploy their ser-
vices [6]. Several architectures such as Spark and Storm have
also been developed using the data-flow concept for improving
big data processing [4].

For efficient processing of big data, a huge amount of
data need to be transferred across geodistributed DCs using

the underlying networks. However, such a movement of huge
amount of data across DCs may incur large cost. For example,
706-GB/day inter-DC traffic is generated in BigBench, which
involves a large amount of operational cost [7]. With continuous
growth in size of big data generated by various sources, the need
of migrating datasets across DCs for processing also increases.
In this situation, the performance of underlying networks may
become worst due to heavy traffic generated. Moreover, this may
also generate high migration delay, network costs, and service-
level agreement (SLA) violations to the CSPs. Several CSPs
have deployed efficient data migration technologies in recent
years. For example, Effingo has been deployed by Google to
handle the large-scale data migration in its DCs [2].

Jayalath et al. [8] highlighted the impact of distributing com-
putation for big data processing across large set of nodes. Sim-
ilarly, Li et al. [6] presented an optimization problem by con-
sidering data movement and task placement to minimize the
inter-DC traffic along with guaranteeing job completion with in
a predefined time. Yu et al. [9] highlighted that the advent of
IoT has leveraged the need of serving the requests of mobile de-
vices in closer proximity of the users using geodistributed DCs.
Yassine et al. [10] proposed a multirate bandwidth-on-demand
scheme for inter-DC communications in order to offer reliable
multimedia services. After analyzing the above-discussed pro-
posals, it is evident that providing services closer to the end user
can provide low-latency services for end users.

In this context, a latest technology that provides localized
computing, storage, and processing services to end users is
known as edge/fog computing. The ubiquitous nature of edge
computing is critical for handling wide range of IoT-based real-
time and latency-sensitive applications. Deng et al. [11] pro-
posed a workload allocation scheme for a fog-cloud scenario.
The authors put an emphasis on the fact that the cooperation
between cloud and fog may help to achieve desired quality of
service (QoS) and energy efficiency. Jalali et al. [12] presented a
comprehensive analysis of CC and edge computing. The authors
stressed on keeping the data closer to the end user in order to
achieve lower latency. However, in the case of inefficient usage
of the network resources, the energy consumption may increase.
To resolve this issue, Borylo et al. [13] proposed a dynamic
resource allocation scheme for an energy-aware cloud-fog in-
terplay. The authors focused that optimal interplay between fog
and cloud DCs using a software-defined network (SDN) can
provide benefits such as energy efficiency and high QoS.

One of the major challenges for the underlying network is
the inter-DC migration overhead due to high velocity of data
movements across different DCs. In this direction, Lu et al. [2]
proposed a dynamic anycast model using elastic optical inter-
DC networks for data migration and backup. Gharbaoni et al.
[1] presented an anycast-based approach to select a destination
server for migrating virtual machines (VMs) by considering
the actual load on inter-DC connections and VM data transfer
requirements. Wang et al. [14] discussed the impact of inter-
DC migration on performance of underlying DC networks. Gu
et al. [4] highlighted that inter-DC traffic in big data process-
ing constitutes large portion of DC traffic and thereby incurs
a huge amount of operational cost. Chen et al. [7] presented a
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Fig. 1. System model.

workflow allocation graph, which considers the price diversity
across geodistributed DCs to achieve cost minimization for big
data processing. From the above proposals, it is evident that
the performance of the underlying networks is an important
parameter to achieve low-latency inter-DC migrations. So, to
handle large data movements across different DCs, the SDN
can be an attractive choice to manage the underlying networks
resources. In this direction, Blenk et al. [15] presented SDN
architecture for cost-effective and flexible control of commu-
nication networks. Xu et al. [16] proposed a bandwidth-aware
energy-efficient routing algorithm using an SDN to improve net-
work performance. Wang et al. [17] utilized an SDN to define
the QoS and energy-aware flow path for network management.

A. Contribution

Based upon the above discussion, the major contributions of
this work are given as follows.

1) A workload slicing scheme for handling data-intensive
jobs in multiedge-cloud environment is presented.

2) An SDN-based controller is designed to provide an
energy-aware flow-scheduling scheme with access of vir-
tualized network resources.

3) A multileader multifollower Stackelberg game is formu-
lated for providing optimal inter-DC migrations.

II. SYSTEM MODEL

Fig. 1 shows the system model comprising of a multiedge-
cloud environment having n cloud and m edge geodistributed
DCs located in a region. The cloud DCs are large-scale infras-
tructure that consists of huge computing, storage, and network
resources. However, the edge DCs consist of nano-DCs and
edge devices (EDs). The proposed system model comprises of
two controllers: 1) global controller (GC), and 2) local con-
troller (LC). The GC is responsible for handling the workload
classification and scheduling in multiedge-cloud environment
and the LC handle the inter-DC migrations.

A. Workload Model

Consider a workload (W) comprising of F type of jobs to be
processed in multiedge-cloud environment. A job is described

as F : (atype, breq, creq), where atype, breq, and creq denote appli-
cation type, communication, and computational requirements,
respectively. At time t, type f jobs are modeled using poisson dis-
tribution with an arrival rate of (α(t)). The type f jobs scheduled
at the ith DC follow the queues dynamics [18] as follows:

Qf
i (t + 1) = max

[
Qf

i (t)−Qpr
i (t)

]
+ λ

f
i (t) (1)

where λ
f
i (t) is the number of type f jobs routed to the ith DC.

B. QoS Model

SLA is the most important requirement during handling in-
coming workload in multiedge-cloud environment. If the re-
sources required to process the workload exceed the available
capacity of resources with a DC, then a violation of SLA occurs.
The SLA violations are computed on the basis of the time for
which the pth server is experiencing threshold level of utiliza-
tion (tthr

p ), total active time (tact
p ), and performance degradation

(Dmig
p ) due to migration. The SLA violations (SLAv

p ) of the pth
server of ith DC is given as follows [19]:

SLAv
p =

1
p

P∑
p=1

tthr
p

tact
p

Dmig
p . (2)

Now, the performance degradation (Dmig
p ) due to migration is

defined similar to [19] given as follows:

Dmig
p =

1
W

W∑
w=1

�dg
w

�cp
w

(3)

where �dg
w and �cp

w denote estimate of performance degradation
due to migration and resources requested for migration.

Moreover, low delay and high response time are the most
desired requirements of end users. In this context, the response
time (tres

i ) for handling an incoming job is illustrated as follows:

tres
i =

1
μi × Si −Qpr

i (t)
+

1
μi

+ Dcomm
i (4)

where Si is the total number of servers allocated, μi is the
processing speed of each server, and Dcomm

i denotes the delay
incurred for communication from source to the allocated DC.

The delay incurred for communication (Dcomm
i ) from source

to the allocated DC is given as follows:

Dcomm
i = dnetλ

f
i (t) (5)

where dnet is delay incurred due to an underlying network.
The overall delay incurred in processing an incoming job

request comprises of response time, migration (Dmig
i ), and pro-

cessing (Dproc
i ) delays. So, the delay (Di) is given as follows:

Di = Dmig
i + Dproc

i + tres
i . (6)

In order to meet the SLA requirements, sometimes, workload
is migrated from one DC to another that may incur additional
delay. The delay incurred during inter-DC migration (Dmig

i→k )
from the ith DC to the kth DC is given as follows:

Dmig
i→k = dnetα(t). (7)
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Now, in case an edge DC or devices is handling the job,
the delay incurred (Dedge

i ) is defined using the M/M/1 queuing
model and is given as follows:

Dedge
i =

1
vi − ai

(8)

where vi and ai denote the service rate and the arrival rate of
jobs, respectively.

C. Energy Model

The energy consumption of a DC comprises of energy con-
sumed by processors (Ep

i ), network resources (Enet
i ), cooling

(Ec
i ), and other infrastructure (Eo

i ). So, the energy consumption
of the ith DC is given as follows:

Ei =
∑

p

Ep
i + Enet

i + Ec
i + Eo

i . (9)

Now, the energy consumption of a processor depends directly
on the amount of utilization (Up

i ) and is given as follows:

Ep
i = Ep

idl + (Ep
max −Ep

idl) Up
i (10)

where Ep
idl is the energy consumed by the idle pth server, and

Ep
max is the maximum energy that the pth server can consume.
The level of utilization of the pth server of the ith DC depends

on the amount of resources consumed (Rp(t)) at time t and
maximum capacity of processor (Rp

max ) and is given as follows:

Up
i =

(
Rp(t)
Rp

max

)
× 100. (11)

A major chunk of energy consumption of DCs depends on
the network infrastructure. The network devices consume en-
ergy on the basis of fixed energy consumption (Enet

sw ) and dy-
namic energy consumption (Enet

port). So, the energy consumption
of network devices in the ith DC is given as follows:

Enet
i = Enet

sw + Enet
port. (12)

The energy consumed by the network infrastructure in a DC
depends upon the working time of the network devices

En
dc =

∑
q∈S

Eq × Tq +
∑
r∈P q

Eq
r × T q

r (13)

where S and Pq are set of switches and ports in switch q; Eq ,
Tq , Eq

r , and T q
r are the fixed power consumed by the qth switch,

working time of the qth switch, dynamic power consumed by
the rth port of the qth switch, and working time of the rth port
of the qth switch.

Now, expanding (13) as per anticipated traffic, it becomes

En
dc =

∑
q∈S

Eq × τq

bcΘq |Pq| +
∑
r∈P q

Eq
r ×

τ q
r

bcΘ
q
r

(14)

where τq is the aggregate traffic traversing through switch q,
τ q
r is the aggregate traffic traversing through port r of switch q,

Θq is the average occupancy ratio of switch q, and Θq
r is the

average occupancy ratio of port r of switch q for the working
time.

Now, if the EDs are handling the job requests (xedge
i ), then the

energy consumed by the ith ED is given as follows:

Eedge
i =

(
ai(x

edge
i )2 + bix

edge
i + ci

)
× t (15)

where am > 0 and bm , cm ≥ 0 are the predefined parameters.

D. Cost Model

The operational cost (Cf
i ) for handling type f job at the ith

DC comprises of different subcosts and is given as follows:

Cf
i = Ccomp

i + Ccomm
i + Ceng

i + Cpen
i (16)

where Ccomp
i , Ccomm

i , Ceng
i , and Cpen

i are the costs incurred
on computing resources, communication infrastructure, energy,
and SLA violations, respectively.

In some cases, migration of job from the ith DC to the kth DC
occurs. Hence, a migration cost (Cmig

i→k ) is also incurred. After
considering this fact, the total cost (C tot

i ) incurred by a DC while
handling f type of jobs is given as follows:

C tot
i = Cf

i + Cmig
i→k . (17)

The cost on computing resources allocated to handle a job
depends on processor (Pi), storage (Si), and memory (Mi) re-
quired for a specific time (ti). The cost for allocating various
computing resources to the allocated job is given as follows:

Ccomp
i = (ρPi + ρMi + ρSi)× ti (18)

where ρ is the variable price coefficient for different resources.
The cost incurred for communication of data involves two

types: 1) local communication (CL
i ) and 2) inter-DC communi-

cation (C IDC
i ), and is shown as follows:

Ccomm
i = CL

i + C IDC
i . (19)

Moreover, the above communication cost depends on the
bandwidth requirements of the end user and is given as follows:

Cband
i =

∑
j,k

bnetλ
f
i (t)breq (20)

where bnet is the bandwidth cost coefficient.
The cost of energy (Ef

i ) required to execute type f jobs at the
ith DC is given as follows:

Ceng
i = ρeE

f
i (21)

where ρe is the price coefficient charged for per unit energy.
The cost for migrating type f jobs from the ith DC to the kth

DC over flow path j is given as follows:

Cmig
i→k =

∑
j,k

bnetY
f
i (t)breq (22)

where Y f
i is the number of migrating type f jobs.

Sometimes, SLA violations may occur. Hence, the service
provider has to bear a penalty (Cpen

i ) as given below [19]:

Cpen
i =

∑
p

[Cslav
p T slav

p ] (23)

where Cslav
p is the cost of SLA violation per unit time and T slav

p

is the duration of violation for the pth processor of the ith DC.
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III. PROBLEM FORMULATION

In order to select an appropriate DC for migration in
multiedge-cloud environment, the entities that play a vital role
are source DC (i), flow path (j), and destination DC (k). Now,
multiple choices exist for migrating data from the ith DC to the
kth DC on the basis of j flow paths. The mapping (�̂map

i,j,k ) of
these entities is shown as follows:

�̂
map
i,j,k =

n∑
i=1

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1, 1, 1 1, 2, 1 . . 1, j, 1

1, 1, 2 1, 2, 2 . . 1, j, 2

. . . . .

. . . . .

1, 1, k 1, 2, k . . 1, j, k

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (24)

For this purpose, a combined utility is defined as follows:

Uijk =
breq × ηav

i

(n + 1)× τ av
i

× 1
d i→k

j

(25)

where ηav
i and τ av

i are the average anticipated throughput and
delay of the network after including the new load. d i→k

j
is the

distance from the ith to kth DC through j.
To select the optimal mapping from the above-discussed ma-

trix, a decision variable (zijk , ∀t) is defined as follows:

zijk =

{
1, for Uijk > U ∗ijk

0, for otherwise
(26)

where ijk∗ is the set of pairs other than ijk.
Hence, the objective function is formulated using integer lin-

ear programming and is given as follows:

max

⎡
⎣

jn∑
j=1

(�1j11)z1j11 + �1j22z1j22 + .... + �1jn k z1jn k

⎤
⎦

(27)

subject to the following constraints:

zijk ∈ [0, 1] (28)

Ui(k) > Ui(k∗) (29)

Uk (t) > Uk (t− 1) (30)

0 <
∑

f

Qpr
i (t)creq ≤ Si (31)

tres
i ≤ tres

max (32)

Cmig
i→k < Cpen

i (33)

d( i→k
j ) < d( i→k

j )∗ (34)

where Ui(k) is the utility of the ith DC with respect to the kth
DC, Ui(k∗) is the utility of the ith DC with respect to DCs other
than k, Uk (t) and Uk (t + 1) are utilities of the kth DC at time t
and t + 1, respectively, tres

max is the maximum desirable response
time, and d( i→k

j )∗ denotes the distance between all pairs other

than the ith to kth DC through flow path j.

IV. PROPOSED SCHEME

The proposed scheme is divided into three phases. The algo-
rithms for these phases are described as follows:

A. Workload Slicing Scheme for Multiedge-Cloud
Environment

In this scheme, input workload (W ) is sliced into two cate-
gories: delay-sensitive (X) and delay-tolerant (Y ) workloads.
Now, X is based on real-time applications that require maximum
response. Moreover, Y is a workload with maximum comple-
tion time and requires high computing resources. But, it have
to be completed before a predefined deadline. Now, X is high-
priority workload, and it is scheduled before Y . The workload
(Y ) requires high computing resources and is routed directly
to geodistributed cloud DCs. But, the real-time workload (X)
is subdivided into two parts as shown below. One part of the
workload (Xe ) is scheduled to available edge DCs. However,
there may be some workload (Xc ), which requires high com-
puting resources that may not be available at edge DCs. Such a
workload slice is routed to cloud DCs. The architecture of the
workload slicing scheme is shown in Fig. 2. Algorithm 1 shows
the working of the proposed slicing scheme using prioritized
preemptive round robin (PPRR) similar to [20] to schedule the
jobs at DCs or EDs.

B. SDN-Based Controller

In the proposed SDN framework, the underlying network in-
frastructure is decoupled from the controller. Contrary to the
traditional networks, all the forwarding devices (FDs) such as-
routers, gateways, and switches in the SDN can flexibly adapt
to new functionalities and network policies. The communica-
tion infrastructure in the SDN follows the open flow protocol
[21], [22]. Fig. 3 shows the SDN architecture consisting of three
decoupled planes: data, control, and application, which are de-
scribed as follows:

1) Data Plane: The data plane consist of FDs that as per for-
warding decisions taken by the SDN controller. Such decisions
are configured into FDs using data-control plane interface. FDs
contain a set of flow tables and group tables that are linked to
each other by a pipeline [21]. The flow table follows the in-
struction set provided by the SDN controller. The instruction set
consists of the matching rule, priority, action, and statistics. The
working of data plane is described as follows.

Step 1: The source DCs that need to migrate the job to another
DC send a request. The request of DC is received by
a scheduler and queued for further processing.

Step 2: The scheduler matches the input requirements with
rules prescribed by the SDN controller through an
instruction set. The matching rule consists of flow
id, source IP address, source MAC address, virtual
LAN address, port number, and transport protocols
[21]. On the basis of matching rules, an appropriate
action is decided. The possible actions by FDs consist
forwarding, modifying, discarding, replicating, etc.
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Fig. 2. Workload slicing scheme.

Algorithm 1: Workload slicing and scheduling algorithm.
Input: Workload W
Output: Cloud DC or ED
1: Slice workload W into X and Y
2: if W = Y then
3: Check for type of jobs
4: Compute F : (atype, breq, creq)
5: if F : (atype, breq, creq) are available with DCi then
6: Add workload→ QN : (Q1, Q2, ...., Qn )
7: Select flow path using Algorithm II
8: Schedule job F→ DCi → PPRR
9: else

10: Schedule job→ DCi∗ → PPRR � i /∈ i∗

11: end if
12: else
13: Check for available EDs
14: Map X with available EDs
15: if Required resources are available with EDi then
16: Add workload→ QM : (Q1, Q2, ...., Qm )
17: Select flow path using Algorithm II
18: Schedule job→ EDi → PPRR
19: else
20: Add workload→ QN : (Q1, Q2, ...., Qn )
21: Schedule job→ cloud DCs
22: end if
23: end if

Step 3: Once an action is decided, the request is forwarded to
the flow manager. This is followed by the selection of
an appropriate flow table to complete the action.

Step 4: Once the appropriate flow table is selected, the packets
are migrated to the destination DC using it.

Step 5: This step involves feedback to verify the reliability
of the flow path. This is done by using statistics that
contains a counter for reporting to the controller.

2) Control Plane: The control plane is the decision making
plane that works on the basis of a control logic. Using the control
logic, the SDN controller forwards the programming and logic
instructions into an instruction set. The SDN controller is a cen-
tralized entity that handles the network traffic dynamically. But,
with an increase in the network traffic, the physical controller

Fig. 3. Architecture of the SDN-based control scheme.

gets overloaded. So, the efficiency of the physical controller
is degraded with respect to latency, bandwidth, and resilience.
One of the major issues that occur in a large-scale network is
the resilience, i.e., in case the primary physical controller gets
fail, then the entire network fails.

Hence, in order to resolve these issues, the concept of virtual
SDN (vSDN) network is used. The vSDN network allows the
network slicing of a large physical network into multiple virtual
networks. In this concept, the controller creates a virtual net-
work infrastructure, which can be utilized to schedule the flow
when physical resources are exhausted. However, the virtual
network resources are a slice of physical resources only. Using
the network hypervisor, the instances of the physical network



784 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 14, NO. 2, FEBRUARY 2018

are created as multiple virtual networks. The network hypervi-
sor is installed at the network operating system (NOS), which
acts as an intermediate layer between the vSDN network and
the underlying physical SDN network, hence allowing to exploit
parallelism by running multiple NOSs on the vSDN network.
The vSDN provides flexibility to the software programmer to
easily program and run their vSDN network via openflow proto-
cols and interfaces. The vSDN network consists of a set of mul-
tiple virtual controllers and virtual switches of a single physical
SDN network connected via a hypervisors. So, by extending the
physical network into multiple vSDN networks, manifold ben-
efits such as high resource utilization, load balancing, remote
programming, cost saving, and low overhead are achieved. In
order to handle multiple jobs, the controller adjusts the load
of the incoming jobs as per available resources using a load
balancing rate (Υ) as follows [21]:

Υ =
1/j ×∑i

0 Li

Lmax
(35)

where Lmax is the maximum load a controller/switch can bear.
The load balancing rate lies between 0 and 1. If the value of

Υ is close to 1, then it means that the load is evenly distributed.
However, if the value of Υ is low, then it means that the load
is not evenly distributed and the controller needs to migrate the
load using the offload manager.

The incoming traffic flow (f) is categorized with respect to
its status: 1) active (fa ), 2) queued (fq ), and 3) suspended (fs)
flows. Now, f is queued in the appropriate queue. The status of
flow is active only if a valid flow path (j) exists. The traffic flow
that is to be scheduled is added to a specific queue. A flow is said
to be active only if a valid path without any other flows exists for
it. As soon as the flow reaches the top of the queue, it becomes
active. However, a flow is said to be suspended if no valid path
exists for it. In this case, the controller reconfigures the flow
tables in order to provide a valid flow path for the suspended
flow. Once a valid flow path is available, then it is added to an
appropriate queue for scheduling.

An energy-aware flow-scheduling algorithm is presented to
provide a control logic to the SDN controller for taking decisions
related to flow scheduling. In order to make the flow-scheduling
process energy efficient, ports on an inactive link are put into
the sleep mode. Moreover, when all ports of a specific switch
are in the sleep mode, then the concerned switch is also put
into the sleep mode. This action is performed to minimize the
energy consumption of unused ports and switches [16]. In order
to synchronize the shifting of switch into the sleep mode, a
decision variable (Ψsyn, ∀t) is defined as follows:

Ψsyn =

{
1, for active

0, for idle.
(36)

If (Ψsyn = 0), then the switch shifts to the sleep mode. For this
purpose, a threshold time (tthr) is considered. The value of Ψsyn

becomes 0 only if the switch is idle for threshold time (tthr). The
switch shifts back to the active mode if the value of Ψsyn is 1.

A job (f) having size (sf ) with a deadline time (trf ), release
time (trf ), and guaranteed flow rate (rf ) is to route from DCi to

Algorithm 2: Energy-aware flow-scheduling algorithm.

Input: f , sf , tdf , trf , G, fa , fq , and fs

Output: path p, rf

1: Calculate guaranteed flow rate (rf ) using Eq. (37)
2: j← FindPath(G, fa , fq , fs , f , gf )
3: if valid path exists then
4: if physical path j exists then
5: Schedule fp over p
6: for Each flow path J do
7: Divide J into flow sets fset with no shared links
8: for fset ∈ J do
9: Calculate tact = activetime(fset)

10: Compute energy consumption using Eq. 14
11: if (tact is minimum) then
12: fq ← fq + f
13: Schedule f
14: end if
15: end for
16: end for
17: else
18: Check for virtual path jv

19: if (jv exists) then
20: Schedule f
21: end if
22: end if
23: else
24: Suspend fp till a valid path is available
25: fs ← fs + f
26: Report to controller
27: Controller rebuilds flow table for valid j
28: Repeat steps 1–16
29: end if
30: if flow f finishes then
31: Update fa ← fa − f
32: Move next flow in queue to the top
33: else
34: Repeat steps 1–16
35: end if

DCk . The guaranteed flow rate (rf ) is given as follows:

rf =
sp

T d
p − T r

p

. (37)

The flow path (j) on which the incoming flow (f) would be
routed should be selected in such a way that the utilization
of network resources are maintained in an optimal manner. The
proposed algorithm must adhere to minimal energy consumption
and guaranteed data rate while selecting a flow path (j) for flow
(f). The proposed flow-scheduling Algorithm 2 is as follows.

In the proposed algorithm, the guaranteed flow rate (gp ) is
computed for the flow (f ) (line 1). Now, valid paths are searched
in the flow table with respect to the network topology (G, fa ,
fq , fs , f ), and gf (line 2). If a valid physical paths exists,
then a link that consumes minimal energy is scheduled for f. To
achieve this, each available flow path J is divided into a set of
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TABLE I
CONDITIONS FOR INTER-DC MIGRATION

Case No. Decision Bandwidth Computing
resources

Case 1 True � �
Case 2 True (*) x �
Case 3 False � x
Case 4 False x x

(*) True only if virtual network resources are available.

flows (fset). After this, the active time (tact) is computed for each
element of fset. In the next step, the energy consumed by each
element of the flow set is calculated. Now, the incoming flow
is scheduled to flow element with least active time and energy
consumption. At this instant, the flow is on the top of queue and
its status is active (lines 3–15). However, if no physical flow
path exists, then virtual flow path (jv ) is checked. If jv exists,
then the f is scheduled over it (lines 16–20). But, there may
be a case when no valid flow path exists, then in such a case,
the incoming flow is suspended and the added to appropriate
queue. The issue is reported to the controller, which rebuilds a
valid flow path and the incoming flow is scheduled again (lines
21–26). After scheduling the flow, it is removed from the queue
of active flows and next flow in the queue is shifted to active
status (lines 27–33).

3) Application Plane: The purpose of application plane is to
interact with various end-user applications and provide feedback
to the controller through an application-control plane interface.
Various end-user applications such as e-commerce, e-banking,
multimedia-on-demand, etc., reside in this plane.

C. Stackelberg Game for Inter-DC Migration

In the proposed scheme, inter-DC migration is valid for three
cases in edge-cloud environment such as: cloud to cloud, edge to
cloud, and edge to edge. In order to participate in the migration,
the conditions shown in Table I may exist.

1) Stackelberg Game: The Stackelberg game is a strategic
game in economics and is popular as a special case of noncoop-
erative games. It is two-period hierarchical game, in which the
players are classified as a leader and followers [20]. Both the
players in the game compete for the quantity, and the leader is
sometimes called as the market leader. This is said because the
leader avails the benefit of initiating the game. By doing so, the
leader can enforce his moves on followers. But, the leader must
be aware ex ante that the follower observes its actions. Gener-
ally, the leader has the power of commitment to its actions. On
the other hand, the leader must know that the Stackelberg fol-
lower has no means of commitment to any of its actions. So, the
leader’s best response is to play follower’s action [20]. Hence, in
this way, both leaders and followers reach an equilibrium state
in order to maximize their payoffs. The Stackelberg game has
manifold advantages such as:

1) optimal choice in a distributed environment;
2) handles the economical aspects;
3) sequential movement of player;
4) competitive behavior.

Fig. 4. Stackelberg game model.

2) Why Stackelberg Game?: In this work, the Stackelberg
is the most suitable choice for handling various aspects related
to inter-DC migration. A lot of similarities exist between the
addressed problem and the Stackelberg game. In inter-DC mi-
gration, two players (source and destination DC/EDs) play their
moves to reach an optimal solution. The source DC/EDs act
as leaders and announce their resource requirements to desti-
nation DCs/EDs who act as followers. The game proceeds in
a distributed edge-cloud environment, where DCs or EDs are
geolocated. Moreover, the equilibrium between both the players
is dependent on the economical factors. Both the players act in
a sequential manner to compete with other DCs/EDs. Hence,
with so many similarities, the Stackelberg game is most suitable
for handling the issue of inter-DC migrations.

3) Game Model: In order to handle inter-DC migrations, a
multileader multifollower Stackelberg game is presented. The
proposed game model comprises of the following entities.

a) Players: i source DCs/ED (multiple leaders) and k desti-
nation DCs/ED (multiple followers).

b) Strategy/action: For the leaders, the strategy for select-
ing a host for handling W : (atype, breq, creq) is Sl =
(f1, f2 . . . , Fi), where i ∈ I . For followers, the strategy
to finalize the price (P mig

k ) for hosting the migrating jobs
is Sf = (p1, p2 . . . , pk ), where k ∈ K.

c) Payoff: The players finalize their decisions with respect
to the payoffs they receive. For this purpose, different
utility functions of leaders and followers are defined. In
these utility functions, the terms price, cost, and revenue
are used. Price, cost, and revenue represents the amount
charged to sell a product, the amount incurred to manu-
facture of that product, and the amount that a producer
receives on selling its product, respectively.
The utility function for the ith DC that requires to migrate
data or job to the kth DC is given as follows:

Ui =

⎡
⎣

F∑
f =1

Rf

⎤
⎦−

F∑
f =1

[C tot
i ]. (38)

The utility function of the kth DC selected to handle the
migrated data from the ith DC is given as follows:

Uk =

[∑
i

Rmig

]
−

J∑
j=1

[Cf
i ]. (39)
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Algorithm 3: Stackelberg game for inter-DC migration.
Input: DCi , breq, creq

Output: flowpath j, ijk pair, DCk

1: for (i = 1; i ≤ n; i++) do
2: F : (atype, breq, creq)→ DCi � Leader move
3: for (k = 1; k ≤ n; k++) do
4: Check (creq) � Follower move
5: if Creq is available then
6: Compute utility Uk

7: if Uk (t) > Uk (t− 1) then
8: Accept migration and announce price
9: else

10: Reject migration
11: end if
12: else
13: Reject migration
14: end if
15: end for
16: for (k = 1; k ≤ n; k++) do � Leader move
17: Compute Ui(k)
18: if Ui(k) > Ui(k∗) then
19: Add DCk in the queue above DCk+1

20: end if
21: Select flow path j using Algorithm II
22: Map all available ijk pairs
23: Compute Uijk

24: if Uijk > U ∗ijk ) then
25: Set decision variable zijk == 1
26: Select ijk pair and send consent to the kth DC
27: if the kth DC conforms then � Follower move
28: Migrate workload
29: else
30: Select next pair and repeat step
31: end if
32: end if
33: end for
34: end for

4) Proposed Stackelberg-Game-Based Algorithm: The
working of the Stackelberg game model is shown in Fig. 4.
Using this model, a multileader multifollower Stackelberg
game is formulated for selecting optimal destination DC for
migration. In this regard, Algorithm 3 is designed to show the
working of the proposed Stackelberg game.

In this algorithm, multileaders (i DCs) initiate the game by
requesting all the available DCs for migration of job (line 1).
Now, for all available followers (n DCs or m EDs), check for
computing resources required. If the computing resources are
available, then compute utility (Uk ). If Uk at time t is more than
the Uk at previous time slot, then accept the migration request
and announce the price. Otherwise, the request is rejected by
follower DCs (lines 2–15). In the next move, the leader (DCi)
computes its utility (Ui) for each of the k DCs that have accepted
the migration request (lines 16 and 17). If the utility (Ui(k)) of
DCi with respect to the kth is more than (Ui(k∗) of each of the
DC other than the kth DC, then add DCk in the queue above
DCk+1 (lines 18–20). Now, select flow path j for k DCs using

Algorithm 2 (line 21). Now, map all ijk pairs. Compute utility
(Uijk ) for all ijk pairs (lines 22 and 23). If (Uijk > U ∗ijk )), then
set decision variable (zijk ) to 1. Otherwise, set the value of
decision variable next available pair to 1 (lines 24 and 25). Now,
select the ijk pair and send consent to the kth DC. Once the kth
DC confirms the deal, then migrate workload. Otherwise, select
the next pair (lines 26–34).

V. RESULTS AND DISCUSSION

The proposed scheme is evaluated using a workload trace
of 1000 jobs released by Google [23] and simulated using
three scenarios: only cloud DCs, EDs, and the proposed
edge-cloud interplay. The incoming workload requires some
amount of resources such as CPU, memory, and storage. The
resources required to serve the incoming job requests are
shown in Fig. 5(a). Initially, the workload is classified into two
categories: delay-sensitive and delay-tolerant jobs. The level of
priority for various jobs on the basis of delay sensitivity is shown
in Fig. 5(b). Now, the workload is scheduled to cloud DCs and
EDs on the basis of the classification. The delay-sensitive jobs
are provisioned using EDs and delay-tolerant jobs are handled
by cloud DCs. However, some of the delay-sensitive jobs may
also require high computing resources that are not available with
EDs. Such jobs are provisioned using cloud DCs. The slicing
of jobs between cloud DCs and EDs is shown in Fig. 5(c).

Some amount of energy is utilized to handle the jobs allocated
to edge-cloud environment. The energy consumed by cloud DCs
and EDs to serve the sliced jobs is shown in Fig. 5(d). The
multiedge-cloud environment plays an important impact on the
energy consumption of DCs. Fig. 5(e) shows the comparison of
energy consumed by the proposed multiedge-cloud environment
with other two scenarios. The energy consumed by multiedge-
cloud DCs is lower as compared to the scenario when only cloud
DC or EDs are used. Moreover, the proposed multiedge-cloud
environment proves to be a better platform in terms of SLA
violations also. Fig. 5(f) shows the SLA violations incurred for
serving the incoming jobs. The SLA violations witnessed for
the proposed environment are negligible as compared to other
scenarios. The major reason for better performance of the edge-
cloud environment is that the workload is sliced and scheduled
to the host that is best suited to provide the required resources
and QoS. In case of only DCs or EDs scenarios, there is not
other option available to schedule the workload. There is either
cloud DCs or EDs to handle incoming workload. But, in the
edge-cloud environment, the workload is classified among cloud
DCs and EDs, thereby reducing the load on resources. So, the
energy consumption reduces as the loads on the resources are
reduced. Moreover, with multiple options available for handling
workloads, the SLAs are easily met.

The proposed scheme uses SDNs as underlying DC networks.
The use of the proposed energy-aware flow-scheduling scheme
for SDNs reduces the energy consumption with respect to un-
derlying networks. Fig. 5(g) shows that the energy consumed
by the proposed flow-scheduling scheme for SDNs consumed
lesser energy as compared to traditional networks. Now, when
the required computing resources are not available with the host-
ing DC or EDs, then the jobs are migrated to another DC or ED
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Fig. 5. Results obtained for single time slot. (a) Resources required for handling incoming jobs. (b) Priority of each job. (c) Workload slicing at
edge and cloud DCs. (d) Energy consumed for handling each job. (e) Comparison of energy consumption. (f) SLA violations. (g) Network energy
consumption. (h) Migration delay. (i) Migration cost.

so as to meet SLA. In that case, additional delay and cost are
involved due to migration. However, an appropriate selection of
destination DC or ED that can serve the migrated job is an impor-
tant task. The proposed multileader multifollower Stackelberg
game selects the appropriate DC or ED, where the job could
be migrated with profit to both source and destination DCs or
EDs, apart from this, the underlying networks and the flow path
that serves the backbone of such a migration. The dynamic flow
path selection not only avoid additional delay, but also reduce
migration cost. In this context, Fig. 5(h) shows the migration
delay incurred while migrating the jobs from source DC or ED
to destination DC or ED. The results depict a lower delay for
SDNs as compared to traditional networks. Moreover, the use
of SDNs has a strong impact on the reduction of migration cost
due to its dynamic and flexible nature. Fig. 5(i) shows that the
migration cost for SDNs is much less than the cost involved
when traditional networks are used.

A. Case Study

For inter-DC migrations, a Stackelberg game is formulated
to select the destination host. The DCs/EDs are selected on the
basis of a combined utility (Uijk ). But, the individual utilities
of leaders and followers must show an increase with respect to
previous instant. For deep analysis, a game with one leader and
nine followers (four cloud DCs and five EDs) is formulated. The
value of decision variable (zijk ) is shown in Table II.

TABLE II
SELECTION OF DESTINATION HOST FOR JOB MIGRATION

Host DC1 DC2 DC3 DC4 ED1 ED2 ED3 ED4 ED5

DCl1 1 0 0 0 0 0 0 0 0
DCl2 0 0 0 0 0 0 1 0 0
DCl3 0 1 0 0 0 0 0 0 0
DCl4 0 0 0 1 0 0 0 0 0

Note: Each cell shows value of decision variable (zi j k ).

The destination DC or ED is selected if the value of zijk is
equal to 1. The value of zijk is equal to 1 only if the combined
utility (Uijk ) is maximum and the utilities of leader and follower
increase with respect to previous instance. Now, for the first
leader (DCl1), the value of zijk is equal to 1 for the follower
(DC1), as it required high computing resources which were not
available with any other follower. Now, let us consider a case
when resources required are small, but low latency is required.
In this case, for the leader (DCl2), the value of zijk is equal
to 1 for follower (ED3), as it serves the resource as well as
latency requirements of the leader. Similarly, DCl3 and DCl3

select different destination DCs/EDs as per their resource and
SLA requirements. So, the proposed game acts as an optimal
decision maker for destination host and flow path selection.

B. Evaluation for a 12-h Scenario

After analyzing the proposed scheme for single time slot, it is
evaluated for a longer time period (12 h). The results obtained
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Fig. 6. Results obtained for the 12-h scenario. (a) Average SLA violations. (b) Energy consumed. (c) Migration rate. (d) Average overhead.
(e) Complexity analysis. (f) Edge-to-edge analysis.

clearly show that the edge-cloud environment has a clear lead
over other two cases. Fig. 6(a) shows that the average SLA vi-
olations for the proposed environment are lower than the other
two cases. Moreover, the proposed scheme consumes lesser en-
ergy as compared to other cases as shown in Fig. 6(b). Finally, in
Fig. 6(c), the migration rate for the three cases is compared. The
results show that the migration rate in EDs is more than the other
two cases due to limitation of resources in EDs. The cloud DCs
show the lowest migration rate, but the proposed environment
is almost equal to it. Finally, Fig. 6(d) shows the average over-
head for all three cases. The result shows that the edge-cloud
environment ends up in the lowest overhead. Hence, the results
obtained indicate that the proposed edge-cloud environment is
better than other cases in terms of energy consumption, SLA
violations, migration rate, and overhead.

C. Complexity Analysis

Now, the complexity analysis of the proposed integer linear
programming (ILP) problem is performed. Generally, the ILP
problems are NP-hard, but this is not true for every problem.
The present problem is a simpler case and can be easily solved
with respect to present set of constraints. Fig. 6(e) shows the
complexity and solvability variation of the proposed problem
with respect to the number of constraints. It clearly shows that
the proposed problem is solvable till ten constraints, but after
that, its complexity increases.

D. Evaluation of Edge-to-Edge Migration

Finally, an analysis of edge-to-edge migrations is performed.
Fig. 6(c) shows that the EDs being resource-limited show high
migration rate. Also, the edge-to-edge migrations are analyzed
with respect to migrations and delay. Fig. 6(f) shows the compar-
ison of delay and migrations in the edge-to-edge environment.
It is evident that the EDs act as a best compliment to cloud
DCs. But, if considered individually, they incur higher energy

consumption, migration rate, and SLA violations. However, the
delay is lower for EDs as compared to cloud DCs.

VI. CONCLUSION

In this paper, a workload slicing scheme has been designed
for handling big data applications in a multiedge-cloud environ-
ment. In this environment, the incoming job requests are sliced
on the basis of priority and scheduled among EDs and cloud
DCs. Moreover, an SDN controller is proposed for an energy-
aware flow-scheduling scheme using virtualized networks. Fi-
nally, a multileader multifollower Stackelberg game is formu-
lated to select an optimal DC or ED to host the migrated jobs. The
proposed scheme has been evaluated on the basis of various pa-
rameters such as energy, delay, SLA violations, migration rate,
and cost. The results obtained show that the proposed scheme
minimizes the energy consumption of overall multiedge-cloud
environment and underlying networks. Moreover, a reduced de-
lay and cost for inter-DC migration is also achieved.
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