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Abstract—Big service is an extremely important application of service computing to provide predictive and needed services to
humans. To operationalize big services, the heterogeneous data collected from Cyber-Physical-Social Systems (CPSS) must
be processed efficiently. However, because of the rapid rise in the volume of data, faster and more efficient computational
techniques are required. Therefore, in this paper, we propose a multi-order distributed high-order singular value decomposition
method (MDHOSVD) with its incremental computational algorithm. To realize the MDHOSVD, a tensor blocks unfolding
integration regulation is proposed. This method allows for the efficient analysis of large-scale heterogeneous data in blocks in
an incremental fashion. Using simulation and experimental results from real-life, the high efficiency of the proposed data
processing and computational method, is demonstrated. Further, a case study about cyber-physical-social system data
processing is illustrated. The proposed MDHOSVD method speeds up data processing, scales with data volume, improves
the adaptability and extensibility over data diversity and converts low-level data into actionable knowledge.

Index Terms—Big Data; Tensor; MDHOSVD; MIHOSVD; Distributed Computing; Incremental Computing; CPSS.
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1 INTRODUCTION

B IG services are based on the efficient processing of
large amount of heterogeneous collected data. The

Internet of Things (IoT) provides such data generated
from smart devices [1] and integrates the cyber space and
physical space together, into the so-called Cyber-Physical
Systems (CPS) [2]. The new paradigm, Cyber-Physical-
Social Systems (CPSS), combining the social space with
the Internet of Things [3], [4], [5], have the potential to
provide the valuable information on the behavior of and
predictive services to humans [6]. For this potential to
be realized, heterogeneous data, the common element in
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cyber, physical and social spaces - three components of
CPSS, must be collected, processed and converted into
actionable information [7].

The source of big data is the billions of bytes collect-
ed every second on cyber, physical and social systems.
These heterogeneous data encompasses a variety of com-
plex, large-scale information which is presently beyond
the capabilities of conventional software and hardware
platforms. Therefore, new methods to efficiently process
the big, heterogeneous data are needed so that efficient,
timely and high-quality services are provided to humans.
A schematic representation of the relationships among the
components of CPS, CPSS, big data, and big service is
shown in Fig. 1. This diagram shows the need for efficient
big data processing as a key component of big services.

Big Services

Cyber Space

CPSS

Big Data Processing

Big Data

Data

Data

 Data

Fig. 1. Relationships among Cyber-Physical Systems
(CPS), Cyber-Physical-Social Systems (CPSS), Big
Data and Big Services.

To efficiently process big data, the characteristics of the
collected data must be carefully considered. Firstly, we
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need to consider that the collected data are heterogeneous
from a variety of independent devices and could be video,
image, audio, and text etc. Secondly, these big collected
data are large scale and must be processed rapidly or even
in real-time [8], [9]. For the former, Kuang et al. [10]
proposed a tensor-based big data representation model to
represent the heterogeneous CPSS big data. This tensor
representation for big data included unstructured data,
semi-structured data and structured data gave promising
results. For the second characteristic, once the represen-
tation is decided, then big data processing is required
to analyze big data by reducing noise and redundancies,
thereby producing high-quality big data.

Currently, Singular Value Decomposition (SVD), is one
of the main data processing methods studied [8], [9],
[10]. For SVD, two main computational methods for two-
order data (matrix), namely the Golub-Kahan SVD method
and the Jacobi-based SVD method, were proposed in
[11]. Also, incremental SVD computation [12], [13], SVD
computation of two-order matrix stream [14], and parallel
SVD computation [15] have been proposed.

An extension of two-order SVD, the High-Order Sin-
gular Value Decomposition (HOSVD), is considered as
an efficient, scalable, and practical big data processing
method [8], [9], [10]. HOSVD is based on the tensor
representation, and was used in data processing [16],
[17], noise reduction [18], and human motion recognition
[19]. An extension to HOSVD, the distributed High-
Order Singular Value Decomposition (DHOSVD) with its
incremental computation (IHOSVD) was proposed in [8].
DHOSVD is a distributed decomposition of tensor used
for processing big data in high-order space.
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along the 1-st order. 

II. The 3rd-order tensor is divided 

or increased along all the orders. 

Fig. 2. Tensor Division or Increasing.

The DHOSVD and IHSOVD methods proposed in [8]
are appropriated for special distributed or incremental
computational condition in which the tensor is divided or
increases along a certain order, for example, as a function
of time (such as the 1-st order I1) as shown in Fig. 2
(I). Normally, the heterogeneous CPSS big data increase
from the aspects of multi-orders. This means that the CPSS
big data after tensor representation should be divided or
increased along multi-orders, for example, as an function
of time (such as the 1-st order I1) or the number of

Notations Descriptions
A∈RI1×I2×···×In×···×IN The Nth-order tensor A

In The dimensionality of the
n-th order

A(n) The unfolding matrix of tensor
A along the n-th order

A(a1,a2,··· ,an,··· ,aN ) The tensor A is divided into an
part along the n-th order,

1≤n≤N

A(i1,i2,··· ,in,··· ,iN ) The in-th sub-tensor along
the n-th order,

1≤in≤an, 1≤n≤N

A
(i1,i2,··· ,in,··· ,iN )
(n)

The unfolding matrix of
tensor A(i1,i2,··· ,in,··· ,iN )

along the n-th order
A(i1,i2,··· ,in,··· ,iN−1,:) The integration of aN sub-tensors

along the N -th order is finished

A
(i1,i2,··· ,in,··· ,iN−1,:)

(n)
The unfolding matrix of

tensor A(i1,i2,··· ,in,··· ,iN−1,:)

along the n-th order
A(i1,i2,··· ,in,:,··· ,:) The tensor integration from

(n+1)-th order to N -th order
is finished

A
(i1,i2,··· ,in,:,··· ,:)
(n)

The unfolding matrix of
tensor A(i1,i2,··· ,in,:,··· ,:)

along the n-th order
A1|jA2 Tensors A1, A2 are integrated

along the j-th order
Σ

aj

ij=1|jA
(i1,i2,··· ,ij ,··· ,iN ) aj tensors A(i1,i2,··· ,ij ,··· ,iN ),

1≤ij≤aj are integrated along
the j-th order

Σ
aj

ij=1|jA
(i1,i2,··· ,ij ,··· ,iN )

(k)
The unfolding matrix of tensor

Σ
aj

ij=1|jA
(i1,i2,··· ,ij ,··· ,iN )

along the k-th order

TABLE 1
The Necessary Notations Used in This Paper

people (such as the 2-ed order I2) as shown in Fig. 2 (II).
Since the unfolding process is essential for HOSVD [8],
then the tensor is divided or increased along multi-orders,
resulting in a very complex unfolding. For example, two
key questions to be addressed are - how to integrate the
unfolding matrices of all sub-tensors, and what is the
full-precision position of each element in the integrated
unfolding matrix? Therefore, MDHOSVD is a significant
challenge to be solved for the efficient processing of big
data.

Previously, the computational methods for DHOSVD
and IHOSVD proposed in [8] were based on the
RoundRobin process. In this process, each sub-data block
must be transferred to every available node in distributed
systems, resulting in a huge communication overhead and
inefficient big data processing. Furthermore, if any em-
ployed node has a computational problem, then the whole
RoundRobin process must be repeated. The result of these
limitations is that the DHOSVD and IHOSVD proposed
in [8] lack robustness and flexibility when dealing with
big data processing.

To tackle aforementioned challenges related to integrat-
ing the unfolding matrices and position of its elements,
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we propose a tree-based Multi-order Distributed High
Order Singular Value Decomposition (MDHOSVD) with
its incremental computation (MIHOSVD) in this paper.
The main contributions of this paper are the following.
Firstly, we improve the mathematical representation of the
tensor unfolding method. Then, tensor blocks unfolding
integration regulation is proposed to provide the precise
position of each element in the integrated unfolding ma-
trix. Secondly, we present a tree-based MDHOSVD (and
MIHOSVD) method, in which the tensor can be divided or
increased along several orders or even all orders at same
time.

The remainder of this paper is organized as follows.
In Section II, we briefly review related background infor-
mation on Big Data and tensor decomposition. Then, in
Section III, the improved unfolding method and the tensor
blocks unfolding integration regulation, the MDHOSVD
and the MIHOSVD, are described. The experimental and
simulation results of the proposed algorithms are discussed
in Section IV. In Section V, to demonstrate the high
efficiency of proposed algorithm, a case study of big
service is presented. Finally, in Section VI, the conclusions
are given.

2 BACKGROUND

In this section, relevant background information about ten-
sors, tensor unfolding and Singular Value Decomposition
are presented. Also, notations used in this paper are listed
in TABLE 1. This will enable the reader to easily follow
the MDHOSVD and MIHOSVD methods presented in
Section III.

Tensor. Tensors, being higher order generalization-
s of matrices, are multi-dimensional arrays widely
used to represent higher order relationships present
in Cyber-Physical-Social Systems [10], [20]. Formally,
A∈RI1×I2×···×In×···×IN is an Nth-order tensor, where,
In (1≤n≤N ) is the dimensionality of the n-th order [21].
Tensors have been used in many domains such as the
analysis of images [17], brain data [22], de-noising [23],
clustering [24], and even human motion recognition [19].

Tensor unfolding. The process of extracting the el-
ements of a high-order tensor into a matrix is tensor
unfolding [20][21]. The unfolding matrix along the n-
th order of an Nth-order tensor A∈RI1×I2×···×In···×IN

is represented as A(n)∈RIn×(In+1In+2···INI1I2···In−1) [21].
Also, an example on a three-order tensor unfolding into a
matrix was schematically illustrated in [8], [21].

The unfolding of the integrated tensor including the
sequential incremental form and interleaving incremental
form was discussed in [8]. The former include the increase
along the row in order or increase along the column in
order. In this unfolding, the order of data from the original
tensor does not change, such as the illustrated by (1) and
(3) in Fig. 2 (I) [8]. On the other hand, the incremental
part in the interleaving form changes the column order of
the original tensor, as shown in (2) in Fig. 2 (I).

Singular Value Decomposition (SVD). SVD has been
implemented using two computational methods, the QR-
based method and Jacobi-based method [8], [11]. The
process of Jacobi-based SVD method for a given matrix
A∈Rm×n is described as follows [8], [11].

Firstly, the orthogonalization of any column pair of
matrix A is implemented by the Jacobi rotation J(i, j).
Algorithm 1 below shows the detailed computational
process of the Jacobi rotation J(i, j) for realizing the
orthogonalization of the i-th and j-th columns of matrix
A [8][25].

Secondly, the computation of the right singular matrix
V is implemented by the product of a series of Jacobi
rotations in order Vn×n=ΠiΠj,j>iJ(i, j) [8][25].

Thirdly, another orthogonal matrix Bm×n is comput-
ed as B=AV=[b1, b2, · · · , bn], bTi bj=0, i̸=j. Then, the
singular value matrix Σ is computed as σi=|B(:, i)|=|bi|,
Σ=diag[σ1, σ2, · · · , σn] [8][25].

Fourthly, each column of the left singular matrix com-
putation Um×n is obtained as U(:, i)=B(:,i)

σi
. Then, Jacobi-

based SVD method of matrix Am×n=Um×nΣn×nVn×n is
completed [8][25].

Algorithm 1 The Jacobi rotation
1: Input: Two columns ai,aj ;
2: Output: Jacobi rotation J(i, j).
3: λ =

∥aj∥2−∥ai∥2

2(ai)T aj
;

4: t = sgnλ/(|λ|+
√
1 + λ2);

5: c = 1√
1+t2

;
6: s = ct;

7: J(i, j) =

(
c −s
s c

)
;

Finally, High Order Singular Value Decomposition
(HOSVD) of an Nth-order tensor A∈RI1×I2×···×IN is
given as [20][21]:

S = A×1 U
T
1 ×2 U

T
2 · · · ×N UT

N , (1)

Â = S ×1 U1 ×2 U2 · · · ×N UN , (2)

where, Un, 1≤n≤N is the left singular matrix of the
A(n), and S is the core tensor [8], [21]. The state-of-the-
art of SVD/HOSVD was detailed in [8]. In this paper,
we improve on the work [8] and present the multi-order
distributed HOSVD with its incremental computing for
CPSS big data processing.

3 MULTI-ORDER HOSVD ALGORITHMS
In this section, the improved mathematical representation
of tensor unfolding method and tensor blocks unfolding
integration regulation are discussed. This will allow us
to accurately present the position of any element from
different tensor blocks in the integrated unfolding matrix.
In addition, a tree-based Multi-order Distributed HOSVD
(MDHOSVD) algorithm with its incremental computing
(MIHOSVD) is proposed.
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3.1 Improved tensor unfolding method and Reg-
ulation:

The mathematical representation of the tensor unfolding
method was presented in [21]. However, to present the
method in a better understood way, we supplement the
description in [21] by explicitly presenting expressions for
the 1-st order and N -th order of an Nth-order tensor.

Improved mathematical representation of tensor
unfolding method: Formally, the unfolding matrix
A(n)∈RIn×(In+1In+2···INI1I2···In−1) contains the element
ai1i2···in···iN , at the position with row number in. The
column number will be improved as follows:

If n = 1 (1-st order), then the column number equals
to,

(i2 − 1)ININ−1 · · · In+2 + (i3 − 1)ININ−1 · · · In+3

+ · · ·+ (iN−1 − 1)IN + in,

if n = N (N -th order), the column number equals to,

iN−1 + (iN−2 − 1)IN−1 + (iN−3 − 1)IN−2IN−1+
(iN−4 − 1)IN−3IN−2IN−1 + · · ·+ (i3 − 1)I4I5 · · · IN−1

+(i2 − 1)I3I4I5 · · · IN−1 + (i1 − 1)I2I3I4I5 · · · IN−1.

For other values of n, the column number is the same
as presented in [21],

(in+1 − 1)In+2In+3 · · · INI1I2 · · · In−1+
(in+2 − 1)In+3 · · · INI1I2 · · · In−1 + · · ·
+(iN − 1)I1I2 · · · In−1 + (i1 − 1)I2I3 · · · In−1

+(i2 − 1)I3I4 · · · In−1 + · · ·+ in−1.

Tensor blocks unfolding integration regulation: Large-
scale data cannot be processed by a single core system, so
it should be cut into many blocks and then processed using
a block-based method. Also, the sub-tensors cut from
the large scale data should be processed in a distributed
system, which is more efficient than the traditional single
core system. Meanwhile, tensor unfolding is necessary for
HOSVD [21]. However, how to integrate the sub-tensor
blocks unfolding result to obtain the unfolding matrix
of the integrated tensor is challenging. To address this
challenge, tensor blocks unfolding integration regulation
is proposed (see Fig. 3).

In Fig. 3, the horizontal direction represents “increase
along the n-th order”, 1≤n≤N . The vertical direction
means “unfolding along the n-th order”, 1≤n≤N . To
explain it in more detail, we take the cell in the red
circle in Fig. 3 as an example. If sub-tensors integrate
along the third order, the unfolding matrix of the integrated
tensor along the second order increases along the column
in order.

Tensor blocks unfolding integration regulation is now
illustrated with an example. Consider two 3rd-order sub-
tensors, A and B shown at the bottom of Fig. 4. When
combined along second order, we obtain the integrated
tensor C shown at the top of Fig. 4. The unfolding matrix
of the integrated tensor C along the first order C(1) is
composed by the A(1) and B(1) along the column in order
as shown in (3) form of Fig. (2) (I). In the same way,
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Fig. 3. Tensor Blocks Unfolding Integration Regula-
tion.

C(2) is composed by the A(2) and B(2) along the row in
order as shown in (1) form of Fig. (2) (I). Similarly, C(3)

is composed by the A(3) and B(3) along the column in
interleaving order as shown in the (2) form of Fig. (2) (I).
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Fig. 4. An Example about Two 3rd-tensors Integrates
along the 2-nd Order.

3.2 Multi-order Distributed HOSVD with its Incre-
mental Computing Algorithms

From above, the unfolding matrix of the integrated tensor
presents two main computational challenges due to its
increase along the row (such as the (1) form in Fig. 2
(I)) or along the column (such as the (2) and (3) forms in
Fig. 2 (I)). Here, we propose an algorithm for integration
(Algorithm 2) to address these two challenges. Further,
two new tree-based algorithms are proposed to implement
MDHOSVD and MIHOSVD.

Algorithm 2 for Integration: Integration of the un-
folding matrices including integration along the column
or the row is now described. Since the Jacobi-based
orthogonalization method is independent on the position of
the column [8], then we propose Algorithm 2 which uses
it to address the challenge of increase along the column
including the (2) and (3) forms shown previously in Fig. 2
(I). Two matrices A1∈RIrow×Icol1 , and A2∈RIrow×Icol2 ,
with their SVD results, were integrated together in the
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Algorithm 2 The Algorithm for Integration
1: Input: Two matrices A1=U1Σ1V

T
1 , A2=U2Σ2V

T
2 .

2: Output: SVD result (U , Σ, and V ) of matrix A,
integrated from A1 and A2.

3: if Two matrices A1 and A2 integrate along the column
(caseB or caseC) then

4: Suppose B1=U1 × Σ1 and B2=U2 × Σ2;
5: Establish the matrix B=[B1|B2]=

[b1, b2, · · · , bi, · · · , bj , · · · , bcol];

6: Establish the matrix V =

[
V1 0
0 V2

]
;

7: else
8: Suppose B1=V1 × Σ1 and B2=V2 × Σ2;
9: Establish the matrix B = [B1|B2]=

[b1, b2, · · · , bi, · · · , bj , · · · , bcol];

10: Establish the matrix V =

[
U1 0
0 U2

]
;

11: end if
12: for i = 1 to col−1 do
13: for j = i+ 1 to col do
14: if bTi bTj > τ then
15: Execute the Algorithm 1 on two columns bi

and bj and obtain J(i, j);
16: [bi bj ]=[bi bj ]J(i, j);
17: end if
18: end for
19: end for
20: C=ΠiΠj,j>iJ(i, j);
21: B=B × C;
22: σi=|B(:, i)|;
23: if Two matrices A1 and A2 integrate along the column

(caseB or caseC) then
24: V=V × C;
25: U(:, i)=B(:,i)

σi ;
26: A=UΣV T ;
27: else
28: V=V × C;
29: U(:, i)=B(:,i)

σi ;
30: A=V ΣUT ;
31: end if

(2) and (3) forms in Fig. 2 (I) to produce the matrix
A∈RIrow×(Icol1+Icol2 ). The proposed Algorithm 2 to com-
pute the SVD result of matrix A∈RIrow×(Icol1+Icol2 ),
according to the result of A1 and A2 is now described.

In the algorithm, from lines 3 to 5, the description of
two matrices B1∈RIrow×Icol1 and B2∈RIrow×Icol2 that
integrate together along the column and obtain the matrix
B∈RIrow×Icol , where Icol=Icol1+Icol2 is given. In line 6,
matrix V is established according to the SVD results of A1

and A2. Then, the Jacobi-based orthogonalization method
is used to orthogonalize the matrix B from line 12 to
line 22 in the Algorithm 2. According to the convergence
condition τ=Bε proposed in [8], [11], [25], when the
orthogonalization is finished, the matrices B and V are
updated. Finally, from lines 24 to 26, we show how the

SVD result of the produced matrix A is computed.
Alternatively, from lines 7 to 11, the incremental (1)

form proposed in Fig. 2 (I) is addressed by the matrix
transpose to convert ”update along the row” into ”update
along the column” as shown in Fig. 2 (I). Here, two
matrices A1∈RIrow1×Icol , and A2∈RIrow2×Icol , whose
SVD results have been obtained previously, were inte-
grated together in (1) form in Fig. 2 (I) to produce the
matrix A∈R(Irow1+Irow2 )×Icol . The computational process
is similar with the integration along the column. As shown
from lines 8 to 10, the matrices B and V are constructed,
and from lines 12 to 22, the same orthogonalization as in
the previous paragraph, is implemented. Then, from lines
28 to 30, the computation of the produced matrix A is
completed.
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Fig. 5. Tree-based MDHOSVD.

Algorithm 3 for the MDHOSVD: After addressing
the two computational challenges related to the unfolding
matrix of the integrated tensor, we now describe
our proposed tree-based multi-order distributed high-
order singular value decomposition (MDHOSVD).
Consider an Nth-order tensor A∈RI1×I2×···×In×···×IN

divided into an parts along the n-th order,
1≤n≤N . Then, in tensor A, a certain sub-tensor is
A(i1,i2,··· ,in,··· ,iN )∈RI

i1
1 ×I

i2
2 ×···×Iin

n ×···×I
iN
N , where

in means the in-th part along the n-th order,
and 1≤in≤an, Σan

in=1I
in
n =In. The position number

(i1, i2, · · · , in, · · · , iN ) is named the coordinate of this
sub-tensor in tensor A. Now, the main challenge is how
to obtain the HOSVD result of the tensor A, according
to the HOSVD computational result of each sub-tensor
A(i1,i2,··· ,in,··· ,iN )?

For an Nth-order tensor, the proposed MDHOSVD
method can be visualized as an (N+1) layer tree. As
shown in Fig. 5, the sub-tensors integrate along the n-
th order in the n-th layer of the tree, and 1≤n≤N .
The number of node in the (n+1)-th layer is Πn

k=1ak,
1≤n≤N . There is only a node in the first layer. Algorithm
3 describes the detailed MDHOSVD process. To provide
details on the computational process of MDHOSVD, an
example of MDHOSVD of a 3rd-order tensor is shown in
Fig. 6 and is described as follows.



2332-7790 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TBDATA.2018.2824303, IEEE Transactions on Big Data

6

Integrate 

along the 

third order

Integrate 

along the

 second order

Integrate 

along the

 first order

(1,1,1)

(1,1,2)
(1,2,1)

(1,2,2)

(2,1,1)

(2,1,2)

(2,2,1)

(2,2,2)

(1,1,:) (1,2,:) (2,1,:) (2,2,:)

(1,:,:) (2,:,:)

(1,1,1)
(1,1,2)

(1,2,1)
(1,2,2)

(2,1,1) (2,2,1)

(2,1,2) (2,2,2)

First 

order

Second 

order

Third order

Fig. 6. A Case Study about MDHOSVD of a 3rd-order
Tensor.

(1) In Algorithm 3, in lines 3 and 4, the Nth-order
tensor is divided into ΠN

n=1an sub-tensors along every
order. The master node (see Fig. 5) distributes each sub-
tensor A(i1,i2,··· ,in,··· ,iN ) to a specific node in the (N+1)-
th layer of the tree. For example, as shown in Fig. 6, the
3rd-order tensor is divided into A(1,1,1), A(1,1,2), A(1,2,1),
A(1,2,2), A(2,1,1), A(2,1,2), A(2,2,1), and A(2,2,2), where
a1=a2=a3=2. This assumes that the eight sub-tensors are
distributed into eight nodes in the fourth layer.
(2) In line 6, in every node of the (N+1)-th layer,

unfold each sub-tensor A(i1,i2,··· ,in,··· ,iN ) along every
order to obtain the unfolding matrices A

(i1,i2,··· ,in,··· ,iN )
(1) ,

A
(i1,i2,··· ,in,··· ,iN )
(2) , · · · , A

(i1,i2,··· ,in,··· ,iN )
(k) , · · · ,

A
(i1,i2,··· ,in,··· ,iN )
(N) . For every unfolding matrix

A
(i1,i2,··· ,in,··· ,iN )
(k) , with 1≤k≤N , Algorithm 1 is

used to orthogonalize the columns to produce a series
of Jacobi rotates, as shown in line 7. Lines 8 to 11
describes how the singular value decomposition of each
unfolding matrix is implemented by the Jacobi-based
orthogonalization method [8]. These operations (from
lines 5 to 12) about different sub-tensor in different node
is implemented in parallel. Taking the sub-tensor A(1,1,1)

as an example, and the procedure described in lines 6
to 11 above, the unfolding matrices A

(1,1,1)
(1) , A

(1,1,1)
(2)

and A
(1,1,1)
(3) with their SVD computational result are

obtained. Furthermore, the operations of step (2) about
other sub-tensors A(1,1,2), A(1,2,1), A(1,2,2), A(2,1,1),
A(2,1,2), A(2,2,1), and A(2,2,2) in different node are
implemented in parallel.
(3) In this third step, by integrating the sub-tensors

A(i1,i2,··· ,ij ,:,··· ,:), 1≤ij≤aj , along the j-th, 1≤j≤N
order in the j-th, 1≤j≤N layer, the integrated tensor
Σ

aj

ij=1|jA(i1,i2,··· ,ij ,:,··· ,:) is obtained. Concurrently,

Algorithm 3 The Algorithm for MDHOSVD
1: Input: Tensor A∈RI1×I2×···×In×···×IN .
2: Output: The high order singular value decomposition

of tensor A=S ×1 U1 ×2 U2 × · · · ×N UN .
3: Divide the tensor A into an parts along the n-th

order, 1≤n≤N and obtain the ΠN
n=1an sub-tensors

A(i1,i2,··· ,in,··· ,iN );
4: Distribute the every sub-tensors to a certain node of

the (N+1)-th layer of the tree;
5: for k = 1 to N do
6: In every node of the (N+1)-th layer, unfold each

sub-tensor A(i1,i2,··· ,in,··· ,iN ) along the k-th order
and obtain the unfolding matrix A

(i1,i2,··· ,in,··· ,iN )
(k) ;

7: Implement the Algorithm 1 on the unfolding matrix
A

(i1,i2,··· ,in,··· ,iN )
(k) and obtain a series of Jacobi

rotates Jk;
8: V

(i1,i2,··· ,in,··· ,iN )
k =ΠJk;

9: B
(i1,i2,··· ,in,··· ,iN )
k =A

(i1,i2,··· ,in,··· ,iN )
(k) ×

V
(i1,i2,··· ,in,··· ,iN )
k ;

10: σi
k=|B(i1,i2,··· ,in,··· ,iN )

k (:, i)|;
11: U

(i1,i2,··· ,in,··· ,iN )
k (:, i)=B(:,i)

σi
k

;
12: end for
13: for j = N to 1 do
14: Integrated tensor is obtained by integrating

the sub-tensors along the j-th order
Σ

aj

ij=1|jA(i1,i2,··· ,ij ,:,··· ,:) in the j-th layer;
15: By table lookups, we can find the unfolding

integration regulation case of integrated tensor
Σ

aj

ij=1|jA(i1,i2,··· ,ij ,:,··· ,:) unfold along the k-th or-
der.

16: for k = 1 to N do
17: if case==B or C then
18: Execute the computational method for column

integration of Algorithm 2 is carried out on
the SVD result of the unfolding matrices of
the integrated sub-tensors to acquire the SVD
result of Σaj

ij=1|jA
(i1,i2,··· ,ij ,:,··· ,:)
(k) ;

19: else
20: Execute the computational method for row

integration of Algorithm 2 is carried out on
the SVD result of the unfolding matrices of
the integrated sub-tensors to acquire the SVD
result of Σaj

ij=1|jA
(i1,i2,··· ,ij ,:,··· ,:)
(k) ;

21: end if
22: end for
23: end for
24: Export the computational result of the node in the first

layer and left singular matrices Ui, 1≤i≤N will be
obtained;

25: S = A×1 U
T
1 ×2 U

T
2 · · · ×N UT

N ;
26: Â = S ×1 U1 ×2 U2 · · · ×N UN ;

a1×a2×· · ·×aj−1 integration groups about j-th order
are realized in parallel. For example, the integrated tensor
A(1,1,:)=A(1,1,1)|3A(1,1,2) is acquired by integrating
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the sub-tensors A(1,1,1) and A(1,1,2) along the 3-rd
order in the third layer of the tree model. In parallel,
A(1,2,:)=A(1,2,1)|3A(1,2,2), A(2,1,:)=A(2,1,1)|3A(2,1,2),
and A(2,2,:)=A(2,2,1)|3A(2,2,2) are implemented.
(4) According to the tensor blocks unfolding integration

regulation, how to find the SVD result of unfolding matrix
of the integrated tensor Σ

aj

ij=1|jA(i1,i2,··· ,ij ,:,··· ,:) that is
composed of the unfolding matrices of the sub-tensors
will be described. Then, the Algorithm 2 is carried out
on the SVD result of k-th order unfolding matrices of
sub-tensors to obtain the SVD result the integrated matrix
Σ

aj

ij=1|jA
(i1,i2,··· ,ij ,:,··· ,:)
(k) , as shown from lines 16 to 22.

In fact, Algorithm 2 is implemented on the SVD result
of k-th order unfolding matrices (U (i1,i2,··· ,ij ,:,··· ,:)

k ,
Σ

(i1,i2,··· ,ij ,:,··· ,:)
k , V (i1,i2,··· ,ij ,:,··· ,:)

k , U (i1,i2,··· ,ij+1,:,··· ,:)
k ,

Σ
(i1,i2,··· ,ij+1,:,··· ,:)
k , V

(i1,i2,··· ,ij+1,:,··· ,:)
k ) one tensor

block by one tensor block along the j-th order in each
group. In this way, the SVD result of the unfolding
matrix of the integrated tensor along the k-th order
will be computed. For a1×a2×· · ·×aj−1 different
integrated tensors (every integrated tensor is integrated
by aj sub-tensors, which can be considered as a
group), Σaj

ij=1|jA(i1,i2,··· ,ij ,:,··· ,:), 1≤j≤N , 1≤ij≤aj , the
operations described from lines 16 to 22 are implemented
in parallel. As an example, we illustrate how the tensor
A(1,1,:) is obtained by integrating tensors A(1,1,1) and
A(1,1,2). According to the tensor block integration
regulation, the SVD result of unfolding matrices of
A(1,1,:) including A

(1,1,:)
(1) , A

(1,1,:)
(2) , and A

(1,1,:)
(3) will

be computed by carrying out the Algorithm 2 on the
(A(1,1,1)

(1) , A
(1,1,2)
(1) ), (A(1,1,1)

(2) , A
(1,1,2)
(2) ), and (A(1,1,1)

(3) ,

A
(1,1,2)
(3) ), respectively. Then, the operations on A(1,2,:),

A(2,1,:), and A(2,2,:) are carried out in parallel.
(5) In this step, we implement the integration of sub-

tensors along the j-th, 1≤j≤N order in the j-th, 1≤j≤N
layer as shown in step (4), until j equals 1. Then, the left
singular matrix Ui, 1≤i≤N will be exported when the
computation is finished. Then, we will get the HOSVD of
tensor A as shown in lines 25 and 26.

From the above representation of MDHOSVD, the
whole process involves two main processes, splitting and
orthogonalization of each tensor block as shown from lines
3 to 12, and the integration of sub-tensors as shown from
lines 13 to 24.

Algorithm 4 for the MIHOSVD: Here, our proposal of
a new multi-order incremental HOSVD method to process
the incremental HOSVD of high-order tensor streaming is
discussed.

An original Nth-order tensor
A0∈RI1×I2×···×In×···×IN , whose HOSVD result has
been computed, increases along several (and even all)
orders at the same time to produce an integrated tensor
A′∈RI

′
1×I

′
2×···×I

′
n×···×I

′
N . As shown in Fig. 2 (II), the

original tensor is the green part which increases along
all orders at the same time. To quickly compute the
HOSVD result of the integrated tensor A′

and avoid

Algorithm 4 The Algorithm for MIHOSVD
1: Input: Incremental part A+, integrated tensor

A′∈RI
′
1×I

′
2×···×I

′
n···×I

′
N , and the HOSVD result of

each original tensor blocks.
2: Output:The high order singular value decomposition

of integrated tensor A′
=S ′ ×1U

′

1×2U
′

2×· · ·×N U
′

N .
3: Supposing the Nth-order original tensor

A0 and the incremental part A+ are
divided as (a01, a

0
2, · · · , a0n, · · · , a0N ),

(a+1 , a
+
2 , · · · , a+n , · · · , a

+
N ), respectively. The

integrated tensor A′
=(A0+A+) is divided as

(a
′

1=(a01+ a+1 ), a
′

2=(a02+ a+2 ),· · · , a
′

n=(a0n+ a+n ),· · · ,
a

′

N=(a0N + a+N )).
4: Distribute every block (A+)(i

+
1 ,i+2 ,··· ,i+n ,··· ,i+N ) to the

node of the (N+1)-th layer;
5: for k = 1 to N do
6: In every node of the (N+1)-th layer,

implement the similar operation from line
7 to line 11 of Algorithm 3 on matrix
(A+)

(i+1 ,i+2 ,··· ,i+n ,··· ,i+N )

(k) and obtain its SVD

result (V (i+1 ,i+2 ,··· ,i+n ,··· ,i+N )

k ,U (i+1 ,i+2 ,··· ,i+n ,··· ,i+N )

k ,

Σ
(i+1 ,i+2 ,··· ,i+n ,··· ,i+N )

k );
7: end for
8: for j = N to 1 do
9: Integrated tensor is obtained by integrating the

sub-tensors along the j-th order in the j-th layer

Σ
a
′
j

i
′
j=1

|jA(i
′
1,i

′
2,··· ,i

′
j ,:,··· ,:);

10: By table lookups, we can find the unfolding
integration regulation case of integrated tensor

Σ
a
′
j

i
′
j=1

|jA(i
′
1,i

′
2,··· ,i

′
j ,:,··· ,:) unfold along the k-th or-

der.
11: for k = 1 to N do
12: The similar operation from line 17 to line

21 of Algorithm 3 is carried out to ob-
tain the SVD result of the unfolding matrices

Σ
a
′
j

i
′
j=1

|jA
(i

′
1,i

′
2,··· ,i

′
j ,:,··· ,:)

(k) ;
13: end for
14: end for
15: Export the computational result of the node in the first

layer and left singular matrices U
′

i , 1≤i≤N will be
obtained;

16: S ′
= A′ ×1 U

′T
1 ×2 U

′T
2 · · · ×N U

′T
N ;

17: Â′
= S ′ ×1 U

′

1 ×2 U
′

2 · · · ×N U
′

N ;

having to recompute the original part A0, the multi-order
incremental HOSVD is proposed. For convenience, the
irregular incremental part is described as A+. Algorithm
4 describes the detailed process for computing the
MIHOSVD.
(1) In Algorithm 4, line 3 shows that the original

tensor A0 and its incremental part A+ are divided into
several blocks along all orders. For example, the a0n and
a+n means the original tensor A0 and the incremental
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part A+ are divided into a0n, a+n blocks along the n-th
order, respectively. With the same block method of A0 and
A+, the integrated tensor A′

integrates both components
together.
(2) Distribute every block (A+)(i

+
1 ,i+2 ,··· ,i+n ,··· ,i+N ),

1≤i+n≤a+n , 1≤n≤N to the node of the (N+1)-th lay-
er. In every node of the (N+1)-th layer, the tensor
block (A+)(i

+
1 ,i+2 ,··· ,i+n ,··· ,i+N ) is unfolded along all the

orders and the unfolding matrices (A+)
(i+1 ,i+2 ,··· ,i+n ,··· ,i+N )

(k) ,
1≤k≤N are obtained. Then, the Algorithm 1 is carried
out on the unfolding matrix (A+)

(i+1 ,i+2 ,··· ,i+n ,··· ,i+N )

(k) to
obtain a series of Jacobi rotates. Next, the SVD result
of each unfolding matrix such as (V +)

(i+1 ,i+2 ,··· ,i+n ,··· ,i+N )

k ,

(U+)
(i+1 ,i+2 ,··· ,i+n ,··· ,i+N )

k is computed.
(3) With the same block method of A0 and A+, the in-

tegrated tensor A′
is divided, this means that i

′

n=i0n when
in≤a0n, and i

′

n=a0n+i+n when a0n<in≤a0n+a+n . Integrate

the sub-tensors Σ
a
′
j

i
′
j

|jA
′ (i

′
1,i

′
2,··· ,i

′
j ,:,··· ,:) in the same way

as described in step (3) of Algorithm 3 for MDHOSVD.
(4) According to the tensor blocks unfolding integration

regulation, the unfolding matrices of the integrated tensor

Σ
a
′
j

i
′
j=1

|jA(i
′
1,i

′
2,··· ,i

′
j ,:,··· ,:) will be found. Then, the Algo-

rithm 2 is carried out on the Σ
a
′
j

i
′
j=1

|jA
(i

′
1,i

′
2,··· ,i

′
j ,:,··· ,:)

(k) .
This step is similar to the step (4) of Algorithm 3 for
MDHOSVD.
(5) Implement the integration of sub-tensors along the

k-th order in the k-th layer until the k equals to 1. Then,
the left singular matrix U

′

i , 1≤i≤N will be computed,
when the computational process is finished.

Similarly, the proposed MIHOSVD also has two main
processes, splitting and orthogonalization of the each
tensor block of incremental part as shown from lines 3 to 7
of Algorithm 4. And the second process is the integration
of the original tensor and the incremental part as shown
from lines 8 to 17 of Algorithm 4.

3.3 Algorithm Analysis
In this sub-section, the computational and communication
complexities of the proposed MDHOSVD and MIHOSVD
are analyzed.

Computational Complexity for the MDHOSVD: As
mentioned before, MDHOSVD involves two processes -
splitting and orthogonalization of each tensor block, and
integration of sub-tensors. The proposed MDHOSVD is
based on the Jacobi orthogonalization. Consider the Jacobi
orthogonalization method described in Algorithm 1 for
a matrix A∈Rm×n. For this example, both of the main
computational cost are of O(m), for Jacobi rotation J(i, j)
of every column pair and for AJ(i, j), respectively.

In the first process of MDHOSVD (splitting and
orthogonalization of each tensor block), for a certain
tensor block A(i1,i2,··· ,in,··· ,iN )∈RI

i1
1 ×I

i2
2 ×···×Iin

n ···×I
iN
N ,

the unfolding matrix along the k-th order is
A

(i1,i2,··· ,in,··· ,iN )
(k) ∈RI

ik
k ×ΠN

n=1,n̸=kI
in
n , 1≤k≤N . Thus,

the number of column pairs for matrix A
(i1,i2,··· ,in,··· ,iN )
(k)

is 1
2 × ΠN

n=1,n̸=kI
in
n (ΠN

n=1,n ̸=kI
in
n − 1). Therefore, the

main computational cost for the matrix A
(i1,i2,··· ,in,··· ,iN )
(k)

is S
(i1,i2,··· ,in,··· ,iN )
k ×(Iikk +Iikk )× 1

2×ΠN
n=1,n̸=kI

in
n

(ΠN
n=1,n̸=kI

in
n −1)≈S

(i1,i2,··· ,in,··· ,iN )
k Iikk (ΠN

n=1,n̸=kI
in
n )2,

where, the S(i1,i2,··· ,in,··· ,iN )
k is the number of sweep in the

orthogonalization process of matrix A
(i1,i2,··· ,in,··· ,iN )
(k) ,

and Iikk , ΠN
n=1,n̸=kI

in
n are the number of rows and

columns of targeted matrix, respectively. Because the
orthogonalization computation of each tensor block is
parallelly implemented on each node of the (N+1)-th
layer of the tree. The computational cost for an Nth-
order tensor block A(i1,i2,··· ,in,··· ,iN ) is also that of
the first process TD1

comp=ΣN
k=1[S

(i1,i2,··· ,ik,··· ,in,··· ,iN )
k ×

(Iikk +Iikk )× 1
2×ΠN

n=1,n̸=kI
in
n (ΠN

n=1,n̸=kI
in
n −1)].

The second process of MDHOSVD is the
integration of sub-tensors, which is implemented
with Algorithm 2. According to the integration operation
mentioned in MDHOSVD, for an integrated tensor
ΣaN

iN=1|NA(i1,i2,··· ,in,··· ,iN−1,iN )=A(i1,i2,··· ,in,··· ,iN−1,:)

in the N -th layer of the tree, we could find that
A(i1,i2,··· ,in,··· ,iN−1,:)∈RI

i1
1 ×I

i2
2 ×···Iin

n ×···I
iN−1
N−1 ×IN ,

whose unfolding matrices are A
(i1,i2,··· ,in,··· ,iN−1,:)
(k) ∈

RI
ik
k ×ΠN−1

n=1,n̸=kI
in
n IN , unfolded along the k-th, k ̸=N order

or A
(i1,i2,··· ,in,··· ,iN−1,:)
(N) ∈RIN×ΠN−1

n=1 Iin
n , unfolded along

the N -th order. According to the tensor block unfolding
integration regulation as shown in Fig. 3, we could find
the unfolding matrix of the integrated tensor along the
N -th order is the caseA. Then, its transposed matrix
is (A

(i1,i2,··· ,in,··· ,iN−1,:)
(N) )T∈RΠN−1

n=1 Iin
n ×IN . Because

the integrated computational operation implemented
in the N -th layer of tree is carried out in parallel in
different nodes. This means that the computational cost
of the integrated tensor ΣaN

iN=1|NA(i1,i2,··· ,in,··· ,iN ) is
also the computational cost of the N -th layer of tree.
The computational cost of the integration tensor in
the N -th layer of the tree is approximately equal to
TN
comp≈S

(i1,i2,··· ,in,··· ,iN−1,:)
N

1
2IN (IN−1)(ΠN−1

n=1 I
in
n +

ΠN−1
n=1 I

in
n )+ΣN−1

k=1 [ 12Π
N−1
n=1,n ̸=kI

in
n IN (ΠN−1

n=1,n̸=kI
in
n IN−1)

(Iikk +Iikk )S
(i1,i2,··· ,in,··· ,iN−1,:)
k ]−ΣaN

iN=1T
D1
comp, where,

the sweep number for the orthogonalization of
matrices A

(i1,i2,···in,··· ,iN−1,:)
(N) and A

(i1,i2,···in,··· ,iN−1,:)
(k)

are S
(i1,i2,···in,··· ,iN−1,:)
N and S

(i1,i2,···in,··· ,iN−1,:)
k ,

respectively.

In the similar way, the computational
cost of the integration operation of the
second process in the n0-th layer of tree is
TDn0
comp≈ΣN

k=1,k ̸=n0
[ 12Π

n0−1
k=1 Iikk ΠN

k=n0+1Ik(Π
n0−1
k=1 Iikk

ΠN
k=n0+1Ik−1)(In0+In0)S

(i1,i2,··· ,in0−1,:,··· ,:)
k ]+ 1

2In0(In0

−1)(2Πn0−1
k=1 Iikk ΠN

k=n0+1Ik)S
(i1,i2,··· ,in0−1,:,··· ,:)
n0 −

Σ
an0
in0

T
D(n0+1)
comp . Also, the computational cost of the

integration operation of the integration operation is
TD2
comp=ΣN

n0=1T
Dn0
comp. Thus, the computational complexity
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of MDHOSVD is the summation of that of the first and
second process TD

comp=TD1
comp+TD2

comp.
Computational Complexity for the MIHOSVD: As

described in Algorithm 4, MIHOSVD is a MDHOSVD-
based improved computational method for tensor stream
A′

. The computational cost of T IA
′

comp equals to

T IA
′

comp≈TDA
′

comp−TDA
comp, where TDA

′

comp, TDA
comp are the com-

putational complexity for the MDHOSVD of tensors A′

and A, respectively.
Communication Complexity for the MDHOSVD: The

communication time is tcomm=tstartup+ndatatdata, in
which tstartup is the startup time, tdata is the transmission
time of every data word, and the ndata is the volume
of data words [26]. In the first process, the volume of
transmission data is ΠN

k=1Ik, and there are ΠN
k=1ak sub-

tensor blocks sent to the nodes of the (N+1)-th layer.
With the broadcast, the communication complexity of the
first process is TD1

comm=tstartup+ΠN
k=1Iktdata.

There are N times transferring sub-integration processes
in the integration process, in which the first one is that
transfers the data from the (N+1)-th layer to the N -th
layer. There are ΠN

n=1an nodes divided into ΠN−1
n=1 an

groups in the (N+1)-th layer. In every group, there are
aN nodes and every one processes a sub-tensor blocks
A(i1,i2,··· ,iN ), in which the size of matrix Uk and Vk is
ΠN

n=1I
in
n , (

ΠN
n=1I

in
n

I
ik
k

)2 unfolding along the k-th order,
respectively. The nodes in different groups transfer the data
in parallel, but the nodes in the same group transfer the
data in serial communication form. The communication
complexity of the first time of the integration process
from the (N+1)-th layer to the N -th layer is,
TD21
comm=aN [tstartup+NΠN

n=1I
in
n +ΣN

k=1(
ΠN

n=1I
in
n

I
ik
k

)2]tdata.
Also, the l-th time transferring, 2≤l≤N in the integration
process transfers the data from the (N+2)−l layer
to the (N+1)−l layer. Furthermore, the size of the
matrix Uk is (Π

(N+1)−l
n=1 Iinn ΠN

n=(N+2)−lIn). And, the

size of the matrix Vk is (
Σ

(N+1)−l
n=1 Iin

n ΠN
n=(N+2)−lIn

I
ik
k

)2,

1≤k≤(N+1)−l, or (
Π

(N+1)−l
n=1 Iin

n ΠN
n=(N+2)−lIn

Ik
)2,

(N+2)−l≤k≤N . In the similar way, the communication
complexity of the l-th time transferring is,
TD2l
comm=aN+1−l[tstartup+N(Π

(N+1)−l
n=1 Iinn ΠN

n=(N+2)−lIn)

+Π
(N+1)−l
k=1 (

Σ
(N+1)−l
n=1 Iin

n ΠN
n=(N+2)−lIn

I
ik
k

)2 +ΣN
k=(N+2)−l

(
Π

(N+1)−l
n=1 Iin

n ΠN
n=(N+2)−lIn

Ik
)2]tdata.

The communication time of MDHOSVD is
TD
comm=TD1

comm+TD21
comm+ΣN

l=2T
D2l
comm.

Communication Complexity for the MIHOSVD:
In the same way, it’s straightforward to obtain the
communication complexity of the MIHOSVD with
T I
comm=T I1

comm+T I2
comm, where the T I1

comm and T I2
comm are

the communication complexity of the first and second pro-
cess, respectively. The former is related to the incremental
part A+ and the latter is related to the integrated tensor
A′

.

4 EXPERIMENT AND SIMULATION

In this section, experiments and simulations are carried
out to study the performance of the proposed MDHOSVD
and MIHOSVD. The experiments are carried out on a
distributed system with 80 usable cores in 20 computers.
Each computer, also referred as a node, has an Intel Core
i5 CPU with four cores, 8GB memory based on the 64-
bit Linux operating system. Also, the data used in the
experiments are generated randomly. The simulations are
implemented by SimGrid 1, which is a scientific simulation
tool to study the behavior of large-scale distributed sys-
tems. To study the performance of the MDHOSVD and
MIHOSVD, the following evaluation criteria are used -
computational error, improvement factor and improvement
factor ratio that are explained in sub-section 4.1 and 4.2
below.

4.1 Error Measurement

To measure the accuracy of proposed algorithms, the error
is defined as follows: Supposing Ui, 1≤i≤N and S are the
HOSVD results of an Nth-order tensor A∈RI1×I2×···×IN ,
then the error is Eerror=∥A−S×1U1×2U2 · · ·×N UN∥
[8], [10], [11]. Without loss of generality, we compute
the error on the low order test tensor (3rd-order tensor)
and the high order test tensor (4th-order tensor) and the
experimental results are shown in Fig. 7.

Take the Fig. 7 (a) as an example, the horizontal axis
represents the dimensionality of one order represented
as “X” for test tensor “X*50*50”. For example, the
dimensionality of the first order of test tensor “X*50*50”
is 50,75,100,125,150,175,200,225,250, respectively. The
ordinate axis represents the error obtained from the exper-
iment. Furthermore, the “5-2-2” in the label of the Fig. 7
(a) means that the first order, second order and third order
of the test tensor “X*50*50” are cut into “5”, “2” and “2”
parts, respectively. In other words, the a1=5, a2=2 and
a3=2. As shown in Fig. 7, the errors increase with the
size of the data set. According to the analysis of Jacobi
orthogonalization method, the factors influencing the error
are the convergence coefficient ε and the whole data set
of test tensor A [8], [10], [11], [27].

4.2 Improvement Factor and Improvement Factor
Ratio Measurement

In this subsection, we quantify the performance of MD-
HOSVD and MIHOSVD by the improvement factor and
improvement factor ratio, respectively. Times t1 and tD
are the execution times for HOSVD of the Nth-order
test tensor A by the traditional one-sided Jacobi-based
SVD method and the MDHOSVD scheme, respectively.
Also, times t2 and tI are the execution times for the
HOSVD of the Nth-order test tensor stream A0+A+

by the MDHOSVD and the MIHOSVD schemes. The
execution times are collected from the distributed system

1. http://simgrid.gforge.inria.fr/
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(a) (b) (c) (d)
Fig. 7. The Error Measurement

(a) (b) (c) (d)

(e) (f) (g) (h)
Fig. 8. The Improvement Factors of 3rd-order Test Tensors

(a) (b) (c) (d)
Fig. 9. The Improvement Factors of 4th-order Test Tensors

(a) (b) (c) (d)
Fig. 10. The Improvement Factor Ratios of 3rd-order Test Tensors

and simulations on SimGrid. The ratio tD
t1

is the MD-
HOSVD improvement factor, while the ratio t2−tI

t2
is the

MIHOSVD improvement factor.

The relationships among test tensor size, improvement
factor, node number and blocked methods of the 3rd-
order test tensors and 4th-order test tensors are shown
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(a) (b) (c) (d)
Fig. 11. The Improvement Factor Ratios of 4th-order Test Tensors

in Figs. 8 and 9, respectively. The data of the first four
sub-figs (Fig. 8 (a), (b), (c) and (d)) are obtained from
experiments on the distributed system in which each node
has 4 cores. Other data in the Figs. 8 and 9 are collected
from simulations on SimGrid, in which each node has
a core. The main observations on the performance from
Figs. 8 and 9 are as follows: (i) For a given test tensor,
the performance initially increases with node number and
then tends to saturate as the node number becomes large.
(ii) For a given test tensor, with the size of tensor sub-
block decreases, the performance factor first increases, but
as the sub-block size decreases further, the performance
factor now also decreases. (iii) For a given test tensor,
there is a optimal blocked method which corresponds to a
optimal improvement factor. However, the optimal blocked
method for this given test tensor may have fluctuations in
the optimal improvement factor, as shown in (e) and (f)
of Fig. 8. Taking Fig. 8 (e) as an example, the distributed
system with 4 nodes to 24 nodes has the optimal blocked
method 10-10-20, then the optimal blocked method be-
comes 5-5-10 for the distributed system with 24 nodes
to 60 nodes. (iv) With the increase in test tensor size,
the number of sub-blocks in the tensor from the optimal
blocked method becomes larger and larger. For example,
the optimal blocked method of a given test tensor with size
300 ∗ 300 ∗ 300 for the distributed system with 24 nodes
to 60 nodes is 5-5-10, then that of a given test tensor with
size 600 ∗ 600 ∗ 600 is 10-20-20.

Following the same analysis method in the previous
paragraph, relationships among test tensor size, improve-
ment factor ratio, node number and blocked methods of
the 3rd-order test tensors and 4th-order test tensors for
MIHOSVD are also demonstrated in Figs. 10 and 11,
respectively. As shown in Fig. 10 (a), the original test
tensor size is 200 ∗ 200 ∗ 200, the incremental parts are
10 ∗ 10 ∗ 10, 10 ∗ 20 ∗ 20, 20 ∗ 20 ∗ 20, 20 ∗ 30 ∗ 30,
30 ∗ 30 ∗ 30, 30 ∗ 40 ∗ 40, 40 ∗ 40 ∗ 40, 40 ∗ 50 ∗ 50,
50 ∗ 50 ∗ 50, 50 ∗ 60 ∗ 60, and 60 ∗ 60 ∗ 60, respectively.
Taking the first three incremental parts as an example,
the size of updated tensors will be 210 ∗ 210 ∗ 210,
210∗220∗220, and 220∗220∗220, respectively. To measure
the performance of MIHOSVD, simulations are carried
out on the updated tensor using both MDHOSVD and
MIHOSVD algorithms, then the main observations from
this simulation group are as follows: (i) with the increase
of the incremental data size, the improvement factor ratio

is trending downwards. (ii) with the same node number,
the improvement factor ratio increases at first, but then
decreases with the increase of the incremental data size.
(iii) with the same incremental data size, the improvement
factor ratio increases first and thereafter decreases with
increase in the node number.

Sensing

 Plane

Cloud Plane

Application Plane

 Distributed/
Incremental 

Decomposition

...
Services

(CPSS)

Smart HomeSmart City Smart Hospital

...

...

...

Local 

CPSS

Data

...

Initial 
Cleaning

Big Data/Tensor

Fig. 12. The Big Data-as-a-Service Framework.

5 A CASE STUDY ON CPSS DATA

In this section, we proposed a case study about Big
Data-as-a-Service framework including the sensing plane,
cloud plane and application plane, which is similar to the
ones proposed in [9], [28]. In the sensing plane, data are
collected and represented from different local CPSS. After
initial cleaning, the distributed and incremental computa-
tion of the big data are processed in the cloud plane. The
extracted high quality data in the cloud plane is then used
in the application plane to provide services such as optimal
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(a) (b)

Fig. 13. The Performance Comparison of the CPSS
Case Study Data

routing prediction in smart traffic or predicting the medical
and evolving living needs of the elderly in a smart home
[29], [30].

In this paper, we mainly focused on the distributed
and incremental decomposition of the data on the cloud
plane, resulting in accelerated services providing in CPSS.
Two evaluation factors, the execution time and the error,
were selected to compare the performance of one-sided
Jacobi SVD, Matlab SVD (including many functions such
as “tenmat”, “ttm” and “ttensor”), DHOSVD and MD-
HOSVD on the test data of several liver cancer patients.

Next, using the same tensorization method proposed
in [8], a 3rd-order tensor is constructed based on the
test CPSS data. Taking the CT image data tensor as an
example. Using the patient’s CT image data, a 3rd-order
tensor A∈R200∗200∗200 is constructed in which the first
order represents the number of CT image. The second and
third orders are used to indicate a CT image and the data
in this tensor are the gray-scale values of each CT image.
We compare the performance metrics - error, execution
time of one-sided Jacobi SVD, Matlab SVD, DHOSVD
and MDHOSVD in the Fig. 13.

As shown in Fig. 13 (a), the horizontal axis is the size
X∗X∗X of a 3rd-order tensor, whose three orders are the
same. For example, the first number of the horizontal axis,
10, means a 3rd-order tensor 10×10×10. The execution
time of MDHOSVD approaches that of the Matlab SVD
as the tensor size increases. When the tensor size is over
140∗140∗140, the execution time of MDHOSVD becomes
less than that of the Matlab SVD. Further, when the
tensor size is over than 170∗170∗170, the Matlab SVD
cannot be executed because its memory requirements are
more than available in the computer. The execution time
of the one-sided Jacobi SVD is much larger than either
MDHOSVD or the Matlab SVD. And the execution time
of the DHOSVD is larger than that of MDHOSVD as
well. Similarly, from the Fig. 13 (b), the error performance
of MDHOSVD, DHOSVD and one-sided Jacobi SVD are
significantly better than that of Matlab SVD. Note that
the error in MDHOSVD is larger than that of the one-
sided Jacobi and DHOSVD because there is some error
accumulations in the computation.

6 CONCLUSION
In this paper, an improved mathematical representation
of tensor unfolding method to make it more convenient
and easy to understood was described. Then, a multi-
order distributed high order singular value decomposi-
tion method (MDHOSVD) and a multi-order incremental
high order singular value decomposition method (MI-
HOSVD) were proposed. The computational and com-
munication complexities of both MDHOSVD and MI-
HOSVD were analyzed. The performance of MDHOSVD
and MIHOSVD were quantified using the criteria of error,
improvement factor and improvement factor ratio form
detailed measurements. Finally, a case study about service
providing in CPSS based on data processing was proposed
and discussed using the quantitative metrics of execution
time and error performance to highlight the benefits of
MDHOSVD and MIHOSVD.

However, from the working process of the proposed
MDHOSVD and MIHOSVD, we could find these nodes
in the high layers of the tree have heavy workloads, which
may bring negative effects for these algorithms. Therefore,
how can we reduce the workload of these nodes in the
high layers to improve the computational efficiency is one
of the main challenges. Also, from the performance of
execution time, we could find several other factors such
as blocked methods, node number and tensor size play
important roles in the execution time. In the same way,
how can we provide an optimization model to optimize
allocation of these factors is another challenging question
to be studied in the future.
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