
2332-7790 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TBDATA.2017.2702172, IEEE Transactions on Big Data

IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID 1

SEEN: A Selective Encryption Method to
Ensure Confidentiality for Big Sensing Data

Streams
Deepak Puthal, Xindong Wu, Surya Nepal, Rajiv Ranjan and Jinjun Chen

Abstract—Resource constrained sensing devices are being used widely to build and deploy self-organizing wireless sensor

networks for a variety of critical applications such as smart cities, smart health, precision agriculture and industrial control

systems. Many such devices sense the deployed environment and generate a variety of data and send them to the server for

analysis as data streams. A Data Stream Manager (DSM) at the server collects the data streams (often called big data) to

perform real time analysis and decision-making for these critical applications. A malicious adversary may access or tamper with

the data in transit. One of the challenging tasks in such applications is to assure the trustworthiness of the collected data so that

any decisions are made on the processing of correct data. Assuring high data trustworthiness requires that the system satisfies

two key security properties: confidentiality and integrity. To ensure the confidentiality of collected data, we need to prevent

sensitive information from reaching the wrong people by ensuring that the right people are getting it. Sensed data are always

associated with different sensitivity levels based on the sensitivity of emerging applications or the sensed data types or the

sensing devices. For example, a temperature in a precision agriculture application may not be as sensitive as monitored data in

smart health. Providing multilevel data confidentiality along with data integrity for big sensing data streams in the context of near

real time analytics is a challenging problem. In this paper, we propose a Selective Encryption (SEEN) method to secure big

sensing data streams that satisfies the desired multiple levels of confidentiality and data integrity. Our method is based on two

key concepts: common shared keys that are initialized and updated by DSM without requiring retransmission, and a seamless

key refreshment process without interrupting the data stream encryption/decryption. Theoretical analyses and experimental

results of our SEEN method show that it can significantly improve the efficiency and buffer usage at DSM without compromising

the confidentiality and integrity of the data streams.

Index Terms—Big data stream, selective encryption, data confidentiality, data integrity, data security

 ——————————  ——————————

1 INTRODUCTION

large number of mission critical systems in areas
such as disaster management, cyber physical

infrastructure systems and SCADA (Supervisory control
and data acquisition) are building the Internet of Things
(IoT) applications by deploying a number of smart
sensing devices in a heterogeneous environment. Data
produced from a large variety of sources using sensing
devices are streamed towards Data Stream Managers
(DSM) for processing and decision making. This trend
gives birth to an area, called big data stream [20][49]. The
verity of applications and data sources makes the need
for data dependability such that only trustworthy and
dependable information is considered for decision
making processes. Data security (i.e., more specifically
ensuring data integrity and confidentiality) is an efficient
and effective procedure to assure data
trustworthiness/dependability, since DSM processes the
data streams in near real time and performs the data
analytics; the appropriate actions are performed based on
the results from the analytics. It is thus important that
data trustworthiness is assured during the lifecycle of big
data stream processing. Recent research [2][3] highlighted

the key contributions on lightweight security provenance
in data both in transit and at rest by considering the
example of SCADA systems for critical infrastructure.

The lifetime of a big data stream is very short because
it is continuous in nature (i.e., the data can be accessed
only once) [20][50]. Such data streams in critical
applications have high volume and velocity, but the
stream processing has to be done in near real time. It
cannot follow the traditional store and process batch
computing model [26]. To address this challenge, stream
processing engines (such as Spark, Storm, S4, etc.) have
emerged in the current era to provide the capability to
commence big data processing in real time [21][49].
Stream processing engines (SPE) deal with two important
advantages: (i) there is no need to store large volumes of
data and (ii) it is capable of supporting real time
computation needed by emerging applications. As the
important decisions are made in critical applications by
data streams analysis in near real time, it is important that
such data are not accessed or tampered with by malicious
adversaries. This brings one of the key and open research
problems in big data streams; that is, how to ensure the
end-to-end security for stream data processing. This
includes guaranteeing data security properties (i.e.
integrity, confidentiality, authenticity and freshness)
[3][19][20].

There are different security requirements for different
emerging critical applications. Let’s consider some

A

————————————————

 D. Puthal is with University of Technology Sydney, Australia. E-mail:
deepak.puthal@gmail.com.

 X. Wu is with University of Louisiana, Lafayette, USA, xwu@lousiana.edu
 S. Nepal is with CSIRO Data61, Australia. E-mail: Surya.Nepal@csiro.au.
 R. Ranjan is with Newcastle University, UK. E-mail: rranjans@gmail.com.
 J. Chen is with Swinburne Data Science Research Institute, Swinburne

University of Technology, Australia. E-mail: jinjun.chen@gmail.com.

2332-7790 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TBDATA.2017.2702172, IEEE Transactions on Big Data

AUTHOR ET AL.: TITLE 2

applications such as disaster management, terrestrial
monitoring, military monitoring, healthcare, cyber
physical infrastructure systems, SCADA etc. that are the
sources for big data streams [5][19][20][36]. Some
applications, including terrestrial monitoring and disaster
management, need data integrity so that the system has
high confidence in the detected events from stream data
processing; confidentiality is not that important in such
applications [4][6][8]. Some applications such as military
applications, healthcare, and SCADA need data
confidentiality along with data integrity. The
confidentiality of data depends not only on applications,
but also on data types. For example, some applications
need data confidentiality forever (i.e. strong
confidentiality), whereas some applications need to
maintain data confidentiality in real time (i.e. partial
confidentiality). If we consider healthcare applications,
personal health data need to be protected from outsiders
and we need strong confidentiality for such applications
[5], whereas in SCADA application data need to be
protected in real time until a DSM detects the event [2].
There are still several applications including military
monitoring that need different levels of data
confidentiality [3] [4]. In such systems, there is no need
for data confidentiality for normal sensed data, but it is
needed for highly sensitive data such as movement in the
battle field or detection of enemy activities. In this paper,
we address the issue specified above by designing a novel
security method for big sensing data streams.

The common approach to data security is to apply a
cryptographic model. If the encryption keys are managed
properly, data encryption applying a cryptographic
method is the most widely recognized and secure way to
transmit data. There are two basic sorts of cryptographic
encryption strategies: asymmetric and symmetric. It is
already proved that symmetric key cryptography is 1000
times faster than asymmetric key cryptography [22][23].
ECRYPT II has shown the 3,248-bit asymmetric key
provides the same level of security as 128-bit symmetric
key [23]. We thus focus on symmetric key cryptography
to design a new security method for big data streams to
ensure data confidentiality and integrity.

In order to address the aforementioned challenge, we
have designed and developed a selective encryption
method (SEEN) to secure and maintain confidentiality of
big data streams according to sensitivity levels of the
data. Our method is based on a typical shared key that is
initialized and updated by a DSM without requiring
retransmission. Furthermore, the proposed security
method is able to recover keys by detecting lost keys and
perform seamless key refreshment without interrupting
ongoing data stream encryption/decryption. SEEN
maintains different levels of data confidentiality along
with data integrity. The main contributions of the paper
can be summarized as follows:
 We have developed and designed a novel selective

encryption method (SEEN) to secure and maintain
confidentiality of big sensing data streams according
to different data sensitivity levels. Our method is
based on common shared keys and is initialized and

updated by a DSM without requiring
retransmission. Our method performs seamless
refreshing of the shared key without disrupting
ongoing data encryption or decryption.

 Our proposed model adopts different keys for the
three levels of data confidentiality (i.e. no
confidentiality, partial confidentiality and strong
confidentiality) based on the data sensitivity levels.
This model ensures the end-to-end security by
protecting data from source device to cloud
processing layer.

 We validate our proposed method by theoretical
analyses and experimental results.

 We compare the SEEN method with a standard
symmetric key solution (AES-128), DPBSV and
DLSeF in order to evaluate the efficiency.

The rest of the paper is organized as follows. Section 2
gives a brief overview of the related works. Section 3
introduces our proposed system and the corresponding
security method. Section 4 provides a detailed description
of our security method, followed by its security analysis
and performance evaluation in Sections 5 and 6,
respectively. Finally, Section 7 concludes the paper by
providing potential future directions for the work.

2 RELATED WORKS

In 2005, Stonebraker et al. [26] initially highlighted the
eight requirements of real time stream processing which
makes stream processing research more challenging and
different to batch processing. In 2009, Nehme et al. [27]
proposed a spotlight architecture to highlight the need for
security in data streams and differentiate the security
requirements of data (called data security punctuations)
and query side security policies (called query security
punctuations). There are a large number of security
solutions proposed in the literature to protect data
confidentiality and integrity by applying asymmetric and
symmetric cryptography solutions [3][4][5][6][12][14]. In
this section, we describe relevant work related to our
research under the following three areas: stream
processing, data stream security, and security solutions
for data confidentiality and integrity.

2.1 Stream Processing

The Data Stream Management System, also known as
STanford stREam data Manager (STREAM), was initially
developed by Arsu et al. in 2003 [1]. STREAM is designed
to deal with the high velocity data rates and the
substantial numbers of continuous queries through
thoughtful resource allocation. Most of the works carried
out in the Data Stream Management System address
different issues ranging from theoretical modelling and
analysis to executing comprehensive models to deal with
high speed data streams and response in real-time (near
real-time). Research methodologies include: STREAM
[32], Aurora [33], and Borealis [34].
In data stream management systems like STREAM [32],
Aurora [33], and Borealis [34], queries issued by the same
client in the meantime can share Seq-window

2332-7790 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TBDATA.2017.2702172, IEEE Transactions on Big Data

AUTHOR ET AL.: TITLE 3

administrators. According to the STREAM framework,
Seq-window administrators are reused by queries on
indistinguishable streams. Rather than developing the
sharing of parts between arrangements, Aurora research
focuses on giving better execution over a vast numbers of
queries. Aurora achieves this by clustering administrators
as a basic performance entity. In Borealis, the data on
input information criteria from query processing can be
shared and changed by new approaching queries.
StreamCloud is a large scalable reliable streaming system
to handle large scale data streams on clouds [36].
StreamCloud utilizes a new parallelization strategy that
separates input quarries into subqueries apportioned to
free arrangements of hubs to reduce the circulation
overhead. Even though numerous methodologies focus
on scheduling and revising for QoS, distributing
execution and computation by the same user at various
times or by various user at the same time are not
supported in stream processing engines. Other than
common source Seq-windows as in DSMS, sharing
intermediate computation results is a superior approach
to improving performance.

The focus of these research was on the performance of
query processing, but not much on the security issues in
data stream. Nehme et al. [27] highlighted the security
aspects of data stream; the following subsection describes
details about security issues.

2.2 Stream Security

There have been several recent works on securing data
streams [27][37][38][39][41][42][43] focusing on query
security punctuations, i.e., access control over data
streams. In spite of the fact that these frameworks support
secure processing they are unable to avoid illegitimate
data streams or data security. Punctuation based
enforcement of access control on streaming data is
proposed in [43]. Access control strategies are
retransmitted each time, utilizing one or more security
accentuations before the real data are transmitted. Both
punctuation have prepared by streamshield (a unique
filtration) for query plan. Secure query processing in a
shared manner is proposed in [37]. From the streamshield
concept, the authors show a three-phase system to
enforce access control without presenting any unique
operators, rewriting query, or influencing QoS.
Supporting role-based access control through query
rephrasing strategies is proposed in [39]. Query
arrangements are reorganized and policies are mapped to
an arrangement of guide and filter operations to
authorize access control policies. The architecture in [41]
utilizes a post-query channel to implement access control
strategies on a stream level. The channel applies security
arrangements before a client gets the outcomes from SPE,
but after query preparing. Designing SPEs checking
multilevel security imperatives has been tended to by
authors in [38]. Xie et al. [42] adopt a Chinese Wall policy
to protect and avoid sensitive data disclosure at DSMS.
The focus of this research was on query security
punctuation, however data security punctuation, i.e. end-
to-end security between source and SPEs, is the mission.

In our previous works [19][20][40][49], we have proposed
data security over big sensing data streams to avoid
integrity and authenticity. In this paper, we proposed an
end-to-end security by protecting big data streams
against confidentiality based on data sensitive level.

2.3 Data confidentiality and integrity

There are several existing works on data confidentiality,
data integrity, and end-to-end security
[3][4][5][6][12][14][35][44][45][46][47] while data are in
transit. SPINS is a very popular and well accepted
security protocol proposed for sensor networks at the
very beginning in 2002 [47]. SPINS protocol has two
blocks and those are (i) SNEP and (ii) µTESLA. SNEP
provides data authentication, data confidentiality, and
data freshness whereas µTESLA ensures authenticated
broadcast. A lightweight security protocol named LiSP is
designed by focusing on efficient rekeying without any
interruptions [12]. The LiSP protocol requires just three
hash functions and storage room for eight keys on
average by reducing significant resource consumption.
Lightweight Security protocol (named LSec) provides
authentication and authorization of source sensing nodes
along with a data confidentiality mechanism against
intrusions and anomalies [4]. A novel lightweight security
method is proposed for sensor data streams in [3]. This
scheme relies on Bloom filters in data packets to encode
source data and perform security verification over data
streams at the base station. The location-aware end-to-end
security framework for static sensor networks is proposed
for node-to-node and node-to-sink authentications and
data confidentiality in [44]. The protocol uses secret keys
that are bounded to geographical area and nodes store a
few keys based on its origin. Data aggregation in the
intermediate node is a challenging task where the source
is sensor networks. Pietro et al. [45] proposed a novel
aggregation technique which provides both integrity and
confidentiality over aggregated data and also detects false
data injection efforts. A sensitive application oriented
lightweight security solution is proposed in [14], which
contains four components such as STKS (a secure triple-
key scheme), SRAs (secure routing algorithms), SLT
(secure localization technique) and a malicious node
reveal method. A symmetric key based lightweight
security scheme is proposed by considering energy
consumption of hardware components in [5]. This scheme
ensures integrity and confidentiality of the data collected
from a WBAN (wireless body area networks), either data
stored inside sensors or during data transmission towards
a centralized controller for healthcare applications.
The focus of this research was on data confidentiality
and/or integrity, however, none of the solutions talks
about data confidentiality based on the data sensitivity
levels. The selective encryption technique is popular and
well accepted in the multimedia (image/video) computing
domain [48]. However, in this domain researchers are not
particularly aware of protecting data based on the
confidentiality levels. We adopt the selective encryption
concept to propose a new method for big sensing data
streams.

2332-7790 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TBDATA.2017.2702172, IEEE Transactions on Big Data

AUTHOR ET AL.: TITLE 4

3 DESIGN CONSIDERATIONS

3.1 System Architecture

The overall architecture of a big sensing data streams
including security and model is shown in Fig. 1. The
architecture includes source sensing devices to transmit
data to the DSM through wireless networks including our
security model (SEEN). Big data stream processing is an
emerging computing model which is particularly suitable
for several application scenarios where huge volume and
velocity of data (Big Data stream) must be processed in
near real time (with a small delay). Several applications
such as terrestrial monitoring, disaster monitoring,
military monitoring and healthcare need data processing
in near real time [5][18][19]. The needs of near real time
processing include huge input data that discourages the
use of instant storage, the obligation of generating rapid
results, etc. We follow [19][20] to design a DSM, which is
capable of handling high-volume and variety data
streams from multiple sources. DSM dropped modified
or data packets from malicious source to ensure only
original sensed data available at SPE for analysis. SPE is
shown at the top of the Fig. 1. In addition, the DSM is
responsible for performing the security verification of the
incoming data streams in near real time to synchronize
with the processing speed of SPE (Spark Streaming,
Apache Strom, Apache S4, etc.). For further information
on stream data processing on datacenter, refer to [21].
Along with this, we consider that both source sensor and
cloud data center deployed with Intrusion Detection
Systems (IDS). Sensor based IDS monitor a sensor’s
behavior and generates alerts on potentially malicious
activities onboard and network traffic [7]. IDS can be set
inline, attached to a spanning port of a sensor. The idea
here is to allow access to all packets we wish the IDS to
monitor. LEoNIDS (low-latency and energy efficient
network IDS) is a system that determines the energy

expectancy trade off by giving both lower power
utilization and lower recognition expectancy [8]. By
highlighting the cloud based IDS, Lee et al. [9] proposed
an intrusion detection system where the learning
operators persistently process and give the redesigned
methods to the discovery agents for efficient learning and
real-time detection. It generally computes inter and intra
audit record patterns; this can guide the data gathering
process and simplify feature extraction from audit data.
Xie et al. [10] proposed a novel technique to analyze the
system (sensor) vulnerabilities and attack sources quickly
and accurately.
In our architecture, the data streams are always in the
encrypted format when they arrive at the DSM. Our idea
is that while encrypting the data packets at the source, we
attach sensitivity level of data to each individual data
packet. In the SEEN method, we apply different keys to
encrypt the data packets for different data sensitivity
levels. The aim is to provide different confidentiality
levels based on the applications as well as the sensitivity
levels of the data. In a very generic representation, if we
need n levels of data security then n-1 keys
(𝑆ℎ𝑎𝑟𝑒𝑑 𝐾𝑒𝑦(𝐾𝑆𝐻)) are required for
encryption/decryption. In this paper, we are considering
three levels of data confidentiality: strong confidentiality,
partial confidentiality, and no confidentiality; and two
keys (i.e. k1, k2) for encryption methods. The strong
encryption method uses k1 and is used to provide strong
confidentiality, and the weak encryption method uses k2
to support partial confidentiality. Note that we do not
need to encrypt the data packets for no confidentiality.

𝑆ℎ𝑎𝑟𝑒𝑑 𝐾𝑒𝑦(𝐾𝑆𝐻) =

{

𝑠𝑒𝑐𝑢𝑟𝑖𝑡𝑦 𝑙𝑒𝑣𝑒𝑙 − 𝑛 𝑘𝑒𝑦 (1)

⋮
𝑠𝑒𝑐𝑢𝑟𝑖𝑡𝑦 𝑙𝑒𝑣𝑒𝑙 − 2
𝑠𝑒𝑐𝑢𝑟𝑖𝑡𝑦 𝑙𝑒𝑣𝑒𝑙 − 1

⋮
𝑘𝑒𝑦 (𝑛 − 2)
𝑘𝑒𝑦 (𝑛 − 1)

𝑠𝑒𝑐𝑢𝑟𝑖𝑡𝑦 𝑙𝑒𝑣𝑒𝑙 − 0 𝑛𝑜 𝑘𝑒𝑦

Data packets can be transmitted to DSM using two
different ways of encrypting data: (i) encrypt the data
stream and (ii) encrypt the data packets in the stream. In
both these ways, we are going to apply encryption
methods (strong/weak encryption) based on the data
sensitivity or confidentiality level. The encrypted data
stream applies to those sensors which are deployed with
the sensitivity levels, whereas encrypted data packet
applies to the sensors with different sensitivity levels for
different types of data.
Here, we follow a three step process, data collection,
security verification, and stream query processing at DSM
as highlighted in Fig. 1. Our focus is to perform the
security verification at DSM by providing an end-to-end
security of big sensing data streams. It is also important to
perform a security verification of a data stream before the
stream query processing in order to maintain the
originality of the data for SPE. The security verification
needs to be done on-the-fly (i.e. near real-time) with a
smaller buffer size. The queries including security
verification can be defined as a directed acyclic graph;
and each node is an operator and edges define the data
flows between the nodes.
The above system architecture and security requirements

Fig. 1. High level architectural diagram of big sensing data streams,
DSM and stream data processing system for SEEN security model.

2332-7790 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TBDATA.2017.2702172, IEEE Transactions on Big Data

AUTHOR ET AL.: TITLE 5

of big data streams [19][20] lead to the following two
important features:
 Data packet needs to maintain confidentiality based

on its sensitivity level.
 Need optimized buffer size at DSM prior to stream

query processing.
Motivated by this problem, this paper aims to address the
challenge of data integrity and multilevel confidentiality
on real time massive data streams.

3.2 Adversary Model

We assume that a large number of sensor nodes are the
sources of big sensing data streams that are fully
connected and can communicate to the DSM through
wireless networks. We assume that the DSM is aware of
the network topology and initially deployed nodes. We
assume that IDS is positioned at each source device and at
the DSM so that source sensors and DSM are capable of
detecting packet-loss attacks and data modifications [3].
The DSM is treated as fully secured and protected in our
model as it resides at the cloud data center.
An attacker has several ways of attacking big sensing
data streams:
 After the deployment, the nodes may be captured by

the attacker who will then be able to access the data
stored in these nodes, as well as reprogram them and
control their actions. The attacker could therefore
make nodes refuse to forward some of the packets
(Selective Forwarding attack) or even all of them
(Blackhole attack).

 The attacker may capture the data packets in the
middle to get the information out of them and modify
the content of a data packet. The attacker can therefore
cause the loss of confidentiality (confidentiality attack)
of sensitive information and data integrity (integrity
attack).

 A replay attack (also well-known as playback attack)
is a network based attack where a data stream is
maliciously delayed or fraudulently repeated.

Compromising a node to drop packets and introducing

interference in the network to access/tamper with the data

are, from a high-level perspective, the two ways in which

an attacker can disrupt data transmission through a

packet-loss attack. For this reason, our adversarial model

covers many different attacks that aim at causing packet

losses. The other type of attack is to capture sensitive data

packets and analyze to break the data confidentiality.
Each node whose IDS detects a packet loss attack, will
investigate the loss; we assume the investigating source
device to be trustworthy and not to report any false
response. This assumption is particularly important for
the Majority Voting algorithm adopted as part of our
approach. However, we will also present a variant of this
algorithm able to relax this constraint, and thus able to
tolerate up to a confident number of colluding
investigating source nodes.

3.3 Attack Models

There are mainly three threat approaches for attack

models, i.e., attack centric, software centric and asset
centric. An attack centric threat model always starts with
an attacker, whereas a software centric threat model starts
with system designing. An asset centric threat model
follows the information collection and assets entrusted, so
our proposed method is an asset centric threat model.
We assume that multiple simultaneous attacks can be
carried out at the same time at various parts of the
network. In fact, the strength of our approach is that
multiple simultaneous investigations can be carried out.
The integrity of a big data stream ensures that a message
sent from sources to the data center (DSM) is not
modified by malicious intermediates. Authentication of
big data streams ensures that the data are from legitimate
sources to maintain the end-to-end security.
Data confidentiality (privacy) is a set of guidelines that
restrict access or puts limitations on specific data streams.
This guarantees that given data cannot be comprehended
by anybody other than the desired receivers whether the
data is in transit or at rest.
The effect on data confidentiality of a successful exploit of
vulnerability on the target system as follows.
 Strong confidentiality: Only desired recipients can read

the information.
 Partial confidentiality: There is considerable

informational disclosure in some situations.
 No confidentiality: A total compromise of information

as confidentiality is not a hard requirement.
TABLE 1

NOTATIONS.

Acronym Description
𝑆𝑖 ith source sensing device’s ID
𝐾𝑖 ith source sensing device’s secret key
𝐾𝐷 DSM secret key
𝑘 Initial secret key
𝐾𝑆𝐻 Initial shared key generated by DSM

KSH(1) Shared key for strong encryption
KSH(0) Shared key for weak encryption
𝑇 Time of packet generation
𝑇′ Time of packet receive at DSM

𝑅1/𝑅2 Pseudorandom number
𝐶𝐴𝐶 Centralize authentication code
SL Data sensitivity level

MAC Message authentication code
𝐸() / D() Encryption/Decryption function
𝐻() One-way hash function
⊕ X-OR operation

∥ Concatenation operation

4 PROPOSED METHOD

In this paper, we propose a selective encryption method
for big data stream (SEEN) which is furnished with key
renewability and makes a tradeoff among security,
performance and resource utilization. The SEEN security
method’s salient features are as follows:
 efficient key broadcasting without retransmission;
 ability to recover the lost keys with a proper detection;

2332-7790 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TBDATA.2017.2702172, IEEE Transactions on Big Data

AUTHOR ET AL.: TITLE 6

 seamless key refreshment without interrupting the
data streams; and

 maintain the data confidentiality based on the data
sensitivity level.

We describe the proposed security method for big sensing
data streams using four independent components: system
setup, rekeying, new node authentication, and
encryption/decryption. We refer readers to Table 1 for all
notations used in describing our scheme. We made a
number of sensible and practical assumptions to
characterize the proposed security method. We describe
those assumptions where necessary. We next describe
independent components in detail.

4.1 Initial System Setup

We follow the symmetric key method for the initial
system setup because of the limited resource availability
at the source sensors [11]. In symmetric key encryption,
hashing function need 5.9 µJ and encryption techniques
1.62 µJ whereas in an asymmetric key, RSA-1024 needs
304 mJ to sign and 11.9 mJ to verify and ECDSA-160
needs 22.82 mJ to sign and 45 mJ for verification [11]. So
we choose to follow symmetric key methods for the initial
setup. In the system setup process, DSM always starts the
process to identify the authenticated source. After
successful authentication, DSM shares the secret shared
keys to the source sensors for encryption. The initial
shared key setup phase is as follows:
DSM generates a pseudorandom number (𝑅1) and
performs a hash function combined with its DSM secret
key (𝐾𝐷) to generate a unique secret shared key. Then
DSM encrypts the generated shared key by using the pre
deployed secret key (k) which is initialized during the
network setup to generate Centralize Authentication
Code (CAC). The DSM broadcasts the CAC to all the
source sensors i.e. (1, …, n).

𝐾𝑆𝐻 = {𝐻(𝐸(𝑅1, 𝐾𝐷))}

𝐶𝐴𝐶 = 𝐸𝑘(𝐾𝑆𝐻)
𝐷𝑆𝑀𝑆(1⋯𝑛) {𝐶𝐴𝐶}

Once all the sensors receive the broadcast CAC from the
DSM, sensors decrypt it by using a pre deployed secret
key (k) (i.e. 𝐾𝑆𝐻 = 𝐷𝑘(𝐶𝐴𝐶)). Here we show the operation
for a single senor (i.e. ith sensor). The following is the
procedure to be performed at the sensor and sends an
encrypted CAC to the DSM. The CAC contains source ID,
random number as nonce, and a timestamp to avoid
replay attack.

𝐾𝑆𝐻 = 𝐷𝑘(𝐶𝐴𝐶)
𝐶𝐴𝐶2 = 𝐸𝐾𝑆𝐻(𝑅2 ∥ 𝑆𝑖 ∥ T)

𝐷𝑆𝑀𝑆𝑖 {𝐶𝐴𝐶2}
Once the CAC is received at the DSM, it decrypts and
checks the source ID (𝑆𝑖) for authentication and retrieves
the corresponding sensor secret key from its data base (Ki

 retrievekey (Si)). It also checks the time stamp to avoid
replay attacks. The complete procedure for authentication
and replay attack avoidance is shown below.
𝐷𝐾𝑆𝐻(𝑅2 ∥ 𝑆𝑖 ∥ T)

Ki  retrievekey (Si) // for source authentication
𝑇′ − 𝑇 ≤ ∆𝑇 (T-packet generated time; T′-Packet receive time)

It compares the received time frame (T) with its current
time (T′) to check the data freshness in order to avoid a
replay attack (T - T′ ≤ ΔT). If the time difference is less
than ΔT , the DSM accepts the data packet otherwise the
packets are discarded.
The DSM then generates a new key by performing X-OR
on the existing shared key and sensor’s secret key. The
DSM uses this shared key to encrypt the nonce and sends
back to the corresponding sensor for handshaking along
with weak encryption shared key.

𝐾𝑆𝐻2 = 𝐾𝑆𝐻⨁𝐾𝑖
𝐶𝐴𝐶3 ∶= 𝐸𝐾𝑆𝐻2(𝑅2 ∥ 𝐾𝑆𝐻2(0))

𝐷𝑆𝑀𝑆𝑖 {𝐶𝐴𝐶3}
After a sensor (Si) receives the data packet, it performs the
same operation as DSM did to find the new shared keys
to encrypt the data packets. It compares the decrypted
nonce (𝑅2

′) with the nonce it has (𝑅2); if both are the same,
then it accepts otherwise it rejects and starts a new
authentication process. Received 𝐾𝑆𝐻2(0)uses 64-bit key for

weak encryption and 𝐾𝑆𝐻2 uses 128-bit key for strong
encryption.
𝐾𝑆𝐻2 = 𝐾𝑆𝐻⨁𝐾𝑖
𝑅2

′ ∶= 𝐷𝐾𝑆𝐻2(𝐶𝐴𝐶3)

If 𝑅2
′ = 𝑅2, then the sensors accept otherwise the process

starts from the beginning. The complete authentication
process is shown in Fig. 2, where we show the stepwise
process with information flow.

4.2 Re-keying

After this initial key setup phase, the DSM shares the
shared secret key with sensors for encryption. For the
rekeying process, we follow a LiSP protocol [12] and
modify it to make SEEN more data centric instead of
communication centric. SEEN uses a key server (KS) at
the DSM, that manages the security keys for both strong
and weak encryption. We use 128-bit symmetric shared
key for strong encryption and 64-bit symmetric key for
weak encryption. Shared keys from KS are always
chosen to perform the rekeying operation. Along with the
shared key, individual sensors are able to perform the
hash function.

In-order to make the system more secure, the shared key

Fig. 2. Initial authentication methods with 4 step process.

2332-7790 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TBDATA.2017.2702172, IEEE Transactions on Big Data

AUTHOR ET AL.: TITLE 7

distribution for rekeying must be secure and fault

tolerant; where “secure” means to maintain the

confidentiality and authenticity and “fault tolerant”

implies the capacity to restore the lost shared key (𝐾𝑆𝐻). In

our SEEN method, we always use two kinds of control

packets i.e. UpdateKey and RequestKey. UpdateKey is for

periodically updating the shared key used by DSM,

whereas RequestKey is used by sensors when they missed

the shared key during the rekeying process.
We follow PRESENT [13] to generate the shared key at
DSM and distribute the key before it is used for
encryption at source sensors. The sensors have two buffer
places for each key; that means four buffer places are
required to save the keys as shown in Fig. 3. The front
two shared key are always used for encryption and the
back buffers contain the next shared key before the
current shared key expires.

Algorithm 1. Rekeying process

t – time to rekeying
t′ – time to DSM starting the shared key distribution
δt – small time before t expires

1. At time t′: the DSM broadcasts (UpdateKey)
 UpdateKey ⇒ EKSH(KSH(1) ∥ KSH(0))
2. Sensors use the current shared key (EKSH) to get the

next shared key
 DKSH(KSH(1) ∥ KSH(0))
3. At time δt: If any sensor does not have the next

shared key
Sensors unicasts to DSM (RequestKey)

 RequestKey ⇒ EKSH(Si ∥ ti)
4. After authentication, the DSM unicasts (UpdateKey)
 UpdateKey ⇒ EKSH(KSH(1) ∥ KSH(0))

To ensure secure shared key distribution, the DSM
initiates the shared key distributions by encrypting the
control packet (UpdateKey) using the current shared key
(KSH(i-1)) to distribute the next shared key (KSH(i)). The
UpdateKey is always in the format of EKSH

(i-1)(KSH
i(1) ∥

KSH
i(0)), where KSH is the current shared key and all

authenticated sensors have this key to perform the
encryption. Let us assume the time to change the shared
key is t; this means the DSM needs to initialize the shared
key before the time t′. If the sensor did not get the shared
key at time δt (t-t′= δt), then it initiates the RequestKey.
The RequestKey always in the format of EKSH(Si ∥ ti), the
source ID (Si) along with time slot (ti) encrypted with the
current shared key (KSH). Then DSM can decrypt the
RequestKey control packet using current shared key (KSH)
and authenticate using the source ID. In such situations,
the DSM sends an UpdateKey message to the

corresponding sensors. Algorithm 1 shows the procedure
for rekeying.

4.3 New Node Authentication

Joining new nodes to the network is a common property

of sensor networks. We assume that the source node is

initialized by the DSM during the initial deployment [14].

In such cases, source sensors always start the process by

authenticating with the DSM to get the current shared

key. Sensors use a control packet (i.e. InitKey) to start the

process. InitKey contains the source ID encrypted with the

initially deployed secret key i.e. 𝐸𝑘(𝑆𝑗). Once the DSM

receives the control packet, it checks its authenticity. If the

DSM succeeds in the authentication process, then it

follows the Initial key setup (from Fig. 1) phase to share

the current shared key. The DSM uses the current shared

key (KSH) instead of generating a new key i.e. 𝐾𝑆𝐻 =

 {𝐻(𝐸(𝑅1, 𝐾𝐷))} . At the final stage of sharing the shared

key, the DSM shares the keys along with a time stamp (ti)

to source sensors (𝐸𝐾𝑆𝐻2(𝑅2 ∥ 𝐾𝑆𝐻2(0) ∥ 𝑡𝑖)). For the robust

clock skew and shared information details, the source

sensor can get the information from its neighbours [12].

4.4 Reconfiguration

The DSM will configure the shared key at the time of the
next rekeying process, if (1) any of the source sensors
have been compromised; (2) any of the shared keys have
been revealed; (3) a source node has overtly requested the
shared key; or (4) a source has joined to participate in the
data stream. The first condition forces all source devices
to be reconfigured, whereas the final two issues focus on
requesting that the source to be configured. The actions
required for the issues highlighted above are summarized
as follows:
(I) DSM withdraws the compromised nodes as the
authenticated source, and if the KSH(i) has been disclosed
previously. This may expose all earlier shared keys.
(II) DSM computes new shared keys for both strong and
weak encryption and unicasts with control packets.
(III) DSM replies to the requesting source with current
configuration.
(IV) DSM follows the authentication process, and if
successful, DSM responds to the source by initializing an

Fig. 4. Shared key management for Robustness to Clock Skews

Fig. 3. Key selection

2332-7790 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TBDATA.2017.2702172, IEEE Transactions on Big Data

AUTHOR ET AL.: TITLE 8

InitKey control packet.

4.5 Encryption/Decryption

The above defined process makes both shared keys

(KSH(1) ∥ KSH(0)) available at sensors. Note that KSH(1) is

always used for strong encryption, whereas KSH(0) is

always used for weak encryption. Each data block

generated at sensors is a combination of two different

parts. The first part is for integrity checking and

maintaining the confidentiality level, whereas the other

part is for the source authentication (i.e., 𝐴𝐷 =

𝐸𝐾𝑆𝐻(1)(𝑆𝑖 ∥
1
0⁄ ∥ T). The authentication part is always

encrypted using the strong encryption key; it contains the

source ID for authentication, time stamp (T) to avoid

replay attack, and a flag value 1/0;where 1 is for strong

encryption of body part (highly sensitive data) or 0 for

weak encryption of body part (low sensitivity data). In

order to encrypt the data part of the packet, every sensor

performs the XOR operation i.e. current shared keys

KSH(1/0) with its own secret key (ki), i.e. KSH(1)′ = KSH(1)⨁Ki

and KSH(0)′ = KSH(0)⨁Ki’ then it uses the newly generated

key to encrypt the data packets. Shared key EKSH(1)′ is

always used for strong encryption, whereas shared key

EKSH(0)′ is used for weak encryption (DATA∥MAC). The

above specified data block encryption is always based on

the data sensitivity level and for data integrity and

confidentiality.
The Capture layer of an IoT system (i.e. physical layer of
sensor networks) is responsible for obtaining the context
of data from the deployed environment using source
sensors. This layer is also accompanied by classification
methods, which mostly follow the unsupervised neural
network methods, such as KSOM (Kohonen Self-
Organizing Map) used to categorize the real time sensed
data [15]. The word “sensor” not only signifies a sensing
device but also applies to each data source that may
deliver functional context information [16]. Ganesan et al.
[17] proposed a similar kind of system, named
DIMENSIONS, where authors extended sensors for
computation, storage and system performance. We follow
the KSOM technique to classify the sensed data at sensors
to define the sensitivity level. KSOM uses data mining
techniques and classification to extract the data sensitivity
level. Few sensors are also pre-deployed with high
sensitivity level, where all generated data packets are sent
to the DSM with a high sensitivity level. The steps to
select the encryption method and shared key are shown
in Fig. 5. The strong encryption method always uses a
shared key EKSH(1) for highly sensitive data, whereas the
weak encryption method always uses the shared key
EKSH(0) for low sensitivity data.
After data are received at the DSM, it always checks the
authentication block and applies the strong encryption
shared key to get the authentication information i.e.

𝐷𝐾𝑆𝐻(1)(𝑆𝑖 ∥
1
0⁄ ∥ T). Once it gets the source sensor ID, it

checks its own database to find the match and confirms
that data packets are from authenticated sources. After

successful authentication, the DSM compares the received
time frame (T) with its current time (T′) to check the data
freshness in order to avoid a replay attack (T - T′ ≤ ΔT).
After successfully checking for a replay attack, the DSM
retrieves the corresponding secret key of the sensors i.e.
Ki  retrievekey (Si) and checks the data sensitivity level
to find out the shared key used for encryption. If the data
sensitivity level is 1, then it performs the XOR operation
i.e. KSH(1)′ = KSH(1)⨁Ki, else KSH(0)′ = KSH(0)⨁Ki. The
computed new key is used for data decryption i.e. DKSH(1)′
(DATA∥MAC) for high sensitivity data and DKSH(0)′
(DATA∥MAC) for low sensitivity data. After data
decryption, the DSM compares the MAC as an integrity
check. The DSM always keeps the last shared key KSH(i-1)
during the use of KSH(i). There is always the possibility of
late arrival of data packets at a DSM because of the
untrusted wireless communication medium.

4.6 Tradeoffs

The communication overhead of the proposed security
method depends on the source network size. Each group
of keys will have more chances of being compromised as
the network size increases [12]; this in turn increases the
chances of reconfigurations. The SEEN method
accomplishes significant improvement over a traditional
rekeying approach by broadcasting shared keys without
retransmissions. Less frequent reconfigurations mean
increased performance. In summary, a larger network
improves the performance by more proficient
broadcasting. Therefore, we can tradeoff between energy
consumption and security to maximize the overall
performance.
The proposed shared key management is made robust by
synchronizing clocks among neighbors. As an example,
Fig. 4 describes the time domain and key-slots of three

Fig. 5. Method to select encryption method based on the data
sensitive level

2332-7790 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TBDATA.2017.2702172, IEEE Transactions on Big Data

AUTHOR ET AL.: TITLE 9

sensors i.e. A, B and C, where there is a clock skew among
three nodes. Every UpdateKey control packet contains the
time stamp to switch the shared key (ti).

4.7 Required Resources for SEEN

4.7.1 Resources at Sensors

We follow [4] to define the communication overhead and
power consumption theoretically. Following are the
equations to define the communication overhead and
power consumption

𝐶𝑂(%) = (
𝑁𝑐×74.125

∑ 𝑁𝑖×30
𝑛
𝑖−1

) × 100 (1)

PC1= 3(CSE + CSD) (2)
PC2= (TNSP + CSE) + (TNRP + CSD) (3)
PC3= (CSE + 2 × CSD) (4)
CO – Communication overhead
PC1 – power consumption during node authentication
(initial phase)
PC2 – power consumption by a node during data
transmission
PC3 – power consumption during the rekeying
Nc – total number of connection
Ni – number of packets transferred by node Si
CSE – computational power required by symmetric key
encryption
CSD – computational power required by symmetric key
decryption
TNSP – total number of sent packets
TNRP – total number of received packets

The communication overhead is always computed as a
percentage and considers the total number of
communications and the number of packets transferred
by each sensor (see equation 1). The number of
packets/total size is 74.125 bytes, whereas the data packet
size is 30 bytes. Power consumption for initial node
authentication is three times that required by both
encryption and decryption processes (see equation 2). Each
node needs a certain amount of power to participate in
data transmission and data packet encryption. The
normalized form of power consumption shows in equation
3. Sensors need power to decrypt the UpdateKey and also
to initiate RequestKey during the rekeying process. Sensors
always need more power to perform the encryption and
decryption process. Equation 4 shows the formulations for
power consumption during rekeying.

4.7.2 Resources at DSM

The buffer utilizations needs to be optimized at the DSM,

as the security mechanism of a big data stream needs to

be performed in near real time because of the big data

stream features [19][20]. Here we present a procedure to

compute the halting time of a data block in a buffer before

the stream data analysis is done. Let there be n number of

sensors and each sends m number of data packets. We

assume that the probability of attempt to success security

verification at DSM is (1 (𝑛 × 𝑚)⁄), or delays with

probability 1 − (1 (𝑛 × 𝑚)⁄). We can compute Acquisition

Probability as 𝐴 = (1 − (
1

(𝑛×𝑚)
)
((𝑛×𝑚)−1)

) [25]. Based on

the value of A, we can measure the halting time of the

each individual data block; the halting time, represented

as w, is 𝐴 × (1 − 𝐴), where the value of w is inversely

proportional to the value of A and security verification

time of DSM.

5 SECURITY ANALYSIS

We follow [19][20][49] to define the following attack
definitions and their properties. Based on these attack
definitions, we have proved the following theorems and
theoretical analysis.
Definition 1 (attack on authentication): An attacker Ma
can attack on authenticity if it is an adversary capable of
monitoring, intercepting, and introduce him/herself as an
authenticated node to participate in the data stream.
Definition 2 (attack on integrity): An attacker Mi can
attack on reliability if it is capable of monitoring the data
stream and trying to access and/or modify the data block
before DSM.
Definition 3 (attack on confidentiality): A malicious
attacker Mc is an unauthorized party which has the ability
to access or view the unauthorized big data streams.
Definition 4 (replay attack): A malicious attacker Mr is an
unauthorized party which has the ability to intercept data
packets and forward them later. This may be cause the
loss of event detection during stream data analysis.
Theorem 1. Strong encryption (128-bit) is always safer and
takes a more computational power and time than weak
encryption (64-bit) in SEEN security model.

Proof. ECRYPT II proved that the key length of a 128-bit
symmetric key provides the same strength of protection
as a 3,248-bit asymmetric key [22][23]. Symmetric key
cryptography becomes a natural choice for this purpose.
It is mentioned with a proof that symmetric key
cryptography is approximately 1000 times faster than
strong public key ciphers [23]. From [19][23], it is
comparatively easy for an attacker to read/modify
packets, which are encrypted with a smaller key length.
Crypto++ Benchmarks [24] also confirm that a smaller key
length always takes less time to break or find the shared
key. From the above, we conclude that the key length is
directly proportional to the key domain size and also
directly proportional to the time required to find all the
possible keys (see Table 2). This means an attacker needs
more computational time and resources to break 128-bit
compared to 64-bit.

 Theorem 2. DSM can easily identify delayed data packets
which have been intercepted by a replay attacker (Mr) using
the SEEN security method.

Proof. A replay attack is also broadly known as playback
attack, where an attacker (Mr) intercepts the data
packet(s) of data streams and forward later. Attacker also
repeatedly send the data packets to block the DSM. This
is carried out either by the source sensor or man-in-the-
middle attack.

2332-7790 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TBDATA.2017.2702172, IEEE Transactions on Big Data

AUTHOR ET AL.: TITLE 10

In the SEEN security method, during encryption the
source sensor always adds a time stamp i.e. T (sending
time/packet generation time) at the header part of the
data packets. This is in the format as 𝐸𝐾𝑆𝐻(1)(𝑆𝑖 ∥ 1/0 ∥ T)
and is always used for authentication and data freshness.
For every data packet, the DSM compares the received
time frame (T) with its current time (T′) to check the data
freshness and to avoid a replay attack (T - T′ ≤ ΔT). If the
time difference is less then ΔT then the data packet is
accepted otherwise it is discarded. Where ΔT tends to
maximum time takes to transmit data from source to
DSM. After successfully checking for replay attack, DSM
follows the data decryption process.

Theorem 3. In the SEEN security method, an attacker Mc
cannot access or view the unauthorized high sensitive data
stream, whereas Mc cannot read low sensitivity data stream
in real time.

Proof. By following Fig. 5, it is clear that every data
stream or data packet within a stream is transmitted with
a sensitivity level. Here in the SEEN method, we consider
two sensitivity levels i.e. ‘1’ for high and ‘0’ for low. For
highly sensitive data, sensors use 128-bit shared key i.e.
KSH(1). The computational hardness of the shared key is
shown in Table 2. It shows that the most advanced
processor (Intel i7) takes decades to find all possible
shared keys to perform the decryption operation. Attacker
Mc cannot read the high sensitivity data (strong
confidentiality).
For lower sensitivity data in the SEEN model, sensors use
64-bit shared key i.e. KSH(0). Attacker Mc also needs years
to get all the possible keys to decrypt the data packets
(see Table 2). The maximum time to update the shared
key (i.e. t) is always less than the time required for 64-bit
in Table 2. So attacker Mc can read the low sensitivity data
but it is not possible in real time.

By following the above, we can confirm that the SEEN
model maintains confidentiality for sensitive data and
partial confidentiality for low sensitivity data.

Theorem 4. An attacker Ma cannot forge the source to
introduce itself as an authenticated source and attacker Mi
cannot get the shared key KSH to break data integrity in the
proposed security method SEEN.

Proof. According to IDS properties of a sensor [7][8], in
SEEN security method the sensor always reports to the
DSM if it is captured by an attacker Ma. In such situation,
the DSM does not consider the data packets from that
sensor for data analytics. Along with IDS report, DSM
also checks the source authentication for each individual
data packet, where data packets arrive in a format 𝐴𝐷 =
𝐸𝐾𝑆𝐻(1)(𝑆𝑖 ∥ 1/0 ∥ T). DSM always applies the strong
shared key (i.e. KSH(1)) to check the source authentication.
After decryption 𝐴𝐷 of a data packet, DSM compares the
Si with its own database for source authenticate.
After a source device is authenticated, the DSM retrieves
the corresponding secret key of the sensors i.e. Ki 
retrieveKey(Si) and checks the data sensitivity level to
select the shared key used for encryption.
Based on the data sensitivity level, the DSM performs
XOR operation i.e. KSH(1/0)′ = KSH(1/0)⨁Ki. The newly

computed shared key will be used for data decryption i.e.
DKSH(1/0)′ (DATA ∥ MAC). After data decryption, DSM
compares the MAC as an integrity check. Through the
MAC check, the DSM confirms that the integrity of the
data is intact.
The major drawback (this is also applicable to all other
security models) is that the confidentiality and integrity
checks can be broken with a brute force attack.

Theorem 5. The proposed SEEN requires a comparatively
smaller buffer size compared to standard symmetric key
solutions (i.e. AES-128) at DSM before stream query
processing.

Proof. Following Theorem 3, it is clear that the proposed
SEEN security method provides a high level of data
confidentiality for sensitive data, where it provides the
partial confidentiality for low sensitivity data. We decrypt
the header part for authentication (see Theorem 4) and data
freshness (see Theorem 2); after successful authentication,
we decrypt the data block for integrity checks. Another
important mechanism is the different keys with the key
length used for encryption/decryption. From Theorem 1, it
is clear that the key length is directly proportional to the
security verification and the security verification speed is
inversely proportional to the buffer required for security
verification. By combining the above, we conclude that
the proposed SEEN security method needs a
comparatively smaller buffer size. The evaluation is
presented in the following section.
Forward secrecy

By following a standard symmetric key cryptography
procedure, shared keys used for encrypting data packets
are only used once and until they are expired (i.e. for time
period t). Thus, previously used shared keys are
worthless to an intruder even when a previously-used
shared keys is known to the attackers. However, if an
intruder continuously monitors the data stream for a long
period of time, he/she can break the confidentiality of the
low sensitivity data but not the high sensitivity data (see
Table 2). At the same time, data integrity is always
maintained.

6 EXPERIMENT AND EVALUATION

In order to evaluate the security strength and efficiency of
the SEEN security method under the above specified
adverse situations, we experimented in multiple
simulation environments. The experiment was conducted
using the in-house simulators on an Intel (R) Core (TM)
i5-6300 CPU @ 2.40 GHz 2.50 GHz CPU and 8 GB RAM
running on Microsoft Windows 7 Enterprise. We first

TABLE 2
TIME TAKEN BY SYMMETRIC KEY (AES) ALGORITHM TO GET ALL

POSSIBLE KEYS USING THE MOST ADVANCED INTEL I7

PROCESSOR [20].

Key Length 64 128

Key domain size 1.845e +19 3.4028e+38

Time
(in days)

11415 1.9E+19

2332-7790 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TBDATA.2017.2702172, IEEE Transactions on Big Data

AUTHOR ET AL.: TITLE 11

verified the proposed security approach using Scyther
[28]; second, we measured the performance of the
approach using JCE (Java Cryptographic Environment)
[29]; third, we computed the required buffer size to
process our proposed approach using MatLab [30] to
measure the efficiency of our method; finally, we used
COOJA simulator in Contiki OS [31] to get the network
performance of SEEN.

6.1 Security Verification

The SEEN security protocol is simulated in the Scyther
simulation environment by using the underlying Security
Protocol Description Language (.spdl). Scyther is an
automatic security protocol verification tool that can be
used to check the correctness of the security protocols. As
per the Scyther model, we defined the roles of S and D,
where S is a sensing device and D is the receiver (i.e.
DSM). In this scenario, S and D have all information for
encryption/decryption that is initialized in the system
setup and rekeying phase. In this simulation
environment, S sends the encrypted data packets to D for
security verification. We introduced three types of attacks.
First, an attacker changes the data packet while it is in the
network. In the second, an adversary steals the property
of source (S) and forwards the data packets to D
pretending to be S. In the third, an adversary gets the data
block to analyze and tries to read the data and replay the
data packets. We experimented with 100 runs with 10 run
intervals for individual claims with results as shown in
Fig. 6. Here, we model the security method by following
the previous section and used different key sizes (i.e. 64
bits; 128 bits) in random data packets. Here we follow the
SEEN method to update the different keys (see Table 2).
Results: This experiment ranges from 0 to 100 instances in
10 intervals using different numbers of data blocks. We
checked the data integrity and confidentiality after data
packet authentication. As the key generation and
distribution process is handled by DSM, so we assumed
that none of the intruders have the shared secret key. We
are using two different keys for the encryption process i.e.
(K(0)) for weak encryption and (𝐾(1)) for strong
encryption. This also confuses the intruder in attempting
to guess the key. During this experiment, we did not
come across any potential attacks at the DSM to
compromise the shared key, so it is secured in terms of
confidentiality and integrity. Fig. 6 shows the result of the
security verification experimented with in the Scyther
simulation environment. Finally, we conclude that our
model is secured against confidentiality and integrity

attacks.

6.2 Performance Comparison

We used JCE (Java Cryptographic Environment) to
experiment on and evaluate the performance of the SEEN
method. JCE is the standard extension to the Java
platform that provides an implementation context for
cryptographic methods. The experiment is based on the
features of the JCE in 64 bit Java virtual machine version
1.6. The security verification time of the experiment is
computed in the DSM. The experiment outcomes for
security verification are shown in Fig. 7. We performed
experiments and compared security verification time with
different sizes of data packets. We compare the
performance of SEEN security with advanced encryption
standard (AES-128, AES-192), LSec and our previously
proposed model for big sensing data streams i.e. DPBSV
and DLSeF [19][20][49].
Results: The experiment results of the SEEN security
method are better than AES-128, AES-192 and LSec
algorithms with different data packets as shown in Fig. 7.
SEEN does not use the trusted part of sensor (i.e. TPM)
and avoids confidentiality attacks in comparison to
DPBSV and DLSeF (see Table 3). So even though the
performance of SEEN is not as good as DPBSV and
DLSeF, it is acceptable in any circumstance of sensor
network applications. The performance of SEEN shows
that it is more efficient and faster than AES-128, AES-192
protocols while providing the same level of security and
removing some of the unrealistic assumptions of DPBSV
and DLSeF.

6.3 Required Buffer Size

Fig. 6. Scyther simulation results page for security verification.

Fig. 8. Efficiency comparison by comparing required buffer size at
DSM for security processing.

Fig. 7. Performance comparison SEEN method with AES-128, AES-
192, LSec, DPBSV, and DLSeF.

2332-7790 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TBDATA.2017.2702172, IEEE Transactions on Big Data

AUTHOR ET AL.: TITLE 12

The experiment for the required buffer size at DSM was
carried out using a MATLAB Simulation tool. The buffer
size is based on the security verification time at DSM
(from Fig. 7) with respect to different velocity of big data
streams. The performance is based on the verification
time calculated as shown in Fig. 8. Here we compared our
SEEN security method with standard AES-128, AES-192,
LSec, DPBSV and DLSeF (see Fig. 8). The velocity of big
data streams starts from 50 to 300 MB/S with a 50 MB/S
interval. The required buffer size for SEEN is always
smaller than the AES-128 algorithm with different rates of
incoming data. Fig. 8 shows the minimum buffer size
required at the DSM for the SEEN method in comparison
with AES-128, AES-192, LSec, DPBSV and DSeF. The
performance comparison proves that the SEEN method
requires less buffer and is efficient in performing security
verification without compromising security properties.

6.4 Network Performance

We tested our SEEN protocol using a COOJA simulator in
Contiki OS to get the network performance (i.e.
communication overhead and power consumption) [31].
We took the two most common types of sensor (i.e. Z1
and TmoteSky sensors) for network simulation. In this
experiment, we checked the performance while
computing and distributing the shared key.
For network simulation, we took a random area to deploy
51 nodes (i.e. 50 sensors and 1 DSM) in COOJA
simulation environment. We took initial battery power of
an individual sensor node 1x106 J, power consumption for
transmission is 1.6W and power consumption for
reception is 1.2 W. Apart from these, we follow the
default properties of sensors. We assume that the size of
each data packet is 30 bytes, nonce 23 bits, secret key of
64/128 bits and token 4 bytes for the simulation [4].
In order to compute the performance of the
communication overhead, our simulation used data
packets of size 30 bytes of interval. We follow equation 1
to get the communication overhead. The performance of
the communication overhead is computed as a percentage
(%) with respect to the number of data packets as shown
in Table 4. According to the network properties, the
communication overheard is inversely proportional to the
number of packets in the network as shown in Table 4.
For every connection, SEEN exchanges control packets for
source/DSM authentication and shared key distributions
based on the above specified packet sizes. This is an

acceptable tradeoff between energy and security for the
sensor node. The simulation results of energy
consumption are shown in Fig. 9. The SEEN protocol
required extra energy for the network authentication but
its difference is very low. The energy consumption by
using the SEEN protocol remains the same even by
increasing the network size. We simulated the scenario
using 50 nodes in 10 nodes interval as shows in Fig. 9.
From all the above security analysis and experiments, we
conclude that the proposed security method (i.e. SEEN) is
secured (from multi-level confidentiality and integrity
attacks), and efficient in terms of security verification
speed and required buffer size at DSM (compared to AES-
128, AES-192 and LSec). Table 3 shows the comparisons of
SEEN security properties with AES-128 and existing
DPBSV and DLSeF. It clearly shows that the proposed
method provides the same level of security as AES-128
while reducing computational overhead.

6.5 Testbed Implementation

This section gives a testbed implementation scenario of
our proposed method to prove that proposed SEEN
security method work efficiently in real time streaming
environment. We have taken waspmote smart cities board
as the source of our data streams and a public cloud with
specification as 512 MB Memory / 20 GB Disk / NYC1 -
 Ubuntu 14.04.5 x64 to deploy our DSM. We have
deployed MySQL server database to store data streams
after decrypted at DSM. Here in this testbed deployment,
we plugged two sensors i.e. temperature and humidity
sensors on smart cities board to get data. We use standard
sensor network radio i.e. Zigbee network (IEEE 802.15.4)
to stream data packets to cloud as shown in Fig. 10.
We used SEEN method to protect data streams in end-to-
end basis. Sensed data encrypted using SEEN method at
sensor board and followed by decrypted at DSM before
store at MySQL server. The different level of encryption is
used at sensor board in different instances without
notifying DSM, and finally we found DSM can decrypt

Fig. 9. Energy consumption.

Fig. 10. Testbed implementation for end-to-end security using SEEN.

2332-7790 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TBDATA.2017.2702172, IEEE Transactions on Big Data

AUTHOR ET AL.: TITLE 13

the data packets and stored at MySQL server. We
consider previous simulation results for big data streams
performance, whereas this testbed implementation shows
the evidence of SEEN method’s compatibility in real time
testbed environment.

7 CONCLUSION

In this paper, we proposed a Selective Encryption (SEEN)
method to maintain confidentiality levels of big sensing
data streams with data integrity. In SEEN, a DSM
independently maintains an intrusion detection and
shared key management as two major components. Our
method has been designed based on a symmetric key
block cipher and multiple shared keys use for encryption.
By employing the cryptographic function with selective
encryption, the DSM efficiently rekeys without
retransmissions. The rekeying process never disrupts
ongoing data streams and encryption/decryption. SEEN
supports the source node authentication and shared key
recovery without incurring additional overhead. We
evaluated the performance of SEEN by security analyses
and experimental evaluations. We found that our SEEN
provides a significant improvement in processing time,
buffer requirement and prevents data confidentiality and
integrity from malicious attackers.

We will further investigate our proposed method to
improve the efficiency of symmetric-key encryption. We
are also planning to introduce the access control model
over big sensing data streams, which will give access to
the end user or query processor based on the data levels.

8 ACKNOWLEDGEMENT

Research in this paper is supported by AISRF-08140.

REFERENCES

[1] A. Arasu, et al. "STREAM: the stanford stream data manager

(demonstration description)." In ACM SIGMOD international

conference on Management of data, pp. 665-665, ACM, 2003.

[2] H-S. Lim, Y-S. Moon and E. Bertino, "Provenance-based

trustworthiness assessment in sensor networks." In Seventh

International Workshop on Data Management for Sensor Networks,

pp. 2-7. ACM, 2010.

[3] S. Sultana, G. Ghinita, E. Bertino and M. Shehab, "A lightweight

secure provenance scheme for wireless sensor networks." In

18th International Conference on Parallel and Distributed Systems

(ICPADS), pp. 101-108, 2012.

[4] R. A. Shaikh, S. Lee, M. AU Khan and Y. J. Song, "LSec:

lightweight security protocol for distributed wireless sensor

network." In IFIP International Conference on Personal Wireless

Communications, pp. 367-377. Springer Berlin Heidelberg, 2006.

[5] G. Selimis et al., "A lightweight security scheme for wireless

body area networks: design, energy evaluation and proposed

microprocessor design." Journal of medical systems, vol. 35, no. 5,

pp. 1289-1298, 2011.

[6] G. Selimis, at al. “Evaluation of 90 nm 6 T-SRAM as Physical

Unclonable Function for Secure Key Generation in Wireless

Sensor Nodes”, in IEEE ISCAS Brazil, pp. 567-570, 2011.

[7] M. Roesch,"Snort: Lightweight Intrusion Detection for

Networks." LISA, vol. 99, no. 1, pp. 229-238. 1999.

[8] N. Tsikoudis, A. Papadogiannakis and E. P. Markatos,

"LEoNIDS: a Low-latency and Energy-efficient Network-level

Intrusion Detection System." IEEE Transactions on Emerging

Topics in Computing, vol. 4, no. 1, pp.142-155, 2016.

[9] W. Lee and S. J. Stolfo, "Data Mining Approaches for Intrusion

Detection." In Usenix security. 1998.

[10] Y. Xie, D. Feng, Z. Tan and J. Zhou, "Unifying intrusion

detection and forensic analysis via provenance

awareness." Future Generation Computer Systems, vol. 61, pp.26-

36, 2016.

[11] A. S. Wander, N. Gura, H. Eberle, V. Gupta and S. C. Shantz,

"Energy analysis of public-key cryptography for wireless sensor

networks." In Third IEEE international conference on pervasive

computing and communications, pp. 324-328. IEEE, 2005.

[12] T. Park and K. G. Shin, "LiSP: A lightweight security protocol

for wireless sensor networks." ACM Transactions on Embedded

Computing Systems (TECS), vol. 3, no. 3, pp. 634-660, 2004.

[13] A. Bogdanov, et al. "PRESENT: An ultra-lightweight block

cipher." In International Workshop on Cryptographic Hardware and

Embedded Systems, pp. 450-466, 2007.

[14] T. A. Zia and A. Y. Zomaya, "A Lightweight Security

Framework for Wireless Sensor Networks." JoWUA, vol. 2, no.

3, pp. 53-73, 2011.

[15] K. Van Laerhoven, "Combining the self-organizing map and k-

means clustering for on-line classification of sensor data."

In International Conference on Artificial Neural Networks, pp. 464-

469. Springer Berlin Heidelberg, 2001.

[16] P. Ferreira and P. Alves, Distributed context-aware systems.

Springer, 2014. DOI 10.1007/978-3-319-04882-6

[17] D. Ganesan, D. Estrin and J. Heidemann, "DIMENSIONS: Why

do we need a new data handling architecture for sensor

networks?." ACM SIGCOMM Computer Communication Review,

vol. 33, no. 1. pp. 143-148, 2003.

[18] D. Puthal, S. Nepal, R. Ranjan and J. Chen, "A Secure Big Data

Stream Analytics Framework for Disaster Management on the

Cloud." In 18th International Conference on High Performance

Computing and Communications, pp. 1218-1225. 2016.

[19] D. Puthal, S. Nepal, R. Ranjan and J. Chen, "A dynamic prime

number based efficient security mechanism for big sensing data

streams." Journal of Computer and System Sciences vol. 83, no. 1,

pp. 22-24, 2017.

TABLE 3
PERFORMANCE AND PROPERTIES OF SECURITY SOLUTIONS

 AES DPBSV DLSeF SEEN

Authenticity ✓ ✓ ✓ ✓

Integrity ✓ ✓ ✓ ✓

Confidentiality ✓ P P ✓

Trust on Sensor

Node (TPM)

✕ ✓ ✓ ✕

Computation HIGH LOW LOW LOW

P- Partially; TPM- Trusted Platform Module.

TABLE 4
COMMUNICATION OVERHEAD OF SEEN PROTOCOL

NP 10 20 30 40 50 60 70 80
CO (%) 25 23 12.8 11 8 6.8 6 6
NP- Number of packets; CO- Communication Overheard

2332-7790 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TBDATA.2017.2702172, IEEE Transactions on Big Data

AUTHOR ET AL.: TITLE 14

[20] D. Puthal, S. Nepal, R. Ranjan and J. Chen, "DLSeF: A Dynamic

Key Length based Efficient Real-Time Security Verification

Model for Big Data Stream." ACM Transactions on Embedded

Computing Systems, vol. 16, no. 2, pp. 51, 2017.

[21] R. Ranjan, "Streaming big data processing in datacenter

clouds." IEEE Cloud Computing, vol. 1, no. 1, pp. 78-83, 2014.

[22] www.cloudflare.com (accessed on: 04.08.2014)

[23] J. Burke, J. McDonald and T. Austin, "Architectural support for

fast symmetric-key cryptography." ACM SIGARCH Computer

Architecture News, vol. 28, no. 5, pp. 178-189, 2000.

[24] Crypto++ Benchmarks. Available:

http://www.cryptopp.com/benchmarks.html (accessed on:

30.07.2016)

[25] R. M. Metcalfe and D. R. Boggs, "Ethernet: distributed packet

switching for local computer networks." Communications of the

ACM, vol. 19, no. 7, pp. 395-404, 1976.

[26] M. Stonebraker, U. Çetintemel and S. Zdonik, "The 8

requirements of real-time stream processing." ACM SIGMOD

Record, vol. 34, no. 4, pp. 42-47, 2005.

[27] R. V. Nehme, H-S. Lim, E. Bertino and E. A. Rundensteiner,

"StreamShield: a stream-centric approach towards security and

privacy in data stream environments." In ACM SIGMOD

International Conference on Management of data, pp. 1027-1030.

ACM, 2009.

[28] Scyther, http://www.cs.ox.ac.uk/people/cas.cremers/scyther/

(accessed on: 30.07.2016)

[29] N. Nagaratnam, L. Koved and Anthony Nadalin, Enterprise Java

Security: Building Secure J2EE Applications. Addison-Wesley

Professional, 2004.

[30] Matlab, http://au.mathworks.com/products/matlab/ (accessed

on: 30.07.2016)
[31] Contiki operating system, http://www.contiki-os.org/ (accessed

on: 30.07.2016)
[32] A. Arasu, et al. "Stream: The stanford data stream management

system." Technical Report 2004-20, Stanford InfoLab, 2004.

[33] H. Balakrishnan et al., "Retrospective on aurora." The VLDB

Journal, vol. 13, no. 4, pp. 370-383, 2004.

[34] D. J. Abadi et al., "The Design of the Borealis Stream Processing

Engine." CIDR, vol. 5, pp. 277-289, 2005.

[35] F. Wu et al. "An efficient authentication and key agreement

scheme for multi-gateway wireless sensor networks in IoT

deployment." Journal of Network and Computer Applications, 2016.

[36] V. Gulisano, et al. "Streamcloud: An elastic and scalable data

streaming system." IEEE Transactions on Parallel and Distributed

Systems, vol. 23, no. 12, pp. 2351-2365, 2012.

[37] R. Adaikkalavan and T. Perez, "Secure shared continuous query

processing." In ACM Symposium on Applied Computing, pp. 1000-

1005. ACM, 2011.

[38] R. Adaikkalavan, X. Xie and I. Ray, "Multilevel secure data

stream processing: Architecture and implementation." Journal of

Computer Security, vol. 20, no. 5, pp. 547-581, 2012.

[39] J. Cao, B. Carminati, E. Ferrari and K.-L. Tan, "Acstream:

Enforcing access control over data streams." In IEEE 25th

International Conference on Data Engineering, pp. 1495-1498, 2009.

[40] D. Puthal, S. Nepal, R. Ranjan, and J. Chen, "Threats to

Networking Cloud and Edge Datacenters in the Internet of

Thing." IEEE Cloud Computing, vol. 3, no. 3, pp. 64-71, 2016.

[41] W. Lindner and J. Meier, "Securing the borealis data stream

engine." In 10th International Database Engineering and

Applications Symposium (IDEAS'06), pp. 137-147. IEEE, 2006.

[42] X. Xie, I. Ray, R. Adaikkalavan and R. Gamble, "Information

flow control for stream processing in clouds." In 18th ACM

symposium on Access control models and technologies, pp. 89-100.

ACM, 2013.

[43] R. V. Nehme, E. A. Rundensteiner and E. Bertino, "A security

punctuation framework for enforcing access control on

streaming data." In IEEE 24th ICDE, pp. 406-415, 2008.

[44] K. Ren, W. Lou and Y. Zhang, "LEDS: Providing location-aware

end-to-end data security in wireless sensor networks." IEEE

Transactions on Mobile Computing, vol. 7, no. 5, pp. 585-598, 2008.

[45] R. Di Pietro, P. Michiardi and R. Molva, "Confidentiality and

integrity for data aggregation in WSN using peer

monitoring." Security and Communication Networks, vol. 2, no. 2,

pp. 181-194, 2009.

[46] E. Bertino, K-K R. Choo, D. Georgakopolous and S. Nepal.

"Internet of Things (IoT): Smart and secure service

delivery." ACM Transactions on Internet Technology (TOIT), vol.

16, no. 4, pp. 22, 2016.

[47] A. Perrig, et al. "SPINS: Security protocols for sensor

networks." Wireless networks, vol. 8, no. 5, pp. 521-534, 2002.

[48] F. Peng, X-q. Gong, M. Long and X-m. Sun, "A selective

encryption scheme for protecting H. 264/AVC video in

multimedia social network." Multimedia Tools and Applications,

pp. 1-19, 2016.

[49] D. Puthal, S. Nepal, R. Ranjan and J. Chen, "A Synchronized

Shared Key Generation Method for Maintaining End-to-End

Security of Big Data Streams." In 50th Hawaii International

Conference on System Sciences, pp. 6011-6020, 2017.

[50] M. Dayarathna and T. Suzumura, "Automatic optimization of

stream programs via source program operator graph

transformations." Distributed and Parallel Databases, vol. 31, no.

4, pp. 543-599, 2013.

Deepak Puthal is a PhD student in the School of Computing and

Communications at the University of Technology Sydney. He is also

working as a graduate researcher at CSIRO Data 61, Australia. His

research interests include big data analytics, Internet of Things, and

information security.

Xindong Wu is a Professor in the School of Computing and
Informatics at the University of Louisiana at Lafayette (USA) and a
Yangtze River Scholar in the School of Computer Science and
Information Engineering at Hefei University of Technology (China).
He received the Bachelor’s and Master’s degrees in computer science
from Hefei University of Technology, China, and PhD degree in
artificial intelligence from the University of Edinburgh, United
Kingdom. His research interests include data mining, knowledge-
based systems, and Web information exploration. He is the steering
committee chair of ICDM (IEEE International Conference on Data
Mining). He is a Fellow of the IEEE and the AAAS.

Surya Nepal is a principal research scientist at CSIRO Data-61,
Australia. His research interests include cloud computing, Big Data,
and cybersecurity. He has a PhD in computer science from RMIT
University, Australia.

Rajiv Ranjan is an associate professor (reader) in the School of
Computing Science at Newcastle University, UK. His research
interests include cloud computing, content delivery networks, and
big data analytics for Internet of Things (IoT). He has a PhD in
computer science from University of Melbourne.

Jinjun Chen is Deputy Director of Swinburne Data Science Research
Institute and Director of Swinburne Big Data Lab at Swinburne
University of Technology, Australia. His research interests include
cloud computing, big data, data science, privacy and security. He
has a PhD in computer science from Swinburne University of
Technology, Australia

http://www.cs.ox.ac.uk/people/cas.cremers/scyther/
http://au.mathworks.com/products/matlab/
http://www.contiki-os.org/

