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SEEN: A Selective Encryption Method to 
Ensure Confidentiality for Big Sensing Data 
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Abstract—Resource constrained sensing devices are being used widely to build and deploy self-organizing wireless sensor 

networks for a variety of critical applications such as smart cities, smart health, precision agriculture and industrial control 

systems. Many such devices sense the deployed environment and generate a variety of data and send them to the server for 

analysis as data streams. A Data Stream Manager (DSM) at the server collects the data streams (often called big data) to 

perform real time analysis and decision-making for these critical applications. A malicious adversary may access or tamper with 

the data in transit. One of the challenging tasks in such applications is to assure the trustworthiness of the collected data so that 

any decisions are made on the processing of correct data. Assuring high data trustworthiness requires that the system satisfies 

two key security properties: confidentiality and integrity. To ensure the confidentiality of collected data, we need to prevent 

sensitive information from reaching the wrong people by ensuring that the right people are getting it. Sensed data are always 

associated with different sensitivity levels based on the sensitivity of emerging applications or the sensed data types or the 

sensing devices. For example, a temperature in a precision agriculture application may not be as sensitive as monitored data in 

smart health. Providing multilevel data confidentiality along with data integrity for big sensing data streams in the context of near 

real time analytics is a challenging problem. In this paper, we propose a Selective Encryption (SEEN) method to secure big 

sensing data streams that satisfies the desired multiple levels of confidentiality and data integrity. Our method is based on two 

key concepts: common shared keys that are initialized and updated by DSM without requiring retransmission, and a seamless 

key refreshment process without interrupting the data stream encryption/decryption. Theoretical analyses and experimental 

results of our SEEN method show that it can significantly improve the efficiency and buffer usage at DSM without compromising 

the confidentiality and integrity of the data streams.    

Index Terms—Big data stream, selective encryption, data confidentiality, data integrity, data security  

  ——————————      —————————— 

1 INTRODUCTION

large number of mission critical systems in areas 
such as disaster management, cyber physical 

infrastructure systems and  SCADA (Supervisory control 
and data acquisition) are building the Internet of Things 
(IoT) applications by deploying a number of smart 
sensing devices in a heterogeneous environment. Data 
produced from a large variety of sources using sensing 
devices are streamed towards Data Stream Managers 
(DSM) for processing and decision making. This trend 
gives birth to an area, called big data stream [20][49]. The 
verity of applications and data sources makes the need 
for data dependability such that only trustworthy and 
dependable information is considered for decision 
making processes. Data security (i.e., more specifically 
ensuring data integrity and confidentiality) is an efficient 
and effective procedure to assure data 
trustworthiness/dependability, since DSM processes the 
data streams in near real time and performs the data 
analytics; the appropriate actions are performed based on 
the results from the analytics. It is thus important that 
data trustworthiness is assured during the lifecycle of big 
data stream processing. Recent research [2][3] highlighted 

the key contributions on lightweight security  provenance 
in data both in transit and at rest by considering the 
example of SCADA systems for critical infrastructure. 

The lifetime of a big data stream is very short because 
it is continuous in nature (i.e., the data can be accessed 
only once) [20][50]. Such data streams in critical 
applications have high volume and velocity, but the 
stream processing has to be done in near real time. It 
cannot follow the traditional store and process batch 
computing model [26]. To address this challenge, stream 
processing engines (such as Spark, Storm, S4, etc.) have 
emerged in the current era to provide the capability to 
commence big data processing in real time [21][49]. 
Stream processing engines (SPE) deal with two important 
advantages: (i) there is no need to store large volumes of 
data and (ii) it is capable of supporting real time 
computation needed by emerging applications. As the 
important decisions are made in critical applications by 
data streams analysis in near real time, it is important that 
such data are not accessed or tampered with by malicious 
adversaries. This brings one of the key and open research 
problems in big data streams; that is, how to ensure the 
end-to-end security for stream data processing. This 
includes guaranteeing data security properties (i.e. 
integrity, confidentiality, authenticity and freshness) 
[3][19][20]. 

There are different security requirements for different 
emerging critical applications. Let’s consider some 
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applications such as disaster management, terrestrial 
monitoring, military monitoring, healthcare, cyber 
physical infrastructure systems, SCADA etc. that are the 
sources for big data streams [5][19][20][36]. Some 
applications, including terrestrial monitoring and disaster 
management, need data integrity so that the system has 
high confidence in the detected events from stream data 
processing; confidentiality is not that important in such 
applications [4][6][8]. Some applications such as military 
applications, healthcare, and SCADA need data 
confidentiality along with data integrity. The 
confidentiality of data depends not only on applications, 
but also on data types.  For example, some applications 
need data confidentiality forever (i.e. strong 
confidentiality), whereas some applications need to 
maintain data confidentiality in real time (i.e. partial 
confidentiality). If we consider healthcare applications, 
personal health data need to be protected from outsiders 
and we need strong confidentiality for such applications 
[5], whereas in SCADA application data need to be 
protected in real time until a DSM detects the event [2]. 
There are still several applications including military 
monitoring that need different levels of data 
confidentiality [3] [4]. In such systems, there is no need 
for data confidentiality for normal sensed data, but it is 
needed for highly sensitive data such as movement in the 
battle field or detection of enemy activities. In this paper, 
we address the issue specified above by designing a novel 
security method for big sensing data streams.  

The common approach to data security is to apply a 
cryptographic model. If the encryption keys are managed 
properly, data encryption applying a cryptographic 
method is the most widely recognized and secure way to 
transmit data. There are two basic sorts of cryptographic 
encryption strategies: asymmetric and symmetric. It is 
already proved that symmetric key cryptography is 1000 
times faster than asymmetric key cryptography [22][23]. 
ECRYPT II has shown the 3,248-bit asymmetric key 
provides the same level of security as 128-bit symmetric 
key [23]. We thus focus on symmetric key cryptography 
to design a new security method for big data streams to 
ensure data confidentiality and integrity. 

In order to address the aforementioned challenge, we 
have designed and developed a selective encryption 
method (SEEN) to secure and maintain confidentiality of 
big data streams according to sensitivity levels of the 
data. Our method is based on a typical shared key that is 
initialized and updated by a DSM without requiring 
retransmission. Furthermore, the proposed security 
method is able to recover keys by detecting lost keys and 
perform seamless key refreshment without interrupting 
ongoing data stream encryption/decryption. SEEN 
maintains different levels of data confidentiality along 
with data integrity. The main contributions of the paper 
can be summarized as follows:  
 We have developed and designed a novel selective 

encryption method (SEEN) to secure and maintain 
confidentiality of big sensing data streams according 
to different data sensitivity levels. Our method is 
based on common shared keys and is initialized and 

updated by a DSM without requiring 
retransmission. Our method performs seamless 
refreshing of the shared key without disrupting 
ongoing data encryption or decryption.  

 Our proposed model adopts different keys for the 
three levels of data confidentiality (i.e. no 
confidentiality, partial confidentiality and strong 
confidentiality) based on the data sensitivity levels. 
This model ensures the end-to-end security by 
protecting data from source device to cloud 
processing layer.  

 We validate our proposed method by theoretical 
analyses and experimental results.  

 We compare the SEEN method with a standard 
symmetric key solution (AES-128), DPBSV and 
DLSeF in order to evaluate the efficiency.  

The rest of the paper is organized as follows. Section 2 
gives a brief overview of the related works. Section 3 
introduces our proposed system and the corresponding 
security method. Section 4 provides a detailed description 
of our security method, followed by its security analysis 
and performance evaluation in Sections 5 and 6, 
respectively. Finally, Section 7 concludes the paper by 
providing potential future directions for the work.  

2 RELATED WORKS 

In 2005, Stonebraker et al. [26] initially highlighted the 
eight requirements of real time stream processing which 
makes stream processing research more challenging and 
different to batch processing. In 2009, Nehme et al. [27] 
proposed a spotlight architecture to highlight the need for 
security in data streams and differentiate the security 
requirements of data (called data security punctuations) 
and query side security policies (called query security 
punctuations). There are a large number of security 
solutions proposed in the literature to protect data 
confidentiality and integrity by applying asymmetric and 
symmetric cryptography solutions [3][4][5][6][12][14]. In 
this section, we describe relevant work related to our 
research under the following three areas: stream 
processing, data stream security, and security solutions 
for data confidentiality and integrity.  

2.1 Stream Processing 

The Data Stream Management System, also known as 
STanford stREam data Manager (STREAM), was initially 
developed by Arsu et al. in 2003 [1]. STREAM is designed 
to deal with the high velocity data rates and the 
substantial numbers of continuous queries through 
thoughtful resource allocation. Most of the works carried 
out in the Data Stream Management System address 
different issues ranging from theoretical modelling and 
analysis to executing comprehensive models to deal with 
high speed data streams and response in real-time (near 
real-time). Research methodologies include: STREAM 
[32], Aurora [33], and Borealis [34].  
In data stream management systems like STREAM [32], 
Aurora [33], and Borealis [34], queries issued by the same 
client in the meantime can share Seq-window 
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administrators. According to the STREAM framework, 
Seq-window administrators are reused by queries on 
indistinguishable streams. Rather than developing the 
sharing of parts between arrangements, Aurora research 
focuses on giving better execution over a vast numbers of 
queries. Aurora achieves this by clustering administrators 
as a basic performance entity. In Borealis, the data on 
input information criteria from query processing can be 
shared and changed by new approaching queries. 
StreamCloud is a large scalable reliable streaming system 
to handle large scale data streams on clouds [36]. 
StreamCloud utilizes a new parallelization strategy that 
separates input quarries into subqueries apportioned to 
free arrangements of hubs to reduce the circulation 
overhead. Even though numerous methodologies focus 
on scheduling and revising for QoS, distributing 
execution and computation by the same user at various 
times or by various user at the same time  are not 
supported in stream processing engines. Other than 
common source Seq-windows as in DSMS, sharing 
intermediate computation results is a superior approach 
to improving performance.   

The focus of these research was on the performance of 
query processing, but not much on the security issues in 
data stream. Nehme et al. [27] highlighted the security 
aspects of data stream; the following subsection describes 
details about security issues.  

2.2 Stream Security 

There have been several recent works on securing data 
streams [27][37][38][39][41][42][43] focusing on query 
security punctuations, i.e., access control over data 
streams. In spite of the fact that these frameworks support 
secure processing they are unable to avoid illegitimate 
data streams or data security. Punctuation based 
enforcement of access control on streaming data is 
proposed in [43]. Access control strategies are 
retransmitted each time, utilizing one or more security 
accentuations before the real data are transmitted. Both 
punctuation have prepared by streamshield (a unique 
filtration) for query plan. Secure query processing in a 
shared manner is proposed in [37]. From the streamshield 
concept, the authors show a three-phase system to 
enforce access control without presenting any unique 
operators, rewriting query, or influencing QoS. 
Supporting role-based access control through query 
rephrasing strategies is proposed in [39]. Query 
arrangements are reorganized and policies are mapped to 
an arrangement of guide and filter operations to 
authorize access control policies. The architecture in [41] 
utilizes a post-query channel to implement access control 
strategies on a stream level. The channel applies security 
arrangements before a client gets the outcomes from SPE, 
but after query preparing. Designing SPEs checking 
multilevel security imperatives has been tended to by 
authors in [38]. Xie et al. [42] adopt a Chinese Wall policy 
to protect and avoid sensitive data disclosure at DSMS.  
The focus of this research was on query security 
punctuation, however data security punctuation, i.e. end-
to-end security between source and SPEs, is the mission. 

In our previous works [19][20][40][49], we have proposed 
data security over big sensing data streams to avoid 
integrity and authenticity. In this paper, we proposed an 
end-to-end security by protecting big data streams 
against confidentiality based on data sensitive level.  

2.3 Data confidentiality and integrity  

There are several existing works on data confidentiality, 
data integrity, and end-to-end security 
[3][4][5][6][12][14][35][44][45][46][47] while data are in 
transit. SPINS is a very popular and well accepted 
security protocol proposed for sensor networks at the 
very beginning in 2002 [47]. SPINS protocol has two 
blocks and those are (i) SNEP and (ii) µTESLA. SNEP 
provides data authentication, data confidentiality, and 
data freshness whereas µTESLA ensures authenticated 
broadcast. A lightweight security protocol named LiSP is 
designed by focusing on efficient rekeying without any 
interruptions [12]. The LiSP protocol requires just three 
hash functions and storage room for eight keys on 
average by reducing significant resource consumption. 
Lightweight Security protocol (named LSec) provides 
authentication and authorization of source sensing nodes 
along with a data confidentiality mechanism against 
intrusions and anomalies [4]. A novel lightweight security 
method is proposed for sensor data streams in [3]. This 
scheme relies on Bloom filters in data packets to encode 
source data and perform security verification over data 
streams at the base station. The location-aware end-to-end 
security framework for static sensor networks is proposed 
for node-to-node and node-to-sink authentications and 
data confidentiality in [44]. The protocol uses secret keys 
that are bounded to geographical area and nodes store a 
few keys based on its origin. Data aggregation in the 
intermediate node is a challenging task where the source 
is sensor networks. Pietro et al. [45] proposed a novel 
aggregation technique which provides both integrity and 
confidentiality over aggregated data and also detects false 
data injection efforts. A sensitive application oriented 
lightweight security solution is proposed in [14], which 
contains four components such as STKS (a secure triple-
key scheme), SRAs (secure routing algorithms), SLT 
(secure localization technique) and a malicious node 
reveal method. A symmetric key based lightweight 
security scheme is proposed by considering energy 
consumption of hardware components in [5]. This scheme 
ensures integrity and confidentiality of the data collected 
from a WBAN (wireless body area networks), either data 
stored inside sensors or during data transmission towards 
a centralized controller for healthcare applications. 
The focus of this research was on data confidentiality 
and/or integrity, however, none of the solutions talks 
about data confidentiality based on the data sensitivity 
levels. The selective encryption technique is popular and 
well accepted in the multimedia (image/video) computing 
domain [48]. However, in this domain researchers are not 
particularly aware of protecting data based on the 
confidentiality levels. We adopt the selective encryption 
concept to propose a new method for big sensing data 
streams.  
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3 DESIGN CONSIDERATIONS 

3.1 System Architecture 

The overall architecture of a big sensing data streams 
including security and model is shown in Fig. 1. The 
architecture includes source sensing devices to transmit 
data to the DSM through wireless networks including our 
security model (SEEN). Big data stream processing is an 
emerging computing model which is particularly suitable 
for several application scenarios where huge volume and 
velocity of data (Big Data stream) must be processed in 
near real time (with a small delay). Several applications 
such as terrestrial monitoring, disaster monitoring, 
military monitoring and healthcare need data processing 
in near real time [5][18][19]. The needs of near real time 
processing include huge input data that discourages the 
use of instant storage, the obligation of generating rapid 
results, etc. We follow [19][20] to design a DSM, which is 
capable of handling high-volume and variety data 
streams from multiple sources. DSM dropped modified 
or data packets from malicious source to ensure only 
original sensed data available at SPE for analysis. SPE is 
shown at the top of the Fig. 1. In addition, the DSM is 
responsible for performing the security verification of the 
incoming data streams in near real time to synchronize 
with the processing speed of SPE (Spark Streaming, 
Apache Strom, Apache S4, etc.). For further information 
on stream data processing on datacenter, refer to [21].  
Along with this, we consider that both source sensor and 
cloud data center deployed with Intrusion Detection 
Systems (IDS). Sensor based IDS monitor a sensor’s 
behavior and generates alerts on potentially malicious 
activities onboard and network traffic [7]. IDS can be set 
inline, attached to a spanning port of a sensor. The idea 
here is to allow access to all packets we wish the IDS to 
monitor. LEoNIDS (low-latency and energy efficient 
network IDS) is a system that determines the energy 

expectancy trade off by giving both lower power 
utilization and lower recognition expectancy [8]. By 
highlighting the cloud based IDS, Lee et al. [9] proposed 
an intrusion detection system where the learning 
operators persistently process and give the redesigned 
methods to the discovery agents for efficient learning and 
real-time detection. It generally computes inter and intra 
audit record patterns; this can guide the data gathering 
process and simplify feature extraction from audit data. 
Xie et al. [10] proposed a novel technique to analyze the 
system (sensor) vulnerabilities and attack sources quickly 
and accurately.    
In our architecture, the data streams are always in the 
encrypted format when they arrive at the DSM. Our idea 
is that while encrypting the data packets at the source, we 
attach sensitivity level of data to each individual data 
packet. In the SEEN method, we apply different keys to 
encrypt the data packets for different data sensitivity 
levels. The aim is to provide different confidentiality 
levels based on the applications as well as the sensitivity 
levels of the data. In a very generic representation, if we 
need n levels of data security then n-1 keys 
(𝑆ℎ𝑎𝑟𝑒𝑑 𝐾𝑒𝑦(𝐾𝑆𝐻)) are required for 
encryption/decryption. In this paper, we are considering 
three levels of data confidentiality: strong confidentiality, 
partial confidentiality, and no confidentiality; and two 
keys (i.e. k1, k2) for encryption methods. The strong 
encryption method uses k1 and is used to provide strong 
confidentiality, and the weak encryption method uses k2 
to support partial confidentiality. Note that we do not 
need to encrypt the data packets for no confidentiality.    

𝑆ℎ𝑎𝑟𝑒𝑑 𝐾𝑒𝑦(𝐾𝑆𝐻) =

{
 
 

 
 
𝑠𝑒𝑐𝑢𝑟𝑖𝑡𝑦 𝑙𝑒𝑣𝑒𝑙 − 𝑛 𝑘𝑒𝑦 (1)

⋮
𝑠𝑒𝑐𝑢𝑟𝑖𝑡𝑦 𝑙𝑒𝑣𝑒𝑙 − 2
𝑠𝑒𝑐𝑢𝑟𝑖𝑡𝑦 𝑙𝑒𝑣𝑒𝑙 − 1

⋮
𝑘𝑒𝑦 (𝑛 − 2)
𝑘𝑒𝑦 (𝑛 − 1)

𝑠𝑒𝑐𝑢𝑟𝑖𝑡𝑦 𝑙𝑒𝑣𝑒𝑙 − 0 𝑛𝑜 𝑘𝑒𝑦

 

Data packets can be transmitted to DSM using two 
different ways of encrypting data:  (i) encrypt the data 
stream and (ii) encrypt the data packets in the stream. In 
both these ways, we are going to apply encryption 
methods (strong/weak encryption) based on the data 
sensitivity or confidentiality level. The encrypted data 
stream applies to those sensors which are deployed with 
the sensitivity levels, whereas encrypted data packet 
applies to the sensors with different sensitivity levels for 
different types of data. 
Here, we follow a three step process, data collection, 
security verification, and stream query processing at DSM 
as highlighted in Fig. 1. Our focus is to perform the 
security verification at DSM by providing an end-to-end 
security of big sensing data streams. It is also important to 
perform a security verification of a data stream before the 
stream query processing in order to maintain the 
originality of the data for SPE. The security verification 
needs to be done on-the-fly (i.e. near real-time) with a 
smaller buffer size. The queries including security 
verification can be defined as a directed acyclic graph; 
and each node is an operator and edges define the data 
flows between the nodes. 
The above system architecture and security requirements 

 
Fig. 1. High level architectural diagram of big sensing data streams, 
DSM and stream data processing system for SEEN security model.  
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of big data streams [19][20] lead to the following two 
important features:  
 Data packet needs to maintain confidentiality based 

on its sensitivity level.  
 Need optimized buffer size at DSM prior to stream 

query processing.  
Motivated by this problem, this paper aims to address the 
challenge of data integrity and multilevel confidentiality 
on real time massive data streams.  

3.2 Adversary Model 

We assume that a large number of sensor nodes are the 
sources of big sensing data streams that are fully 
connected and can communicate to the DSM through 
wireless networks. We assume that the DSM is aware of 
the network topology and initially deployed nodes. We 
assume that IDS is positioned at each source device and at 
the DSM so that source sensors and DSM are capable of 
detecting packet-loss attacks and data modifications [3]. 
The DSM is treated as fully secured and protected in our 
model as it resides at the cloud data center.  
An attacker has several ways of attacking big sensing 
data streams: 
 After the deployment, the nodes may be captured by 

the attacker who will then be able to access the data 
stored in these nodes, as well as reprogram them and 
control their actions. The attacker could therefore 
make nodes refuse to forward some of the packets 
(Selective Forwarding attack) or even all of them 
(Blackhole attack). 

 The attacker may capture the data packets in the 
middle to get the information out of them and modify 
the content of a data packet. The attacker can therefore 
cause the loss of confidentiality (confidentiality attack) 
of sensitive information and data integrity (integrity 
attack).  

 A replay attack (also well-known as playback attack) 
is a network based attack where a data stream is 
maliciously delayed or fraudulently repeated.  

Compromising a node to drop packets and introducing 

interference in the network to access/tamper with the data 

are, from a high-level perspective, the two ways in which 

an attacker can disrupt data transmission through a 

packet-loss attack. For this reason, our adversarial model 

covers many different attacks that aim at causing packet 

losses. The other type of attack is to capture sensitive data 

packets and analyze to break the data confidentiality.   
Each node whose IDS detects a packet loss attack, will 
investigate the loss; we assume the investigating source 
device to be trustworthy and not to report any false 
response. This assumption is particularly important for 
the Majority Voting algorithm adopted as part of our 
approach. However, we will also present a variant of this 
algorithm able to relax this constraint, and thus able to 
tolerate up to a confident number of colluding 
investigating source nodes. 

3.3 Attack Models  

There are mainly three threat approaches for attack 

models, i.e., attack centric, software centric and asset 
centric. An attack centric threat model always starts with 
an attacker, whereas a software centric threat model starts 
with system designing. An asset centric threat model 
follows the information collection and assets entrusted, so 
our proposed method is an asset centric threat model. 
We assume that multiple simultaneous attacks can be 
carried out at the same time at various parts of the 
network. In fact, the strength of our approach is that 
multiple simultaneous investigations can be carried out. 
The integrity of a big data stream ensures that a message 
sent from sources to the data center (DSM) is not 
modified by malicious intermediates. Authentication of 
big data streams ensures that the data are from legitimate 
sources to maintain the end-to-end security.  
Data confidentiality (privacy) is a set of guidelines that 
restrict access or puts limitations on specific data streams. 
This guarantees that given data cannot be comprehended 
by anybody other than the desired receivers whether the 
data is in transit or at rest.  
The effect on data confidentiality of a successful exploit of 
vulnerability on the target system as follows. 
 Strong confidentiality: Only desired recipients can read 

the information.  
 Partial confidentiality: There is considerable 

informational disclosure in some situations. 
 No confidentiality: A total compromise of information 

as confidentiality is not a hard requirement. 
TABLE 1 

NOTATIONS. 

Acronym Description 
𝑆𝑖  ith source sensing device’s ID  
𝐾𝑖 ith source sensing device’s secret key  
𝐾𝐷 DSM secret key  
𝑘 Initial secret key  
𝐾𝑆𝐻 Initial shared key generated by DSM  

KSH(1) Shared key for strong encryption  
KSH(0) Shared key for weak encryption 
𝑇 Time of packet generation  
𝑇′ Time of packet receive at DSM 

𝑅1/𝑅2 Pseudorandom number 
𝐶𝐴𝐶 Centralize authentication code 
SL Data sensitivity level 

MAC Message authentication code 
𝐸( ) / D( ) Encryption/Decryption function 
𝐻( ) One-way hash function  
⊕ X-OR operation  

∥  Concatenation operation  

4 PROPOSED METHOD  

In this paper, we propose a selective encryption method 
for big data stream (SEEN) which is furnished with key 
renewability and makes a tradeoff among security, 
performance and resource utilization. The SEEN security 
method’s salient features are as follows:  
 efficient key broadcasting without retransmission;  
 ability to recover the lost keys with a proper detection;  
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 seamless key refreshment without interrupting the 
data streams; and  

 maintain the data confidentiality based on the data 
sensitivity level.  

We describe the proposed security method for big sensing 
data streams using four independent components: system 
setup, rekeying, new node authentication, and 
encryption/decryption. We refer readers to Table 1 for all 
notations used in describing our scheme. We made a 
number of sensible and practical assumptions to 
characterize the proposed security method. We describe 
those assumptions where necessary. We next describe 
independent components in detail.  

4.1 Initial System Setup 

We follow the symmetric key method for the initial 
system setup because of the limited resource availability 
at the source sensors [11]. In symmetric key encryption, 
hashing function need 5.9 µJ and encryption techniques 
1.62 µJ whereas in an asymmetric key, RSA-1024 needs 
304 mJ to sign and 11.9 mJ to verify and ECDSA-160 
needs 22.82 mJ to sign and 45 mJ for verification [11]. So 
we choose to follow symmetric key methods for the initial 
setup. In the system setup process, DSM always starts the 
process to identify the authenticated source. After 
successful authentication, DSM shares the secret shared 
keys to the source sensors for encryption.  The initial 
shared key setup phase is as follows: 
DSM generates a pseudorandom number (𝑅1) and 
performs a hash function combined with its DSM secret 
key (𝐾𝐷) to generate a unique secret shared key. Then 
DSM encrypts the generated shared key by using the pre 
deployed secret key (k) which is initialized during the 
network setup to generate Centralize Authentication 
Code (CAC). The DSM broadcasts the CAC to all the 
source sensors i.e. (1, …, n).   

𝐾𝑆𝐻 = {𝐻(𝐸(𝑅1, 𝐾𝐷))}  

𝐶𝐴𝐶 =  𝐸𝑘(𝐾𝑆𝐻) 
𝐷𝑆𝑀𝑆(1⋯𝑛) {𝐶𝐴𝐶} 

Once all the sensors receive the broadcast CAC from the 
DSM, sensors decrypt it by using a pre deployed secret 
key (k) (i.e. 𝐾𝑆𝐻 = 𝐷𝑘(𝐶𝐴𝐶)). Here we show the operation 
for a single senor (i.e. ith sensor). The following is the 
procedure to be performed at the sensor and sends an 
encrypted CAC to the DSM. The CAC contains source ID, 
random number as nonce, and a timestamp to avoid 
replay attack.  

𝐾𝑆𝐻 = 𝐷𝑘(𝐶𝐴𝐶) 
𝐶𝐴𝐶2 = 𝐸𝐾𝑆𝐻(𝑅2 ∥ 𝑆𝑖 ∥ T) 

𝐷𝑆𝑀𝑆𝑖 {𝐶𝐴𝐶2} 
Once the CAC is received at the DSM, it decrypts and 
checks the source ID (𝑆𝑖) for authentication and retrieves 
the corresponding sensor secret key from its data base (Ki 

 retrievekey (Si)). It also checks the time stamp to avoid 
replay attacks. The complete procedure for authentication 
and replay attack avoidance is shown below.   
𝐷𝐾𝑆𝐻(𝑅2 ∥ 𝑆𝑖 ∥ T) 

Ki  retrievekey (Si) // for source authentication  
𝑇′ − 𝑇 ≤ ∆𝑇 (T-packet generated time; T′-Packet receive time)  

It compares the received time frame (T) with its current 
time (T′) to check the data freshness in order to avoid a 
replay attack (T - T′ ≤ ΔT). If the time difference is less 
than ΔT , the DSM accepts the data packet otherwise the 
packets are discarded.   
The DSM then generates a new key by performing X-OR 
on the existing shared key and sensor’s secret key. The 
DSM uses this shared key to encrypt the nonce and sends 
back to the corresponding sensor for handshaking along 
with weak encryption shared key.  

𝐾𝑆𝐻2 = 𝐾𝑆𝐻⨁𝐾𝑖  
𝐶𝐴𝐶3 ∶= 𝐸𝐾𝑆𝐻2(𝑅2 ∥ 𝐾𝑆𝐻2(0))  

𝐷𝑆𝑀𝑆𝑖 {𝐶𝐴𝐶3} 
After a sensor (Si) receives the data packet, it performs the 
same operation as DSM did to find the new shared keys 
to encrypt the data packets. It compares the decrypted 
nonce (𝑅2

′) with the nonce it has (𝑅2); if both are the same, 
then it accepts otherwise it rejects and starts a new 
authentication process. Received 𝐾𝑆𝐻2(0)uses 64-bit key for 

weak encryption and 𝐾𝑆𝐻2 uses 128-bit key for strong 
encryption.  
𝐾𝑆𝐻2 = 𝐾𝑆𝐻⨁𝐾𝑖  
𝑅2

′ ∶= 𝐷𝐾𝑆𝐻2(𝐶𝐴𝐶3)  

If 𝑅2
′ = 𝑅2, then the sensors accept otherwise the process 

starts from the beginning. The complete authentication 
process is shown in Fig. 2, where we show the stepwise 
process with information flow. 

4.2 Re-keying 

After this initial key setup phase, the DSM shares the 
shared secret key with sensors for encryption.  For the 
rekeying process, we follow a LiSP protocol [12] and 
modify it to make SEEN more data centric instead of 
communication centric. SEEN uses a key server (KS) at 
the DSM, that manages the security keys for both strong 
and weak encryption. We use 128-bit symmetric shared 
key for strong encryption and 64-bit symmetric key for 
weak encryption.  Shared keys from KS are always 
chosen to perform the rekeying operation. Along with the 
shared key, individual sensors are able to perform the 
hash function.   

In-order to make the system more secure, the shared key 

 

Fig. 2. Initial authentication methods with 4 step process. 
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distribution for rekeying must be secure and fault 

tolerant; where “secure” means to maintain the 

confidentiality and authenticity and  “fault tolerant” 

implies the capacity to restore the lost shared key (𝐾𝑆𝐻). In 

our SEEN method, we always use two kinds of control 

packets i.e. UpdateKey and RequestKey. UpdateKey is for 

periodically updating the shared key used by DSM, 

whereas RequestKey is used by sensors when they missed 

the shared key during the rekeying process.  
We follow PRESENT [13] to generate the shared key at 
DSM and distribute the key before it is used for 
encryption at source sensors. The sensors have two buffer 
places for each key; that means four buffer places are 
required to save the keys as shown in Fig. 3. The front 
two shared key are always used for encryption and the 
back buffers contain the next shared key before the 
current shared key expires.  

Algorithm 1. Rekeying process  

t – time to rekeying 
t′ – time to DSM starting the shared key distribution 
δt – small time before t expires   
 

1. At time t′: the DSM broadcasts (UpdateKey) 
             UpdateKey ⇒ EKSH(KSH(1) ∥ KSH(0)) 
2.  Sensors use the current shared key (EKSH) to get the 

next shared key 
             DKSH(KSH(1) ∥ KSH(0))  
3. At time δt: If any sensor does not have the next 

shared key 
Sensors unicasts to DSM (RequestKey)  

              RequestKey ⇒ EKSH(Si ∥ ti) 
4. After authentication, the DSM unicasts (UpdateKey) 
             UpdateKey ⇒ EKSH(KSH(1) ∥ KSH(0))  

 
To ensure secure shared key distribution, the DSM 
initiates the shared key distributions by encrypting the 
control packet (UpdateKey) using the current shared key 
(KSH(i-1)) to distribute the next shared key (KSH(i)). The 
UpdateKey is always in the format of EKSH

(i-1)(KSH
i(1) ∥ 

KSH
i(0)), where KSH is the current shared key and all 

authenticated sensors have this key to perform the 
encryption. Let us assume the time to change the shared 
key is t; this means the DSM needs to initialize the shared 
key before the time t′. If the sensor did not get the shared 
key at time δt (t-t′= δt), then it initiates the RequestKey. 
The RequestKey always in the format of EKSH(Si ∥ ti), the 
source ID (Si) along with time slot (ti) encrypted with the 
current shared key (KSH). Then DSM can decrypt the 
RequestKey control packet using current shared key (KSH) 
and authenticate using the source ID. In such situations, 
the DSM sends an UpdateKey message to the 

corresponding sensors. Algorithm 1 shows the procedure 
for rekeying. 

4.3 New Node Authentication  

Joining new nodes to the network is a common property 

of sensor networks. We assume that the source node is 

initialized by the DSM during the initial deployment [14]. 

In such cases, source sensors always start the process by 

authenticating with the DSM to get the current shared 

key. Sensors use a control packet (i.e. InitKey) to start the 

process. InitKey contains the source ID encrypted with the 

initially deployed secret key i.e. 𝐸𝑘(𝑆𝑗). Once the DSM 

receives the control packet, it checks its authenticity. If the 

DSM succeeds in the authentication process, then it 

follows the Initial key setup (from Fig. 1) phase to share 

the current shared key. The DSM uses the current shared 

key (KSH) instead of generating a new key i.e. 𝐾𝑆𝐻 =

 {𝐻(𝐸(𝑅1, 𝐾𝐷))} . At the final stage of sharing the shared 

key, the DSM shares the keys along with a time stamp (ti) 

to source sensors (𝐸𝐾𝑆𝐻2(𝑅2 ∥ 𝐾𝑆𝐻2(0) ∥ 𝑡𝑖)). For the robust 

clock skew and shared information details, the source 

sensor can get the information from its neighbours [12].    

4.4 Reconfiguration 

The DSM will configure the shared key at the time of the 
next rekeying process, if (1) any of the source sensors 
have been compromised; (2) any of the shared keys have 
been revealed; (3) a source node has overtly requested the 
shared key; or (4) a source has joined to participate in the 
data stream. The first condition forces all source devices 
to be reconfigured, whereas the final two issues focus on 
requesting that the source to be configured. The actions 
required for the issues highlighted above are summarized 
as follows: 
(I) DSM withdraws the compromised nodes as the 
authenticated source, and if the KSH(i) has been disclosed 
previously. This may expose all earlier shared keys.  
(II) DSM computes new shared keys for both strong and 
weak encryption and unicasts with control packets.  
(III) DSM replies to the requesting source with current 
configuration. 
(IV) DSM follows the authentication process, and if 
successful, DSM responds to the source by initializing an 

 

Fig. 4. Shared key management for Robustness to Clock Skews 

 
Fig. 3. Key selection 
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InitKey control packet.  

4.5 Encryption/Decryption 

The above defined process makes both shared keys 

(KSH(1) ∥ KSH(0)) available at sensors. Note that KSH(1) is 

always used for strong encryption, whereas KSH(0) is 

always used for weak encryption. Each data block 

generated at sensors is a combination of two different 

parts. The first part is for integrity checking and 

maintaining the confidentiality level, whereas the other 

part is for the source authentication (i.e., 𝐴𝐷 =

𝐸𝐾𝑆𝐻(1)(𝑆𝑖 ∥
1
0⁄ ∥ T). The authentication part is always 

encrypted using the strong encryption key; it contains the 

source ID for authentication, time stamp (T) to avoid 

replay attack, and a flag value 1/0;where 1 is for strong 

encryption of body part (highly sensitive data) or 0 for 

weak encryption of body part (low sensitivity data). In 

order to encrypt the data part of the packet, every sensor 

performs the XOR operation i.e. current shared keys 

KSH(1/0) with its own secret key (ki), i.e. KSH(1)′ = KSH(1)⨁Ki 

and KSH(0)′ = KSH(0)⨁Ki’ then it uses the newly generated 

key to encrypt the data packets. Shared key EKSH(1)′ is 

always used for strong encryption, whereas shared key 

EKSH(0)′ is used for weak encryption (DATA∥MAC). The 

above specified data block encryption is always based on 

the data sensitivity level and for data integrity and 

confidentiality.  
The Capture layer of an IoT system (i.e. physical layer of 
sensor networks) is responsible for obtaining the context 
of data from the deployed environment using source 
sensors. This layer is also accompanied by classification 
methods, which mostly follow the unsupervised neural 
network methods, such as KSOM (Kohonen Self-
Organizing Map) used to categorize the real time sensed 
data [15].  The word “sensor” not only signifies a sensing 
device but also applies to each data source that may 
deliver functional context information [16]. Ganesan et al. 
[17] proposed a similar kind of system, named 
DIMENSIONS, where authors extended sensors for 
computation, storage and system performance. We follow 
the KSOM technique to classify the sensed data at sensors 
to define the sensitivity level. KSOM uses data mining 
techniques and classification to extract the data sensitivity 
level. Few sensors are also pre-deployed with high 
sensitivity level, where all generated data packets are sent 
to the DSM with a high sensitivity level. The steps to 
select the encryption method and shared key are shown 
in Fig. 5. The strong encryption method always uses a 
shared key EKSH(1) for highly sensitive data, whereas the 
weak encryption method always uses the shared key 
EKSH(0) for low sensitivity data.    
After data are received at the DSM, it always checks the 
authentication block and applies the strong encryption 
shared key to get the authentication information i.e. 

𝐷𝐾𝑆𝐻(1)(𝑆𝑖 ∥
1
0⁄ ∥ T). Once it gets the source sensor ID, it 

checks its own database to find the match and confirms 
that data packets are from authenticated sources. After 

successful authentication, the DSM compares the received 
time frame (T) with its current time (T′) to check the data 
freshness in order to avoid a replay attack (T - T′ ≤ ΔT). 
After successfully checking for a replay attack, the DSM 
retrieves the corresponding secret key of the sensors i.e. 
Ki  retrievekey (Si) and checks the data sensitivity level 
to find out the shared key used for encryption. If the data 
sensitivity level is 1, then it performs the XOR operation 
i.e. KSH(1)′ = KSH(1)⨁Ki, else KSH(0)′ = KSH(0)⨁Ki. The 
computed new key is used for data decryption i.e. DKSH(1)′ 
(DATA∥MAC) for high sensitivity data and DKSH(0)′ 
(DATA∥MAC) for low sensitivity data. After data 
decryption, the DSM compares the MAC as an integrity 
check. The DSM always keeps the last shared key KSH(i-1) 
during the use of KSH(i). There is always the possibility of 
late arrival of data packets at a DSM because of the 
untrusted wireless communication medium.    

4.6 Tradeoffs  

The communication overhead of the proposed security 
method depends on the source network size. Each group 
of keys will have more chances of being compromised as 
the network size increases [12]; this in turn increases the 
chances of reconfigurations. The SEEN method 
accomplishes significant improvement over a traditional 
rekeying approach by broadcasting shared keys without 
retransmissions. Less frequent reconfigurations mean 
increased performance. In summary, a larger network 
improves the performance by more proficient 
broadcasting. Therefore, we can tradeoff between energy 
consumption and security to maximize the overall 
performance. 
The proposed shared key management is made robust by 
synchronizing clocks among neighbors. As an example, 
Fig. 4 describes the time domain and key-slots of three 

 

Fig. 5. Method to select encryption method based on the data 
sensitive level 



2332-7790 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TBDATA.2017.2702172, IEEE Transactions on Big Data

AUTHOR ET AL.:  TITLE 9 

 

sensors i.e. A, B and C, where there is a clock skew among 
three nodes. Every UpdateKey control packet contains the 
time stamp to switch the shared key (ti).  

4.7 Required Resources for SEEN 

4.7.1 Resources at Sensors 

We follow [4] to define the communication overhead and 
power consumption theoretically. Following are the 
equations to define the communication overhead and 
power consumption 

𝐶𝑂(%) = (
𝑁𝑐×74.125

∑ 𝑁𝑖×30
𝑛
𝑖−1

) × 100   (1) 

PC1= 3(CSE + CSD)    (2) 
PC2= (TNSP + CSE) + (TNRP + CSD)   (3) 
PC3= (CSE + 2 × CSD)   (4) 
CO – Communication overhead 
PC1 – power consumption during node authentication 
(initial phase) 
PC2 – power consumption by a node during data 
transmission  
PC3 – power consumption during the rekeying   
Nc – total number of connection  
Ni – number of packets transferred by node Si 
CSE – computational power required by symmetric key 
encryption 
CSD – computational power required by symmetric key 
decryption 
TNSP – total number of sent packets  
TNRP – total number of received packets 

The communication overhead is always computed as a 
percentage and considers the total number of 
communications and the number of packets transferred 
by each sensor (see equation 1). The number of 
packets/total size is 74.125 bytes, whereas the data packet 
size is 30 bytes. Power consumption for initial node 
authentication is three times that required by both 
encryption and decryption processes (see equation 2). Each 
node needs a certain amount of power to participate in 
data transmission and data packet encryption. The 
normalized form of power consumption shows in equation 
3. Sensors need power to decrypt the UpdateKey and also 
to initiate RequestKey during the rekeying process. Sensors 
always need more power to perform the encryption and 
decryption process. Equation 4 shows the formulations for 
power consumption during rekeying.   

 
4.7.2 Resources at DSM 

The buffer utilizations needs to be optimized at the DSM, 

as the security mechanism of a big data stream needs to 

be performed in near real time because of the big data 

stream features [19][20]. Here we present a procedure to 

compute the halting time of a data block in a buffer before 

the stream data analysis is done. Let there be n number of 

sensors and each sends m number of data packets. We 

assume that the probability of attempt to success security 

verification at DSM is (1 (𝑛 × 𝑚)⁄ ), or delays with 

probability 1 − (1 (𝑛 × 𝑚)⁄ ). We can compute Acquisition 

Probability as 𝐴 =  (1 − (
1

(𝑛×𝑚)
)
((𝑛×𝑚)−1)

) [25]. Based on 

the value of A, we can measure the halting time of the 

each individual data block; the halting time, represented 

as w, is 𝐴 × (1 − 𝐴), where the value of w is inversely 

proportional to the value of A and security verification 

time of DSM.  

5 SECURITY ANALYSIS  

We follow [19][20][49] to define the following attack 
definitions and their properties. Based on these attack 
definitions, we have proved the following theorems and 
theoretical analysis.   
Definition 1 (attack on authentication): An attacker Ma 
can attack on authenticity if it is an adversary capable of 
monitoring, intercepting, and introduce him/herself as an 
authenticated node to participate in the data stream.   
Definition 2 (attack on integrity): An attacker Mi can 
attack on reliability if it is capable of monitoring the data 
stream and trying to access and/or modify the data block 
before DSM.  
Definition 3 (attack on confidentiality): A malicious 
attacker Mc is an unauthorized party which has the ability 
to access or view the unauthorized big data streams. 
Definition 4 (replay attack): A malicious attacker Mr is an 
unauthorized party which has the ability to intercept data 
packets and forward them later. This may be cause the 
loss of event detection during stream data analysis. 
Theorem 1. Strong encryption (128-bit) is always safer and 
takes a more computational power and time than weak 
encryption (64-bit) in SEEN security model. 

Proof. ECRYPT II proved that the key length of a 128-bit 
symmetric key provides the same strength of protection 
as a 3,248-bit asymmetric key [22][23]. Symmetric key 
cryptography becomes a natural choice for this purpose. 
It is mentioned with a proof that symmetric key 
cryptography is approximately 1000 times faster than 
strong public key ciphers [23]. From [19][23], it is 
comparatively easy for an attacker to read/modify 
packets, which are encrypted with a smaller key length. 
Crypto++ Benchmarks [24] also confirm that a smaller key 
length always takes less time to break or find the shared 
key.  From the above, we conclude that the key length is 
directly proportional to the key domain size and also 
directly proportional to the time required to find all the 
possible keys (see Table 2). This means an attacker needs 
more computational time and resources to break 128-bit 
compared to 64-bit.  

 Theorem 2. DSM can easily identify delayed data packets 
which have been intercepted by a replay attacker (Mr) using 
the SEEN security method.  

Proof. A replay attack is also broadly known as playback 
attack, where an attacker (Mr) intercepts the data 
packet(s) of data streams and forward later. Attacker also 
repeatedly send the data packets to block the DSM. This 
is carried out either by the source sensor or man-in-the-
middle attack.  
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In the SEEN security method, during encryption the 
source sensor always adds a time stamp i.e. T (sending 
time/packet generation time) at the header part of the 
data packets. This is in the format as 𝐸𝐾𝑆𝐻(1)(𝑆𝑖 ∥ 1/0 ∥ T) 
and is always used for authentication and data freshness. 
For every data packet, the DSM compares the received 
time frame (T) with its current time (T′) to check the data 
freshness and to avoid a replay attack (T - T′ ≤ ΔT). If the 
time difference is less then ΔT then the data packet is 
accepted otherwise it is discarded.  Where ΔT tends to 
maximum time takes to transmit data from source to 
DSM. After successfully checking for replay attack, DSM 
follows the data decryption process. 

Theorem 3. In the SEEN security method, an attacker Mc 
cannot access or view the unauthorized high sensitive data 
stream, whereas Mc cannot read low sensitivity data stream 
in real time.  

Proof. By following Fig. 5, it is clear that every data 
stream or data packet within a stream is transmitted with 
a sensitivity level. Here in the SEEN method, we consider 
two sensitivity levels i.e. ‘1’ for high and ‘0’ for low. For 
highly sensitive data, sensors use 128-bit shared key i.e. 
KSH(1). The computational hardness of the shared key is 
shown in Table 2. It shows that the most advanced 
processor (Intel i7) takes decades to find all possible 
shared keys to perform the decryption operation. Attacker 
Mc cannot read the high sensitivity data (strong 
confidentiality).  
For lower sensitivity data in the SEEN model, sensors use 
64-bit shared key i.e. KSH(0). Attacker Mc also needs years 
to get all the possible keys to decrypt the data packets 
(see Table 2). The maximum time to update the shared 
key (i.e. t) is always less than the time required for 64-bit 
in Table 2. So attacker Mc can read the low sensitivity data 
but it is not possible in real time.   

By following the above, we can confirm that the SEEN 
model maintains confidentiality for sensitive data and 
partial confidentiality for low sensitivity data.  

Theorem 4. An attacker Ma cannot forge the source to 
introduce itself as an authenticated source and attacker Mi 
cannot get the shared key KSH to break data integrity in the 
proposed security method SEEN. 

Proof. According to IDS properties of a sensor [7][8], in 
SEEN security method the sensor always reports to the 
DSM if it is captured by an attacker Ma. In such situation, 
the DSM does not consider the data packets from that 
sensor for data analytics. Along with IDS report, DSM 
also checks the source authentication for each individual 
data packet, where data packets arrive in a format 𝐴𝐷 =
𝐸𝐾𝑆𝐻(1)(𝑆𝑖 ∥ 1/0 ∥ T). DSM always applies the strong 
shared key (i.e. KSH(1)) to check the source authentication. 
After decryption 𝐴𝐷 of a data packet, DSM compares the 
Si with its own database for source authenticate. 
After a source device is authenticated, the DSM retrieves 
the corresponding secret key of the sensors i.e. Ki  
retrieveKey(Si) and checks the data sensitivity level to 
select the shared key used for encryption. 
Based on the data sensitivity level, the DSM performs 
XOR operation i.e. KSH(1/0)′ = KSH(1/0)⨁Ki. The newly 

computed shared key will be used for data decryption i.e. 
DKSH(1/0)′ (DATA ∥ MAC). After data decryption, DSM 
compares the MAC as an integrity check. Through the 
MAC check, the DSM confirms that the integrity of the 
data is intact.  
The major drawback (this is also applicable to all other 
security models) is that the confidentiality and integrity 
checks can be broken with a brute force attack.  

Theorem 5. The proposed SEEN requires a comparatively 
smaller buffer size compared to standard symmetric key 
solutions (i.e. AES-128) at DSM before stream query 
processing. 

Proof. Following Theorem 3, it is clear that the proposed 
SEEN security method provides a high level of data 
confidentiality for sensitive data, where it provides the 
partial confidentiality for low sensitivity data. We decrypt 
the header part for authentication (see Theorem 4) and data 
freshness (see Theorem 2); after successful authentication, 
we decrypt the data block for integrity checks. Another 
important mechanism is the different keys with the key 
length used for encryption/decryption. From Theorem 1, it 
is clear that the key length is directly proportional to the 
security verification and the security verification speed is 
inversely proportional to the buffer required for security 
verification. By combining the above, we conclude that 
the proposed SEEN security method needs a 
comparatively smaller buffer size. The evaluation is 
presented in the following section.  
Forward secrecy  

By following a standard symmetric key cryptography 
procedure, shared keys used for encrypting data packets 
are only used once and until they are expired (i.e. for time 
period t). Thus, previously used shared keys are 
worthless to an intruder even when a previously-used 
shared keys is known to the attackers. However, if an 
intruder continuously monitors the data stream for a long 
period of time, he/she can break the confidentiality of the 
low sensitivity data but not the high sensitivity data (see 
Table 2). At the same time, data integrity is always 
maintained.  

6 EXPERIMENT AND EVALUATION  

In order to evaluate the security strength and efficiency of 
the SEEN security method under the above specified 
adverse situations, we experimented in multiple 
simulation environments. The experiment was conducted 
using the in-house simulators on an Intel (R) Core (TM) 
i5-6300 CPU @ 2.40 GHz 2.50 GHz CPU and 8 GB RAM 
running on Microsoft Windows 7 Enterprise. We first 

TABLE 2 
TIME TAKEN BY SYMMETRIC KEY (AES) ALGORITHM TO GET ALL 

POSSIBLE KEYS USING THE MOST ADVANCED INTEL I7 

PROCESSOR [20]. 

Key Length 64 128 

Key domain size 1.845e +19 3.4028e+38 

Time 
(in days) 

11415 1.9E+19 
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verified the proposed security approach using Scyther 
[28]; second, we measured the performance of the 
approach using JCE (Java Cryptographic Environment) 
[29]; third, we computed the required buffer size to 
process our proposed approach using MatLab [30] to 
measure the efficiency of our method; finally, we used 
COOJA simulator in Contiki OS [31] to get the network 
performance of SEEN. 

6.1 Security Verification 

The SEEN security protocol is simulated in the Scyther 
simulation environment by using the underlying Security 
Protocol Description Language (.spdl). Scyther is an 
automatic security protocol verification tool that can be 
used to check the correctness of the security protocols. As 
per the Scyther model, we defined the roles of S and D, 
where S is a sensing device and D is the receiver (i.e. 
DSM). In this scenario, S and D have all information for 
encryption/decryption that is initialized in the system 
setup and rekeying phase. In this simulation 
environment, S sends the encrypted data packets to D for 
security verification. We introduced three types of attacks. 
First, an attacker changes the data packet while it is in the 
network. In the second, an adversary steals the property 
of source (S) and forwards the data packets to D 
pretending to be S. In the third, an adversary gets the data 
block to analyze and tries to read the data and replay the 
data packets. We experimented with 100 runs with 10 run 
intervals for individual claims with results as shown in 
Fig. 6. Here, we model the security method by following 
the previous section and used different key sizes (i.e. 64 
bits; 128 bits) in random data packets. Here we follow the 
SEEN method to update the different keys (see Table 2).  
Results: This experiment ranges from 0 to 100 instances in 
10 intervals using different numbers of data blocks. We 
checked the data integrity and confidentiality after data 
packet authentication. As the key generation and 
distribution process is handled by DSM, so we assumed 
that none of the intruders have the shared secret key. We 
are using two different keys for the encryption process i.e. 
(K(0)) for weak encryption and (𝐾(1)) for strong 
encryption. This also confuses the intruder in attempting 
to guess the key. During this experiment, we did not 
come across any potential attacks at the DSM to 
compromise the shared key, so it is secured in terms of 
confidentiality and integrity. Fig. 6 shows the result of the 
security verification experimented with in the Scyther 
simulation environment. Finally, we conclude that our 
model is secured against confidentiality and integrity 

attacks. 

6.2 Performance Comparison 

We used JCE (Java Cryptographic Environment) to 
experiment on and evaluate the performance of the SEEN 
method. JCE is the standard extension to the Java 
platform that provides an implementation context for 
cryptographic methods. The experiment is based on the 
features of the JCE in 64 bit Java virtual machine version 
1.6. The security verification time of the experiment is 
computed in the DSM. The experiment outcomes for 
security verification are shown in Fig. 7. We performed 
experiments and compared security verification time with 
different sizes of data packets. We compare the 
performance of SEEN security with advanced encryption 
standard (AES-128, AES-192), LSec and our previously 
proposed model for big sensing data streams i.e. DPBSV 
and DLSeF [19][20][49]. 
Results: The experiment results of the SEEN security 
method are better than AES-128, AES-192 and LSec 
algorithms with different data packets as shown in Fig. 7. 
SEEN does not use the trusted part of sensor (i.e. TPM) 
and avoids confidentiality attacks in comparison to 
DPBSV and DLSeF (see Table 3). So even though the 
performance of SEEN is not as good as DPBSV and 
DLSeF, it is acceptable in any circumstance of sensor 
network applications. The performance of SEEN shows 
that it is more efficient and faster than AES-128, AES-192 
protocols while providing the same level of security and 
removing some of the unrealistic assumptions of DPBSV 
and DLSeF.  

6.3 Required Buffer Size  

 

Fig. 6. Scyther simulation results page for security verification. 

 

Fig. 8. Efficiency comparison by comparing required buffer size at 
DSM for security processing. 

 

Fig. 7. Performance comparison SEEN method with AES-128, AES-
192, LSec, DPBSV, and DLSeF. 
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The experiment for the required buffer size at DSM was 
carried out using a MATLAB Simulation tool. The buffer 
size is based on the security verification time at DSM 
(from Fig. 7) with respect to different velocity of big data 
streams. The performance is based on the verification 
time calculated as shown in Fig. 8. Here we compared our 
SEEN security method with standard AES-128, AES-192, 
LSec, DPBSV and DLSeF (see Fig. 8). The velocity of big 
data streams starts from 50 to 300 MB/S with a 50 MB/S 
interval. The required buffer size for SEEN is always 
smaller than the AES-128 algorithm with different rates of 
incoming data. Fig. 8 shows the minimum buffer size 
required at the DSM for the SEEN method in comparison 
with AES-128, AES-192, LSec, DPBSV and DSeF. The 
performance comparison proves that the SEEN method 
requires less buffer and is efficient in performing security 
verification without compromising security properties.  

6.4 Network Performance  

We tested our SEEN protocol using a COOJA simulator in 
Contiki OS to get the network performance (i.e. 
communication overhead and power consumption) [31]. 
We took the two most common types of sensor (i.e. Z1 
and TmoteSky sensors) for network simulation. In this 
experiment, we checked the performance while 
computing and distributing the shared key. 
For network simulation, we took a random area to deploy 
51 nodes (i.e. 50 sensors and 1 DSM) in COOJA 
simulation environment. We took initial battery power of 
an individual sensor node 1x106 J, power consumption for 
transmission is 1.6W and power consumption for 
reception is 1.2 W. Apart from these, we follow the 
default properties of sensors. We assume that the size of 
each data packet is 30 bytes, nonce 23 bits, secret key of 
64/128 bits and token 4 bytes for the simulation [4]. 
In order to compute the performance of the 
communication overhead, our simulation used data 
packets of size 30 bytes of interval. We follow equation 1 
to get the communication overhead. The performance of 
the communication overhead is computed as a percentage 
(%) with respect to the number of data packets as shown 
in Table 4. According to the network properties, the 
communication overheard is inversely proportional to the 
number of packets in the network as shown in Table 4.  
For every connection, SEEN exchanges control packets for 
source/DSM authentication and shared key distributions 
based on the above specified packet sizes. This is an 

acceptable tradeoff between energy and security for the 
sensor node. The simulation results of energy 
consumption are shown in Fig. 9. The SEEN protocol 
required extra energy for the network authentication but 
its difference is very low. The energy consumption by 
using the SEEN protocol remains the same even by 
increasing the network size. We simulated the scenario 
using 50 nodes in 10 nodes interval as shows in Fig. 9. 
From all the above security analysis and experiments, we 
conclude that the proposed security method (i.e. SEEN) is 
secured (from multi-level confidentiality and integrity 
attacks), and efficient in terms of security verification 
speed and required buffer size at DSM (compared to AES-
128, AES-192 and LSec). Table 3 shows the comparisons of 
SEEN security properties with AES-128 and existing 
DPBSV and DLSeF. It clearly shows that the proposed 
method provides the same level of security as AES-128 
while reducing computational overhead.  

6.5 Testbed Implementation   

This section gives a testbed implementation scenario of 
our proposed method to prove that proposed SEEN 
security method work efficiently in real time streaming 
environment. We have taken waspmote smart cities board 
as the source of our data streams and a public cloud with 
specification as 512 MB Memory / 20 GB Disk / NYC1 -
 Ubuntu 14.04.5 x64 to deploy our DSM. We have 
deployed MySQL server database to store data streams 
after decrypted at DSM. Here in this testbed deployment, 
we plugged two sensors i.e. temperature and humidity 
sensors on smart cities board to get data. We use standard 
sensor network radio i.e. Zigbee network (IEEE 802.15.4) 
to stream data packets to cloud as shown in Fig. 10. 
We used SEEN method to protect data streams in end-to-
end basis. Sensed data encrypted using SEEN method at 
sensor board and followed by decrypted at DSM before 
store at MySQL server. The different level of encryption is 
used at sensor board in different instances without 
notifying DSM, and finally we found DSM can decrypt 

 

Fig. 9. Energy consumption. 

 

 
 
 
 
 
 
 

 
Fig. 10. Testbed implementation for end-to-end security using SEEN.  
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the data packets and stored at MySQL server. We 
consider previous simulation results for big data streams 
performance, whereas this testbed implementation shows 
the evidence of SEEN method’s compatibility in real time 
testbed environment.   

7 CONCLUSION   

In this paper, we proposed a Selective Encryption (SEEN) 
method to maintain confidentiality levels of big sensing 
data streams with data integrity. In SEEN, a DSM 
independently maintains an intrusion detection and 
shared key management as two major components. Our 
method has been designed based on a symmetric key 
block cipher and multiple shared keys use for encryption. 
By employing the cryptographic function with selective 
encryption, the DSM efficiently rekeys without 
retransmissions. The rekeying process never disrupts 
ongoing data streams and encryption/decryption. SEEN 
supports the source node authentication and shared key 
recovery without incurring additional overhead. We 
evaluated the performance of SEEN by security analyses 
and experimental evaluations. We found that our SEEN 
provides a significant improvement in processing time, 
buffer requirement and prevents data confidentiality and 
integrity from malicious attackers.  

We will further investigate our proposed method to 
improve the efficiency of symmetric-key encryption. We 
are also planning to introduce the access control model 
over big sensing data streams, which will give access to 
the end user or query processor based on the data levels.  
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