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Abstract Record Matching refers to identifying pairs of records that relate to the
same entities across different data sources. Inmany applications of datamining, record
matching is usually associated to quadratic complexity. In practice, the number of non-
matching record pairs always far exceeds the number of matching pairs, and this is
called imbalance problem. Blocking is a technique of data reduction, which can filter
unlikely matching pairs before record matching. However, for big data there is no fast
and effective blocking algorithm yet. In this paper, we report on big data infrastructure
to improve efficiency of blocking. Our approach runs blocking process independently
and distributedly on the partitions of whole data. To improve efficiency, we adopt a
probabilistic technique to balance the speed and the effect of the algorithm that we
proposed for distributed blocking. Our experimental analysis endorses the superiority
of our technique and shows its novel scalability.
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1 Introduction

Automatically linking records from different data sources becomes more and more
important in many big data applications. A crucial step of integrating data from multi-
ple sources is detecting and eliminating duplicate records. This process is called Entity
Matching, Record Linkage, or Record Matching (RM) [1], which is a well-known
problem in many applications such as address matching and citation de-duplication.
The goal of Record Matching is to identify records that represent the same real-world
entities from a variety of data sources.

Most of state-of-art methods adopt machine learning techniques to train a decision
classifier for matching records. The learned matcher classifies each record pair as
Match or Non-match based on the similarity between them. However, in the learning
process, RM suffers a lot from high skewness of data distribution due to its inherently
quadratic complexity. For instance, in a data set including M records, the number of
all pairwise-created record pairs reaches θ(M2), while the maximum number of truly
matching pairs is M . Thus, it is difficult to sample a training set in which the number
of matching pairs is relatively equivalent to the number of non-matching pairs. With
continuously increasing volume of data sets, this imbalance problem becomes more
and more severe.

Many blockingmethods have been proposed to alleviate the imbalance problem [2–
4]. The idea of blocking is to avoid evaluation of dissimilar pairs. In traditional
methods, blocking criteria are designed manually and determined by human expe-
rience. However, such methods are unfriendly to users, especially if data sets are
significantly big and dirty. Hence, unsupervised blocking algorithms become attractive
in recent years. But the efficiency of unsupervised blocking algorithms is challenged by
big data. First, the “Volume” of big data deteriorates efficiency of an algorithm because
the amount of data to inspect can be expanded quadratically in record matching—that
is—even “bigger” data. Second, the “Variety” of big data requests to inspect more
details of data, and therefore more dimensions, i.e. data features, have to be consid-
ered for record matching.

To efficiently process huge and various data for record matching, a countermeasure
is to run parallel blocking on those distributed big data platforms like Spark and
MapReduce. However, transferring a sequential blocking algorithm to a distributed
version is non-trivial, and not every unsupervised blocking approach is suitable for
parallelisation.On distributed big data platforms, the distributed versionsmay even run
slower than its sequential version: First, frequent read/write operations in memory and
disk are time-consuming. For example, inMapReduce a newmap task has to reload the
data that are already sorted in the previous rounds; Second, frequent communication
and data transferring between nodes take a considerable proportion of time overhead.
In large-scale and geographically distributed data processing systems, users have to
apply for remote computing resources, which locate in different availability zones.
Hence, data exchange time between nodes in those clusters becomes a non-trivial
factor influencing the running time of parallelised algorithms. Moreover, the latency
of networks sometimes may exceed the actual computing time of algorithms.

In this paper, to efficiently scale up record matching for big data applications,
we aim to improve an unsupervised and density-based blocking method DUB [5]
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into a distributed version. Our proposed method first randomly separates input data
into multiple partitions or use the data sets that have been already partitioned and
distributed in large-scale systems. Then, our method runs multiple instances of the
blocking algorithmDUB locally on each data set, from which each algorithm instance
returns a local blocking boundary. The process of attaining local boundary requires
no communication and data transferring inter-nodes. At the last step, we introduce a
probabilistic method that concludes a global blocking boundary by merging all the
returned local boundaries together, and this global boundary is guaranteed to be close
to or be the same as the real boundary derived from runningDUB in a single machine.

The contributions of this paper are summarised as follows:

1. We parallelise the density-based blocking algorithm into a distributed probabilistic
blocking algorithm that has almost the same blocking performance with DUB but
more scalable for big data.

2. The new algorithm significantly reduces system latency by running the blocking
algorithm on each node independently.

3. The new algorithm is adaptable for both Spark and MapReduce, no matter how
the computing cluster is organised.

This paper is a significant extension of our previous work [6], in which we pointed
out the problem of big data record matching and discussed an early version of the
technique in this paper.

This paper is structured as follows.We discuss related work in Sect. 2. In Sect. 3, we
review the DUB algorithm and give the problem definition. Our distributed algorithm
is elaborated and analysed in Sect. 4, including the method of parameter tuning. We
evaluate our algorithm on the real data sets in Sect. 5. Finally, the paper is concluded
in Sect. 6.

2 Related work

Recordmatching is awell-studied problemof determiningwhether two records refer to
the same entities or not [1]. One of the most challenging difficulties is the imbalance
problem that the non-matching record pairs always vastly outnumber the matching
pairs [7–9]. This imbalance problem greatly affects the process of matching records.
Most of matching algorithms [10–12] based on machine learning techniques hardly
play well on a highly imbalanced input data.

To alleviate the imbalance issue, various blocking methods have been proposed to
filter record pairs that are unlikely to be matched. The traditional blocking criteria
are manually designed according to the attributes of data sets [13]. For saving human
effort, learning techniques [2,3] are adopted to produce blocking criteria automatically.
Whang et al. [4] proposed an iterative blocking framework, which enables record
matching across different blocks. The above methods have a good performance on
blocking accuracy, but their performance on efficiency is challenged by big data.

Using big data infrastructures to process the data-intensive tasks in parallel is a pop-
ular approach in both industry and academia community, and the analytic missions
can be well managed and organised [14,15]. Distributed systems can support various
query processing on large-scale data [16–19]. Recently with increasing size of data
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sets, the number of record pairs that need to be blocked grows dramatically. To improve
scalability, some parallel algorithms [20–22] exploit the power of multiple cores to
reduce the time of matching process. In order to achieve a good balance on the number
of comparisons in multiple nodes, Christen [23] introduces a technique that groups
similar profiles by sets of keys, such that the comparisons are then executed inside
the groups. Kolb et al. [24] proposed a parallel algorithm of Standard blocking meth-
ods [13]. This algorithm is an automatic data partitioning approach for the multi-pass
Sorted Neighborhood (SN)method. They also adapted Sorted Neighborhood blocking
method [25] into a distributed version in [26]. Efthymiou et al. [27] parallelised Meta-
Blocking method [28] using MapReduce. The proposed algorithm could distribute
workload evenly among cluster nodes. All the above have not taken data exchange
and communication into account. In the real world, geographically large-scale dis-
tributed computation is possible, e.g. cloud computing in different availability zones.
Hence, the efficiency of above approaches may be heavily influenced by the latency
in geographically distributed clusters. In large-scale distributed systems, latency time
can be accumulated along transmission paths and result in significant communication
delay.

To reduce latency, some work [29–33] have been proposed to study the highly dis-
tributed clusters. G-Hadoop [29] supports data processing on heterogenous clusters
using a two-layermanagement. The top layer governs all the inter-cluster master nodes
to balance the resource scheduling; the bottom layer manages the intra-cluster slave
nodes for the specific computing tasks. However, those authors have not specifically
optimised the communication cost across the clusters. In the work [30], the authors
facilitatedMap/Reduce tasks executed on geo-distributed datasets. They optimised the
data transferring by exploiting Data Transformation Graph (DTG). Using the shortest
weighted path in DTG, the approach can bring a big cost-saving on the data commu-
nication. But the computational complexity of finding the shortest path is non-trivial.
Luo et al. [31] proposed a hierarchical framework adopting the Map-Reduce-Global
Reduce model that comprises three elementary functions: Map, Reduce, and Global
Reduce. The hierarchical framework gathers computation resources from different
clusters and runs Map/Reduce jobs simultaneously across them. In the work [32,33],
the authors studied the execution of Map/Reduce jobs on clusters of virtual machines.
Through optimising the allocation of virtual machines and the distribution of data par-
titions, the data locality can be improved, leading to the cross network traffic reducing.

Most of the existing approaches enhance the distributed system scalability by opti-
mising the data distribution and task scheduling. But such improvement focuses more
on the system level than on the algorithm level. Its effect to specific blocking algo-
rithms may not be observable as well. In this paper, we study a density-based blocking
methodDUB [5] for large-scale record matching problem. The authors [5] discovered
a widely existing property, Density Monotonicity. In a similarity space, the area of
lower similarities is supposed to always contain more points than the area of higher
similarities does. As this monotonicity can be obviously observed in many real data
sets, DUB shows a strong capability on automatically and accurately blocking non-
matching record pairs. However, when DUB is applied to distributed systems, DUB
needs to access the data in all nodes to compute the global density, which brings
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much communication overhead. This process of computing density hampers DUB
from being efficiently parallelised.

3 Preliminaries

3.1 DUB algorithm review

In this section, we review one density-based unsupervised blocking algorithm, DUB,
which was proposed for record matching problem in [5].

The traditional blocking methods using similarity as measure of matching have one
common problem: Users have to manually set thresholds through many experimental
trails, and the determination of the thresholds is usually difficult. Unlike the traditional
methods,DUB is a blocking approach exploiting density to decidewhether two records
are matching or not. It was found that in similarity space, area of higher similarity
often has lower density and the boundary of high-density area almost coincides with
the class boundary. With this discovery of density, DUB algorithm can determine
a complex blocking criterion by searching for the density boundary. As the density
property can be observed in many real data sets, the blocking performance of DUB is
practically high.

We give a brief introduction to DUB as follows. The first step of DUB is to map
all the record pairs into a d-dimensional similarity space [0, 1]d , each dimension of
which represents a similarity measure used to estimate how likely a record pair is
truly matching with a score between 0 and 1. For instance in Table 1, the upper table
contains three citation records from DBLP data set, and the other has two records
from ACM data set. From the tables, 6 record pairs can be created pairwise and
only the pair created by the last records in both tables is the truely matching pair.
Using EditDistance similarity on “Authors” and Jaccard similarity on “Title” as two
dimensions of a similarity space, we can map the 6 pairs into 6 points in 2D similarity
space. Take the only matching pair as example. Its EditDistance similarity score on
“Authors” is 0.595, and its Jaccard similarity score on “Title” is 1.0. Then, the pair is
mapped into the point (0.595, 1.0) in 2-D similarity space.

In practice, most of points from non-matching pairs crowd in low-similarity area of
similarity space, and the boundary of high-density area almost coincides with the class
boundary. Based on this observation,DUB searches for the boundary of region, resided
by high-density points, in low-similarity area. The record pairs, that are mapped into
the points inside such a region, are regarded as unlikelymatching pairs and are blocked
out then. The density here is defined as follows:

Definition 1 (Density) In a d-dimensional similarity space [0, 1]d , given a point set
D and a distance threshold r , Density of one point p, denoted as ρ(p), is defined as
the number of points, each of which has an Euclidean distance to p less than r . (In
this paper, D is the set of points mapped from all input record pairs with d different
similarity measures, and r is a user-given parameter.)

A boundary can be a set of arbitrary candidate points in D, and hence, there are too
many possible boundaries. In our work,DUB sets a granularity parameter k and only
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Table 1 Citation dataset

Title Authors Venue Year

Safe query languages for
constraint databases

Peter Z. Revesz TODS 1998

Efficient Filtering of XML
Documents for Selective
Dissemination of Information

Mehmet Altinel, Michael J.
Franklin

Very Large Data Bases 2000

Standards for databases on
the grid

Susan Malaika, Andrew
Eisenberg, Jim Melton

ACM SIGMOD Record 2003

Title Authors Conf Year

Database techniques for the
World-Wide Web: a survey

D. Florescu, A. Levy, A.
Mendelzon

SIGMOD 1998

Standards for databases on
the grid

S. Malaika, A. Eisenberg, J. SIGMOD 2003

0.0
2.7
5.3
11
21
43
85
1.7E+02
3.4E+02
6.8E+02
1.4E+03
2.7E+03
5.5E+03
1.1E+04
2.2E+04
4.4E+04
8.8E+04
1.3E+05
1.8E+05
2.2E+05
2.6E+05
3.1E+05
3.5E+05

Fig. 1 Contour of citation pairs. The data are the publication records from DBLP and Google Scholar. The
panel on the left is the similarity space of two similarities. The right is the contour levels, which represent
the numbers of points per unit area

considers the virtual points p = (p1, . . . , pd) where pi = j/k, j ∈ {0, 1, . . . , k} as
the boundary points. Then, the number of candidate points for a boundary is limited
to kd . For example, in Fig. 2, with a granularity k = 10, only the points like (0.1, 0.1)
are considered as the boundary points, even if (0.1, 0.1) may not be a true point in D.
There, the number of candidate boundary points is 102.

To accelerate the process of searching boundary, DUB adopts a widely existing
property about the monotonicity of density, that is, in similarity space the area of
lower similarities is supposed to often contain more points than the area of higher
similarities does, vice versa. This property exists in many real data sets. Figure 1
shows this monotonicity explicitly on a citation data set. Monotonicity of Density is
formally defined in the following:
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Definition 2 (Domination) In a d-dimensional similarity space [0, 1]d , given two
points p = (p1, . . . , pd) and p′ = (p′

1, . . . , p
′
d), if pi ≤ p′

i for all 1 ≤ i ≤ d, p′
dominates p, denoted as p � p′; if p � p′ and pi �= p′

i for some 1 ≤ i ≤ d, it is
denoted as p ≺ p′.

Definition 3 (Monotonicity) For any two points p and p′ such that p � p′, if ρ(p) ≥
ρ(p′), the density is monotonic with respect to Domination.

With the monotonicity, DUB runs in two main phases:

1. In the first phase, the algorithm runsBinary Search on the d-dimensional similarity
space to find the boundary points that ρ(p) ≥ T1, where T1 is a predefined density
threshold. When one boundary point is located, it divides the similarity space
into three regions: unknown density, density at least T1, and density less than T1.
In the region of ‘unknown’ density, the algorithm repeats the process of finding
the boundary point on the remaining ‘unknown’ region until no more unknown
region remains. After the boundary is found, the points inside the boundary will
be blocked.
For example, when the algorithm finds the first boundary point Pb such that
ρ(Pb) ≥ T1, according toMonotonicity of Density, the similarity space is divided
into three parts as shown in Fig. 2. For a point p in C, it has ρ(p) ≥ T1; for a
point p in B, it has ρ(p) < T1; for a point p in both Aand D, ρ(p) is uncertain. To
be aware of the whole space, the algorithm repeatedly searches for the boundary
points in A and D.

2. The monotonicity property in some areas may not be available. Hence, in the
second phase, without Monotonicity of Density, the algorithm uses Brute-Force
Search to enumerate the points that ρ(p) ≥ T2 where T2 is the other density
threshold less than T1. The algorithm starts from one boundary point found in the
first phase, and then exhaustively checks the neighbour points. If a neighbour point
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Fig. 3 An example of found boundary

p, T1 > ρ(p) ≥ T2, is found, the algorithm will repeatedly check the neighbours
of p until no new point is found. After all enumerated points are checked, the
points within a distance r to any enumerated point will be blocked.
The result of each phase above is a set of points. Figure 3 shows an example of
the result after the phases.

3.2 Problem and metrics

Given two input record tables R and S, we need to join them to generate all possible
pairs of records. Each record pair will be mapped into a point in the similarity space
described in the last section. As each record in R has to be compared with every record
in S, the set of all possible candidate pairs is huge. For example, if |R| = 103 and
|S| = 106, the number of candidate pairs will reach 109. It is hard to deal with such a
huge amount of data in a single computer. The time cost and space cost are intolerable
in practice.

DUB is designed for accurate blocking in centralised computing. However, for big
data, its efficiency may be rather pessimistic. Therefore, adapting DUB to popular big
data software infrastructure becomes a necessary task towards efficient blocking for
big data. In Hadoop eco-systems, when MapReduce or Spark framework is adopted,
a data set needs to be partitioned into small parts, which are processed in distributed
clusters. SinceDUB is a heuristic algorithm driven by the variation of density gradient
in similarity space, naively adapted DUB may have to pay an expensive price for data
communication and may be even slower than original DUB. Thus, the problem that
we are studying is how to make DUB efficiently parallised on the large-scale system
without loss of blocking accuracy.

Running Time is the metric to evaluate the blocking efficiency and is denoted as the
job time of the blocking algorithm on Spark or MapReduce. Recall, Reduction Ratio

123



Unsupervised blocking and probabilistic parallelisation for... 631

are the measures for evaluation on the blocking accuracy, and defined in the following.
Denote the set of all record pairs as C, the set of all matching pairs as Cmatch, and
the set of all non-matching pairs as Cnon, the set of blocked record pairs by proposed
blocking algorithm as B.

Recall = 1 −
∑

x∈Cmatch
1[x ∈ B]

|Cmatch| (1)

Reduction ratio =
∑

x∈Cnon
1[x ∈ B]

|Cnon| (2)

Our goal is to design a distributed algorithm namedDDUB that can block the record
pairs in a short Running Time and have high Recall and Reduction Ratio.

3.3 Naive distributed solution

A naive method to implement distributed DUB is to straightly make the process of
computingonepoint’s density in parallel.Anaive parallelisationofDUBfirst randomly
splits the data set into equally sized small parts and then assigns them to N nodes.
When DUB needs to query the density of one point, each node is invoked to compute
the density of that point locally on its local data set. After all local densities are known,
the sum of them is the global density. In this way, the output set of boundary points
will be exactly same to that found by DUB.

We name this naively distributed DUB to be NDUB in this paper. Figure 4 is an
example about how NDUB searches for the boundary points in parallel with 3 nodes.
Similar to DUB, with the density monotonicity, NDUB also plays Binary Search
to find the boundary points. Whenever a point’s density is queried, the algorithm
will map the point to the nodes N1, N2 and N3. Then, N1, N2 and N3 compute
the point’s local density, respectively. The sum of returned local densities is the
global density. Through many rounds, P1, P2, and P3 are found as the boundary
points.

The naive method has a big drawback that the nodes communicate too many times
in the whole process. Whenever one point’s density is queried, all nodes have to
communicate to sum up the global density, leading to a poor efficiency.

P

P
P

N3N NCloud:

1 + +P):

N3N N

1 + +

N3N N

1 + +

Boundary Set
{ P1, P2, P3 }

Fig. 4 Example of NDUB
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Fig. 5 Work flow of DDUB

4 Unsupervised blocking for big data

In Sect. 3, we have discussed about Monotonicity of Density, which can be observed
over many data sets of record matching. This property still holds approximately in
randomly sampled subsets from the whole input data set, if the input data set is suf-
ficiently large, i.e. big data. This is the cornerstone of our proposed DDUB in the
following. Through randomly delivering each record pair into N nodes, the entire
data set is partitioned into N parts, each of which is a sample set of the original data
set. Then, DUB is able to run independently on each node. As each record pair is
randomly and independently distributed, according to the density defined in Sect. 3,
it is easily seen that for a specific point, its density computed on each data partition,
i.e. local density, is expected to be 1/N of its density in the entire input data set, i.e.
global density. Consequently, given a density threshold T , if we know that in most of
computing nodes a point has its local density larger than T/N , very likely the point
has a global density over T .

Based on the abovemotivation, we nowmake a formal description of our algorithm,
DDUB. Given a point p, let ρi (p) be the point’s local density computed on the i-th
node and ρ(p) be the point’s global density computed on the entire input data set. If
there exist at least m nodes returning ρi (p) ≥ T

N , we will regard the global density
of point p larger than T , ρ(p) ≥ T . m is a user-defined threshold on the number of
nodes where ρi (p) ≥ T

N . The detail about how to determine m will be discussed in
Sect. 4.2. After running the blocking algorithm on each node, we introduce a merge
strategy to aggregate the blocking results. The workflow of our approach is given in
Fig. 5.

4.1 Probabilistic parallelisation

DUB sets two density thresholds for blocking the mapped points of record pairs in
similarity space: a higher one T1 for blocking the points in the region where the
monotonicity property applies, and a lower one T2 for the points in the region where
the monotonicity property does not strictly hold. As described in Sect. 3, the algorithm
first blocks the points with a density no less than T1 and then blocks the points having
a density no less than T2 in the rest part. OurDDUB tries to achieve the same accuracy
performance as DUB can do, and for this reason, we need to adjust the thresholds for
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each data partition. After the entire data set has been randomly split into N partitions,
the expected size of each partition is 1/N of the original size and we use T1/N instead
of T1 as the higher threshold and T2/N instead of T2 as the lower threshold.

With the new thresholds, we perform DUB independently on each node. But in
runtime, the nodes do not block points directly at once. In our DDUB, we set a user-
defined parameter m. Only if a point’s local density on at least m nodes is not less
than T1/N in the first phase or T2/N in the second phase, we will regard its global
density no less than T1 or T2 and block the point on every node. For simplicity, in the
following, we define two new terms: coverage and majority.

Definition 4 (Coverage) Given a point p and one point set Q, if ∃q ∈ Q and p � q,
we say Q covers p, denoted as p � Q.

Definition 5 (Majority) Given a point p and N nodes, with a threshold T , we denote
the majority �T (p) to be how many nodes return a local density of p no less than T .

In general, DDUB also has two main phases. First, it searches for all the points p
such that � T1

N
(p) ≥ m, and blocks them out. Then, on the rest points, it searches for

and filters out the points with � T2
N

(p) ≥ m.

4.1.1 Search for the points with � T1
N

(p) ≥ m

In DUB, the first phase is to use Monotonicity of Density to locate the region with its
density no less than T1 and return a set of boundary points for this region. In this paper,
as we run DUB separately in N nodes, each will return a set of boundary points with
the threshold T1/N for its own data partition. Then, we need to search for the points
under � T1

N
(p) ≥ m from the N boundary sets. In this phase, our goal is to confirm a

new region boundary that the points inside the region are most likely to have a global
density no less than T1.

Take two nodes for example. Set m = 2. The returned boundary points are shown
in Fig. 6. The boundary set QA returned by Node A is {(0.2, 0.8), (0.4, 0.4)} and the
boundary set QB returned by Node B is {(0.2, 0.6), (0.6, 0.2)}. Then, according to
the definition of coverage, all the points p with p � (0.2, 0.6) or p � (0.4, 0.2)
are covered by both QA and QB and have � T1

N
(p) = 2. The area bounded by

{(0.2, 0.6), (0.4, 0.2)} is the mutual area of the two local boundaries. So the new
boundary set with m = 2 is {(0.2, 0.6), (0.4, 0.2)}.

A similarity space may have a big dimension number d and a small granularity
value k, such that the number of points that need to be evaluated may be considerably
big. Consequently, enumerating the points to check their majori t y become rather
low-efficiency. In order to quickly confirm the new boundary, we discover another
important property Monotonicity of majority.

Monotonicity of Density is an important property for locating the boundary points
with the threshold T1 in DUB (see Definition 1-3). Based on this property, another
property, Monotonicity of majority, can be concluded, as described in the following:

Theorem 1 Given Monotonicity of Density and N returned boundary sets with
threshold T , for two points p � p′, it must have �T (p) ≥ �T (p′).
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Proof Given two points p � p′ subject to �T (p) < �T (p′), there must exist one
node having ρ(p) < T and ρ(p′) ≥ T , such that ρ(p) < ρ(p′). But according to
Monotonicity of Density, for p � p′, on each nodewe should have ρ(p) ≥ ρ(p′). This
contradicts ρ(p) < ρ(p′). Therefore, given Monotonicity of Density, with p � p′,
we can only conclude that �T (p) ≥ �T (p′). 
�

This theorem tells a fact that if the density monotonicity holds, the majority is also
monotonic w.r.t.�. With theMonotonicity of majority, we can perform Binary Search
on finding the overall boundary points that � T1

N
(p) ≥ m.

The following algorithm is similar to the procedure using the density monotonicity
to find the density boundary points in the first phase of DUB. The only difference
is that we check out if the majority, rather than density, of a point is less than the
threshold. When a boundary point p is found, according toMonotonicity of majority,
for all the points p′ � p, we can have � T1

N
(p′) ≥ m and for all the points p′′ � p,

� T1
N

(p′′) < m. Then, we split the similarity space into three regions: one consisting

of the points with � T1
N

(p) ≥ m, one consisting of the points with � T1
N

(p) < m, and

another consisting of unknown points. For the region where the majority of points is
unknown yet, we repeat the process of finding the boundary points with majority no
less than m, until no more ‘unknown’ region remains. The detailed algorithm is as
follows.

In Fig. 7, we give an example of how our algorithm works. At beginning, DUB is
independently run on three nodes. Before each of them returns a boundary set based
on their own data partition, there is no reducing task or node communication at all.
When the three local boundary sets returned from nodes, we run Alg. 1 to find the
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Input : Majority threshold m
Output: The boundary set M

1 Procedure FindBoundarySet(m)
2 U = {(1/k, . . . , 1/k)} /* U is the set of points with unknown Majority

*/
3 M ← ∅ /* M is the boundary set */
4 foreach point p ∈ U do
5 if � T

N
(p) ≥ m then

6 pnew ← FindBoundaryPoint( p,m ) /* Binary Search is exploited to
find pnew */

7 M ← M ∪ pnew /* pnew is a Boundary Point */
8 U ← UpdateUnknownPointSet( U, pnew ) /* pnew is used to confirm

the new Parts of Unknown Majority and Parts of Known
Majority. Similar to Fig. 1 */

9 end
10 end
11 Return M

Algorithm 1: Search for the overall Boundary set

Boundary Set: 
P

P

N :

{ P1

1

, P }

P
PN :

{ P , P }

P
P

N :

{ P , P }

Node: 

+ 
Overall Output
Boundary Set: 
{ P1, P P6}

+ 

P
P

P

Fig. 7 Exampe of DDUB: m = 2

region of points covered by at least two boundary sets. The set of points determining
such a region is the new boundary set and is used as the input for the next phase.

4.1.2 Search for the points with � T2
N

(p) ≥ m

After the overall boundary set under the threshold T1 is concluded, our algorithm will
deliver the new boundary set to each node. Then, we will begin the second phase to
search for the points with � T2

N
(p) ≥ m. There are two steps in this phase. First, as
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the region with the density no less than T1 is confirmed, each node need to remove
the points inside this region from its data partition. Second, in the place where the
monotonicity does not strictly hold, each node need to enumerate the points with the
density no less than T2

N .
According to Monotonicity of Density, all points that are covered by the global

boundary set should have a density at least T1. After the first phase, the remaining
set on each node should be rather small. We start the second phase of DDUB in each
node with a threshold T2

N . The algorithm will enumerate the points with the density no

less than T2
N on the rest data set and return a point set with the density T2

N . On the N
returned enumeration sets, we need to find all the points p that � T2

N
(p) ≥ m.

As in the second phase of DUB the density monotonicity property cannot strictly
hold, Monotonicity of Majority does not hold either. After all nodes return the enu-
meration sets, we have to search for the points appearing in at leastm enumeration set.
Since the collection of candidate points is rather small compared to the entire data set,
and the collectionmust be a subset of the union set of all returned enumeration sets, we
construct the union set first and then check themajority of each element incrementally.
The process is described in the following.

Let Ei be the enumeration set returned from the i-th node. We construct the candi-
date enumeration set E , E = E1 ∪ E2 · · ·∪ EN . For every point p in E , our algorithm
will check its majority. If � T2

N
(p) < m, it means point p has a high possibility to

satisfy ρ(p) < T2. Then, we remove it out from E . After the algorithm exhausts all
the elements in E , E becomes the target set of points with a global density no less
than T2.

Finally, E will be assigned to each node. Then, our algorithm will block all the
points that are within r distance of any point in E . The rest points of record pairs in
all nodes are our final result. By now, the blocking is finished.

4.2 Parameter tuning

Since we aggregate the results from distributed nodes into a global conclusion, it
is necessary to guarantee that the aggregated result is the same as or very close to
the result obtained from a sequential algorithm, DUB. In this section, we provide an
analysis, based on which we can correctly tune our parameters.

First, let us recall our approach. According to the definition of density, ρ(p) is the
number of points near point p within a distance r on all the record pairs and ρi (p) is
the density of point p returned by the i-th node. For simplicity, in this section, we use
ρ and ρi to represent ρ(p) and ρi (p). It is obvious that ρ1 + · · · + ρN = ρ. Since
the process of data deployment is random and uniform, each point q s.t. ||q − p|| ≤ r
has the equal probability 1/N to appear in every node, that is, E[ρi ] = ρ

N . For this
sake, in each node, we tune the density threshold to be T

N , where T is a fixed density
threshold for ρ. This procedure is same to the process of throwing balls into bins.

In our distributed algorithm, m is set as a majority threshold to determine whether
a point should be deemed as a high-density point. However, given a value of m, a
point that has been deemed distributedly as a high-density point is possibly against
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the density threshold, that is, ρ ≥ T may not hold. By all means, we should be aware
of this probability that majority threshold is not consistent with density threshold.

Lemma 1 Let x be the random variable representing the least number of nodes, where
there are more than n points. Given ρ and nm ≤ ρ, the probability of x ≥ m, i.e.
Pr{x ≥ m|ρ} is Eq. 3.
Proof Since at least m nodes have at least n points, the bin-ball game can be split into
two phases: First, we take nm points from ρ and evenly assign the points intom nodes
chosen from N nodes. In this phase, there are

(
ρ
nm

)
possibilities for the assignment.

Second, we freely assign the remaining points to all the N nodes. There are Nρ−mn

possibilities. Totally, we have
(

ρ
nm

)
Nρ−mn ways to assign the points. Well, randomly

assigning points to the nodes has Nρ possibilities. Thus, we summarise the above to
derive the probability of at least n points in at least m nodes

Pr{x ≥ m|ρ} =
(

ρ
nm

)
Nρ−mn

Nρ

=
(

ρ
nm

)

Nmn
. (3)


�
When we run our distributed algorithm, we actually do not know ρ, but we can

know the global distribution of ρ by sampling in preprocessing. Because similarity
space has monotonicity of density, we only sample the number of points along with
the density decreasing paths. Thus, we can easily have Pr(ρ), given a distance to
the highest density point. Then, the probability of ρ > T is shown in the following
theorem.

Theorem 2 When there are at least n points in at least m nodes, the probability of
ρ > T is Eq. 8.

Proof Given at least n points in at leastm nodes, we can know that the minimum value
ρmin of ρ is mn. According to Monotonicity of Density, the maximum value ρmax of
ρ is ρ(pmin), where pmin = (1/k, . . . , 1/k) is the virtual point such that there is no
other point p satisfying p � pmin. For ρ > T , ρ should range in [T, ρmax]. When we
observe x ≥ m, there are only two possibilities, either ρ ≥ T or ρ < T . According to
the law of total probability, we know

Pr{x ≥ m} =
ρmax∑

ρ=nm

Pr{x ≥ m|ρ}Pr{ρ}

= Pr{x ≥ m|ρ ≥ T }Pr{ρ ≥ T }
+Pr{x ≥ m|ρ < T }Pr{ρ < T }, (4)

ρmax∑

ρ=nm

Pr{x ≥ m|ρ}Pr{ρ} =
ρmax∑

ρ=nm

(
ρ
nm

)

Nmn
Pr{ρ},
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Pr{x ≥ m|ρ ≥ T } =
ρmax∑

ρ=T

Pr(x ≥ m|ρ)

=
ρmax∑

ρ=T

(
ρ
nm

)

Nmn
, (5)

Pr{x ≥ m|ρ < T } =
T−1∑

ρ=mn

Pr(x ≥ m|ρ)

=
T−1∑

ρ=mn

(
ρ
nm

)

Nmn
, (6)

and

Pr{ρ < T } = 1 − Pr{ρ ≥ T }. (7)

By summing up, we can resolve Pr{ρ ≥ T },

Pr{ρ ≥ T } =
∑ρmax

ρ=nm

(
( ρ
nm)
Nmn Pr{ρ}

)
− ∑T−1

ρ=mn
( ρ
nm)
Nmn

∑ρmax
ρ=T

( ρ
nm)
Nmn − ∑T−1

ρ=mn
( ρ
nm)
Nmn

=
∑ρmax

ρ=nm

((
ρ
nm

)
Pr{ρ}

)
− ∑T−1

ρ=mn

(
ρ
nm

)

∑ρmax
ρ=T

(
ρ
nm

) − ∑T−1
ρ=mn

(
ρ
nm

) (8)


�
By tuning n andm, we canmake the above probability sufficiently big and guarantee

that the aggregated boundary is probabilistically correct. In this paper, we have set
n = � T

N � for the above analysis, and thus we only need to tune m.

5 Experiments

We conduct a series of experiments to evaluate the effectiveness of our methodDDUB
in three aspects: Recall, Reduction ratio, and Running Time.

5.1 Settings and configurations

– Environment:
we run our experiments in Nectar cloud1 using up to 16 nodes, each of which has
two 2.5 GHz-cores, 8GB RAM and Ubuntu 15.10; and the underlying infrastruc-
tures are Hadoop 2.7.2 and Spark 2.0.1.

1 http://nectar.org.au/.
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– Data:
we use four data sets for evaluation: Goods, Small Citation, Middle Citation and
Large Citation.2 The volume of the data sets is 1.3GB, 12.2GB and 126.4GB,
respectively. Goods has 4 attributes: title, description, manufacturer and price.
The other three data sets have 4 attributes: title, authors, venue and year. One
real-world entity can have two different records in the data set, e.g. Table 1
1. Goods is a data set recording the product information from Google and Ama-

zon. There are 4590 total unique records. It has 1.0×107 possible record pairs
for matching. Among these record pairs, there exist only 1300 matching ones.
As Goods has the same size with Small Citation, there is no need to test the
efficiency on both sets. We do not use Goods for efficiency experiment.

2. Small Citation is one collection of publication records. Small Citation has 4910
records sourced from DBLP and ACME. It has 1.2× 107 pair entries in which
2224 pairs are truly matching.

3. MiddleCitation is a duplicated data set.Weduplicate the data setSmallCitation
10 times to be a new data setMiddle Citation. It has about 1.2×108 pair entries.
AsMiddleCitation is the duplicate of SmallCitation, we only test the efficiency
on it.

4. Large Citation is the biggest data set among the three data sets. Large Citation
has the same data type with Small Citation, recording the publication infor-
mation. Its 66879 citation records are downloaded from DBLP and Google
Scholar. The number of pairwise-created record pairs is 2.2 × 109, in which
5347 pairs refer to the same entities.

– Algorithms:
DUB is the base-line algorithm for comparison in this paper. As it is a sequen-
tial algorithm, we do not compare its efficiency with the other two distributed
algorithms but evaluate its Recall and Reduction Ratio on the validation data sets.
NDUB is the naive version of decentralisedDUB, and has been described in Sect. 3.
As it is implemented in a distributed way, we mainly take it as an efficiency
competitor to DDUB, which is our proposed distributed algorithm.

5.2 Prior discussion

Spark andMapReduce are two popular big data platforms.MapRedcue is a disk-based
system, while Spark is a memory-based system. Generally speaking, for processing
the same amount of data that can be fully fed into the memory, Spark runs above
10 times faster than MapReduce does. With RAM price decreasing, recently, more
and more users prefer to build the computing cluster on Spark. However, MapReduce
still maintains its dominance in the area such like system reliability and data capac-
ity. Furthermore, though Spark performs much better on Multi-Pass algorithms than
MapReduce, for One-Pass algorithm, MapReduce and Spark have almost the same
efficiency performance. Thus, we compare the algorithms on the both platforms. An
algorithm that works well on the both platforms is more welcomed.

2 http://dbs.uni-leipzig.de/en/research/projects/object_matching.
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5.3 Blocking accuracy

In the context of this paper, parallelising an algorithm should not invoke too much
accuracy loss. To investigate the blocking effect, two major measures are used: Recall
and Reduction Ratio. They have been defined in Sect. 3.

In the following experiments, we first compare DDUB with DUB. NDUB is not
compared because NDUB is a distributed implementation of DUB with zero-loss of
accuracy. Its Recall and Reduction Ratio will always be the same as those of DUB.

In DUB, NDUB and DDUB, as their density definitions are same, we run the algo-
rithms using the same parameters. To achieve a satisfying result, the values of r , k,
T1 and T2 should be carefully selected. Since k directly determines the number of
binary search rounds on each dimension, for the sake of efficiency, we default k = 50.
According to the density definition, the density of one point is defined as the num-
ber of points within r neighbouring to the point. Thus, the combination of {r, T1, T2}
can decide the result of blocking. To find a suitable combination of {r, T1, T2}, we
randomly sample a small data set from the input data set and run DUB with different
combinations of {r, T1, T2}. The combination that can prune as many instances as pos-
sible is preserved as the output parameter combination. As the found T1 and T2 come
from the small sample set, at the last, we need to scale up T1 and T2 to the size of the
input data set.

Our algorithm is also affected by the number of nodes indeed. Based on the analysis
in Sect. 4.2, the number of nodes has an immediate impact on the selection of threshold
m. So we vary the number of nodes N in {2, 4, 8, 16} and set m equal to the number
in {1, 3, 5, 13}, accordingly.

The results on the data setsGoods and Small Citationare given in Figs. 8 and 9. For
the concern of experiment time, we only test the huge data set Large Citation with
16 nodes and DUB gets Recall 0.864 and Reduction Ratio 0.981; DDUB get Recall
0.864 and Reduction Ratio 0.977. The results show that by setting a proper value of
m, the loss of Recall and Reduction Ratio of DDUB can be very small. No matter
what value of N is set, the performance of DDUB is almost unchanged. The reason is
that with a big data set, the local density of a given point will almost be equal to 1

N of
its global density. No matter that N = 2 or N = 16, the input data set is big enough
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Fig. 8 Recall and reduction ratio: Goods
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to sample a fair data partition, whose size is close to 1
N of the size of entire data set.

The searching process with a threshold T
N on a data partition is almost the same as

searching the boundary of T on the entire data set.

5.4 Blocking efficiency

In the above, the experimental results show that DDUB has the ability to achieve a
high Recall and Recall Reduction. Compared to the blocking performance ofDUB, its
loss of accuracy is rather small. Next, we will evaluate the efficiency of two parallised
algorithms:DDUB and NDUB. Note that, in the following figures, we do not continue
experiments that run longer than 4000min, and the curves stretching out of the figure
frame imply that the running time is too long to wait for us.

Aswidely known, Spark is amemory-based distributed framework,which stores the
processed data in memory; MapReduce is a disk-based distributed framework, which
stores the data in disk. In our experiment, we implement both DDUB and NDUB on
Spark and MapReduce.

InMapReduce framework, when computing the global density of one point,NDUB
first maps the data into N nodes and then waits and collects all the local densities
from each node. This process includes one map task and one reduce task. In the
entire workflow of NDUB, it has many rounds of computing density incurring many
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tasks of map and reduce. As each map or reduce task reads and writes in the disk,
NDUBwill spend a much long time on I/O operations, which is the reason that NDUB
on MapReduce performs worst in Figs. 10, 11 and 12. However, DDUB is a one-
pass distributed algorithm that runs the process of density computation locally and
respectively. It has only one map and reduce task, which saves a bulk of I/O time
compared toNDUB. From Figs. 10, 11 and 12, with the I/O time significantly reduced,
we can see thatDDUB onMapReduce almost runs the same timewithDDUB onSpark.
The result shows the superiority of our one-pass algorithm: DDUB on MapReduce
performs as well as DDUB on Spark, while NDUB can only work on Spark.

In the above experiments, we can observe that the difference between NDUB and
DDUB in Spark is not very clear. It is because that all the above experiments are
conducted on a local network. The real RTT time between inter-cluster nodes is rather
trivial and about 0.4ms. While the network communication occurs every round in
NDUB and only one round in DDUB, 1000 rounds can only produce a 4s difference
which is very small compared to the whole running time. But, in real-world systems,
cloud clusters may be geographically distributed and the RTT time is far more than
0.4ms. To further study the performance of NDUB and DDUB in Spark, we will test
the algorithms with different network conditions in the following experiments.

In order to evaluate the performance of DDUB and NDUB on geographically dis-
tributed large-scale system, we increase the latency of our network to simulate the
latency in the real-world network. From our investigation, regularly, the RTT time
between nodes in the same local network is ranged from 0 to 10ms; the RTT time
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between nodes located across nation is ranged from 10 to 100ms; and the RTT time
between nodes located across continent is ranged from 100 to 500ms. Hence, in our
experiments, we add the RTT delay time in the range from 0 to 500ms. We test the
algorithms with the delay time: 0.4, 50, 300 and 500ms. 0.4ms is the minimal RTT
time that we can set. For Small Citation set, 16 cores are used to run the algorithms
and for the other two sets, 32 cores are used. The results are shown in Figs. 13, 14 and
15. When the delay time is set to a very small number, it implies that both DDUB and
NDUB run in a local network, where the communication between nodes is almost free.
DDUB and NDUB both work well on Spark. However, when the delay time increases
to 50ms, DDUB shows a higher efficiency than NDUB. We can observe that the run-
ning time ofDDUB does not change much but the running time ofNDUB greatly rises
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up. The reason is that in DDUB, each node only runs on its own local data partition
and rarely communicates with other nodes, leading to a low communication time; in
NDUB, at each round of computing density, all nodes communicate for summing up
the global density, leading to an accumulated big communication time finally. When
the delay time reaches 500ms, the running time of DDUB only increases a small
amount, but the running time of NDUB reaches an unacceptable level.

Overall, for Recall and Reduction Ratio, our proposed algorithm DDUB has com-
parable performance with the other algorithms. For adaptability, DDUB can be well
applied on both Spark and MapReduce platforms. For efficiency, DDUB undoubtedly
wins in two aspects, read/write operation savings and communication time reduced.
For scalability, our algorithm is a clear winner, as its running time grows linearly with
the size of data.

6 Conclusion

Record matching is important in many applications of data mining, and blocking is a
key for data reduction in recording matching. To adapt record matching to big data,
it is inevitable to enhance record blocking. In this paper, we studied the problem of
blocking records and parallelised a density-based blocking algorithm. Compared to
the traditional blocking techniques, our proposed method has a small loss of recall and
reduction ratio but good efficiencygain.Wecomparedour density-based approachwith
other methods using real data sets and demonstrated the superiority of our approach in
terms of Reduction Ratio, Recall and Running Time. The advantage of our approach is
outstanding in the case of high cost of communication and data transferring. The results
of the experiments have shown that the performance improvement of our approach is
promising.
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