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a b s t r a c t

In the past few years, several studies proposed to reduce the impact of bushfires by mapping their
occurrences and spread. Most of these prediction/mapping tools and models were designed to run either
on a single local machine or a High performance cluster, neither of which can scale with users’ needs. The
process of installing these tools andmodels their configuration can itself be a tedious and time consuming
process. Thus making them, not suitable for time constraint cyber–physical emergency systems. In this
research, to improve the efficiency of the fire prediction process andmake this service available to several
users in a scalable and cost-effective manner, we propose a scalable Cloud based bushfire prediction
framework, which allows forecasting of the probability of fire occurrences in different regions of interest.
The framework automates the process of selecting particular bushfire models for specific regions and
scheduling users’ requests within their specified deadlines. The evaluation results show that our Cloud
based bushfire prediction system can scale resources and meet user requirements.

© 2017 Elsevier B.V. All rights reserved.
1. Introduction

Due to human activities and climate changes, bushfires have
increased dramatically in the last few years [1,2]. Every year
thousands of acres of forest area is destroyed that includes not only
loss of several animal and plant species but also human lives and
properties. For example, during the Black Saturday 2009 fire, one
of the most significant disasters in Australian history, 173 people
lost their lives and 2298 homes were destroyed along with several
other environmental losses. Therefore, forest fires are considered
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to have serious environmental and socioeconomic effects that are
aggravated due to increase in climatic temperatures.

In response to this, several fire prediction and behaviourmodels
have been developed during the last four decades to reduce the
after-effects of bushfires. Several desktop based fire simulation
tools are available that incorporate such models. Some well
known tools are SiroFire simulator [3], BehavePlus [4], FARSITE [5],
Spark [6] and HFire [7].

In general, the estimation of fire risk and fire spread are
dependent on several geospatial input data sources, some of which
are dynamic and change with time. For example, weather data
changes with time and space. Furthermore, each user may want to
do computation for a different geographic extent and at different
spatial resolutionswhich defines the amount of input data, storage
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and computational resources required. Due to the complexity of
computation involving data of different formats, sizes and from
different sources, the data processing is not a trivial task and may
involve expensive investment in termsof computational hardware,
software and deep computing skills. Furthermore, although most
of these simulators help us to understand in an efficient way and
in an accurate form, it is still quite manual and time consuming
from the perspective of a user who has little knowledge about
underlying infrastructure.

Some of these drawbacks were addressed in fire management
systems such as Virtual Fire [8] which allows an easy to use web
interface to access and visualise different data sets including on-
demand fire behaviour simulations. Most of these fire prediction
tools and technologies are designed to either work on single desk-
top machines, clusters or limited high performance computing.
Thus, these systems suffer from low scalability and availability [9].

Recently, several researchers have begun to see Cloud comput-
ing technology as a cost-effective and highly scalable solution to
Big Data problems in different domains such as geospatial sciences
and threat management [10]. Cloud computing provides elastic
and on-demand access to an almost infinite amount of storage, net-
work and computational resources [11]. Due to the pay-as-you-go
model of Cloud computing resources, users do not have tomaintain
expensive computing facilities or face up-front cost. Thus, Cloud
computing infrastructure allows elastic storage and computational
capabilities for managing a fluctuating number of user requests.
Some researchers have already showed the benefits of Cloud com-
puting which provides dynamic and scalable computing and stor-
age infrastructure [12,13].

Despite so many benefits offered by Cloud computing, the so-
lutions available for tackling real geo-spatial science problems are
limited. Some studies used Cloud computing for storing and man-
aging a large amount of geo-spatial data but using their infras-
tructure with a strong manual component [14]. Others only used
Cloud computing to increase computing capacity [15,16]. Most of
this work does not offer an effective solution as it neglects either
user requirements (e.g. deadline) or still has a largemanual compo-
nent. During emergency situations such as bushfires, even a small
delay can result in the loss of many lives. Thus, making these solu-
tion unpractical for time constraint cyber–physical systems [17].

Over the last several decades, there have been several deadline
based scheduling algorithms for scheduling applications in a Cloud
computing environment [18,19]. As they are developed for specific
application domains, they cannot be applied directly to scheduling
of bushfire prediction application.

To overcome the limitations of previous bushfire prediction
systems, we propose a Cloud based fire prediction service
framework that not only allows access for multiple users
simultaneously but also considers the requirements of each
individual user. The proposed service also minimises the cost
by keeping Cloud resource usage to a minimum. The proposed
framework also allows users to use different bushfire models
according to their area of interest. We also evaluated the proposed
framework using a bushfire case study from Tasmania, Australia.
In summary, the main contributions of this work are:
• A novel architectural framework which can allow deployment

of fire models considering users’ requirements in terms of area
and time. The framework allows integration of new firemodels.

• A novel deadline based scheduling algorithm for efficient
bushfire prediction.

• A case study using the Tasmania Bushfire Model for evaluating
the Cloud based framework.
In the next section,wediscuss requirements for a fire prediction

service. Then in the subsequent sections, we describe the design
and implementation of the proposed framework with evaluation
and results. Then we discuss related work on fire prediction
services and their comparison with the architecture of the
proposed framework. Finally, we present conclusions and future
directions.
2. Scenario and requirements

Our aim is to design a framework that allows deployment of
fire-predictionmodelswith acquisition of data fromdifferentweb-
services in order to satisfy users’ quality of service in terms of a
deadline at minimal possible cost (i.e. number of machines used).
In the current scenario, most of the acquisition and processing of
data for fire prediction is done manually. Such computations are
also done either on a user’s own desktop computer or on a local
cluster which is limited in size and shared with many other users
that further slow down the process. Sometimes, one has to deploy
different models for different regions of interest. Such challenges
slow down not only many critical research studies but also, in real
life, can result in loss of public resources and even lives. Therefore
we aim to facilitate such studies and on-demand fire prediction
using scalable Cloud computing resources.

Based on the user’s needs in terms of fire-predictions, the
following further requirements of a Cloud computing software
service are identified:

• Scalability: As the service may be accessed by several users
across the globe, it needs to scale accordingly to keep response
time of accessing the service to a minimum. The response time
threshold for accessing the service should be limited by the
maximum response time experienced by users themselves.

• Cost and time effective: The main aim of the service is to
decrease the overall time for users who have to download
large files from thedifferent repositories andpre-process before
extracting their real benefit. Given that most environmental
data products are free, the services should be offered in a cost
effective manner so that users see value in using such services.

• Context aware and on-demand service: Depending on a user’s
context, different processing will be selected by the system. For
example, if a user needs the processed data for a certain region
in a certain amount of time, then processing applications, input
images (resolutions) and parallelisation is used accordingly to
decrease the computation time. Different fire predictionmodels
need to be utilised [20].

• Support of massive data storage and processing: Given that
environmental processes need large amounts of data to be
downloaded, an appropriate scalable storage service needs to
be selected so that the time taken for data transfer, and read and
write operation can be minimised. Based on user requirements
and data, the required amount of computational resources
should be acquired on-demand.

• Security: To avoid spamming or denial of service attacks, there
should be an appropriate security mechanism for accessing
different services of the system. All services must be accessed
only by registered users.

3. Proposed system framework

3.1. Usage scenario

The system aims to provide Cloud based Fire Prediction (CFP)
services required by the end user after acquiring data sets from
different web services such as NASA. A typical scenario of the
proposed CFP service is given in Fig. 1 with high level steps
for one cycle of service provided by the proposed system to a
user. The proposed service is designed to work in a master–slave
mannerwhere FirePredict Broker acts as amaster nodewhile Local
FireWorker service nodes act as slave/worker nodes.

A user will send a request to FirePredict Broker which
analyses all the meta-data provided by the user with his/her
time constraints. Users provide details such as area of interest
and processing required. Users might give a deadline by which
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Fig. 1. Cloud based fire prediction scenario.
they would like to get processing completed and results. The
FirePredict broker service will interact with the data service to
get the pre-processed data needed to fulfil the user interest. In
general the pre-processed data is much smaller than the original
ones which contain much more information than required for
processing. Thus, data preparation is essential before it can be
processed. Other than data preparation, this component of the
system keeps track of which data have been downloaded from
different data repositories and by which Cloud service site. Data
services pass the urls (data location) to the FirePredict Broker.
Local FireWorker Service Nodes are hosted geographically at
different Cloud computing sites. This component is responsible for
interacting with different environmental data services to acquire
data based on the user requirements. This component also deploys
the required fire prediction application in the Cloud environment
and sends the results location back to the FirePredict broker which
passes this information to the user with the cost incurred in the
request processing.

3.2. Architecture and design

The full component details of the CFP service are given in Fig. 2.
The CFP service has mainly two types of service. i.e. the user
services and the core services. The user services includes the user
interface, authorisation/authentication service and accounting
service. The core services consist of FirePredict Broker, Request
Analyser service, Data Service, Local FireWorker services, request
allocation andmanagement service. Each of the services can run on
differentmachines independently. FirePredict Broker service is the
key component of the system that derives all other components
of the system. Its main functionality is to interact with users and
understand their requirements and pass the request over to other
components after deciding the most appropriate Cloud site to
download and process the data based on users’ time constraints.

3.2.1. User services
The user services hide all the internal components of the CFP

service and implement all the services that are needed by users to
interact with the system. To use the system services, the user has
to first login with username and password which are checked by
authentication and authorisation services. By interacting with this
service, the user interface has responsibility for checking whether
a user is authenticated or not. The user’s historical usage of the CFP
services and processing cost incurred to each user is maintained
by the Accounting Service. Using the Accounting Service, the user
can also know the status of each request. The Accounting Service
also does the cost analysis where cost is computed based on
the amount of Cloud resources that are needed to be leased for
downloading, storing and processing data. In each request, the user
passes the details such as the area of interest and deadline through
the User Interface to the Accounting Service which is passed to
the FirePredict service for further processing. At the end of the
processing, the url for downloading the processed data will be sent
to the user with a bill for incurred cost.

3.2.2. Core services
FirePredict Broker Service has responsibility similar to that of

a typical Cloud broker, i.e. to interact with users, understand
their requirements and schedule processing based on users’ time
constraints [21]. The FirePredict Broker service is hosted as a
software service on Cloud infrastructure. All the requirements and
constraints are checked by the broker using the Request Analyser
service. This service first checks what data is needed for the
processing required by the user. This service then checks whether
the data or part of the data has already been downloaded by
interactingwithData Service. If data has already been downloaded,
this layer will check at which Local FireWorker service data exits
and then forward these details to the FirePredict Broker which
passes them to the Request Allocation and Management service
for further processing. Fig. 3 further illustrates the interaction
between different entities (aka. services).

The Request Allocation and Management service controls the
distribution of requests across multiple Local FireWorker Cloud
service sites. This service can be integrated with different
allocation policies which takes into account the time taken to
download the data for processing and cost incurred in storage and
processing. By default, the request will be sent to the service site
which has minimum data download time. The Request Allocation
and Management service also monitors the progress of each
request and passes this information to the Accounting Service.

The Data Service is a directory service which maintains the
meta-data of actual geospatial data including the url from where
data can be downloaded. If the data is already downloaded
and stored in a Cloud processing site, it will also maintain this
information. In case data is not downloaded, this service interacts
with different data repositories to prepare the data for download
and forwards the final url to the request analyser. This service helps
the system to avoid multiple processing of data by different users.
This will indirectly reduce the load on data services by acting as
another layer of caching. As it will also track where pre processed
data is located, it will help in avoiding the cost of processing the
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Fig. 2. Cloud fire prediction service architecture.
Fig. 3. Request allocation process.
same data again and also enable fast service to be offered to the
end user by the system.

Local FireWorker Cloud Services are software services hosted on
different Cloud Infrastructure (aka IaaS) which are geographically
distributed. They will receive the information from the Request
Allocation service about user requirements. FireWorker services
check how much Cloud resource is available and how much to
lease to fulfil the enduser request. These serviceswill use advanced
scheduling mechanisms to minimise the infrastructure cost and
computation time. They will regularly monitor the resource usage
and application processing to minimise any case of failure which
can cause unnecessary delays. They can decide which resource
should be leased depending on its load. For example, if there are
manyprocessing requestswith limited time availability, then these
services can decide to lease larger Cloud virtual machines with
much more memory. Local FireWorker Cloud Service consists of
the following components:
• FireModel Catalogue is a directory that maintains meta-data of

different fire prediction models and virtual machine images.
The meta-data helps in deciding which fire prediction model
should be used for a particular geographical location in which
the user is interested. The meta-data also consists of the
execution profile of different fire-predictionmodels which help
in predicting their processing requirements.

• The Data Acquisition component helps in downloading the data
required for processing the user request and storing at the local
Cloud site.
• Request Scheduler decides when and where each request will
be executed. It makes the decision based on the processing
requirements of a fire-prediction model, the user’s time
constraints and available virtual machines. It also decides how
many virtualmachines should be utilised for processing a user’s
request.

• VM Manager is responsible for initiating and stopping the
virtual machines.

• Job Manager is responsible for the deployment and the
execution of a fire prediction model on a virtual machine.

Fig. 4 illustrates how requests are processed by each Local
FireWorker. Based on the request, a FireWorker downloads the
required data for processing using DataAcquisition if it is not
already stored within the local Cloud storage. After data download
is done, the FireWorker will forward the user’s request with
location of downloaded data to the RequestScheduler component
which decides when and on which Virtual Machines (VMs) the
requestwill be processed. Tomake this decision, RequestScheduler
requires the resource requirements and performance profile of the
fire model which needs to be run to fulfil a user’s request. This
information is sent by FireModelCatalogue. Based on the scheduling
decision, RequestScheduler initiates the required VMs which will
execute Fire Models in the form of parallel jobs. The parallel jobs
are managed by JobManager which monitors’ the execution of the
jobs and redeploy if a VM fails.
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Fig. 4. Request scheduling and processing.
4. Case study: Tasmanian bushfire prediction model

To show applicability of the proposed Cloud based software
service architecture for the Fire Prediction service, this section
presents a short case study where a bushfire prediction Cloud
service is built to servemultiple users. To evaluate the performance
of the CFP service and provide a proof of concept of its architecture,
we implemented a prototype with Nectar Cloud as the Local
FireWorker cloud site.

In this case study, users submit their requests for fire prediction
in a certain area of Tasmaniawith their time constraints in terms of
a deadline to the FirePredict Broker through a user interface. More
details are given in the following sections.

4.1. Prototype implementation

CFP has been implemented in Java in order to be portable
over different platforms such as Windows and Unix operating
systems. As our aim in this case study is to give a proof of concept,
we just consider limited functionality of FirePredict Broker’s
services and one Cloud processing site. It consist of three layers:
user interface (user service), FirePredict Broker and one Local
FireWorker service. The Local FireWorker service is responsible
for managing and scheduling fire prediction requests (job) to
different virtual machines where a slave daemon is running to
handle actual execution of the job. The slave nodes process the
requests on a first-come-first serve basis. The slave nodes do not
interact with each other but only with the FireWorker service.
The communication between virtual machines and the FireWorker
service is implemented using Java sockets. The connections are
kept active only when both FireWorker service and a slave are
active; this feature keeps the FireWorker and slaves loosely
coupled and independent. The FireWorker regularly checks the
status of slaves. The user interface is built using Java Swing
library. The details of the Fire Prediction Model (application) and
scheduling algorithm utilised by the system are discussed in the
following sections.

4.2. Bushfire prediction model

We develop a simple fire model for the Tasmania region
based on a binary logistic regression as a proof of concept. This
model assesses the probability of fire occurrence using the non-
linear relationships among fire danger indices considered in this
study. The topographic characteristics for a period of one year
(July, 2014–July 2015) are used in developing the model. In this
model, the Forest Fire Danger Index (FFDI) and Fire Weather
Index (FWI) are considered, which incorporate climatic conditions
data e.g. weather, temperature, relative humidity, wind speed
and precipitation. Topographic characteristics of the study area,
e.g. elevation, slope, and aspect, are considered as explanatory
variables in developing the model. These data are extracted from
the ASTERGlobal Digital ElevationModel (ASTERGDEM)with 30m
spatial resolution. Climatic conditions data are obtained from the
Bureau of Meteorology, Australia’s national weather, climate and
water agency.

The logistic regression model is expressed as:

P = E(Y ) =
exp(B0+B1X1+B2X2+···+BiXi)

1 + exp(B0+B1X1+B2X2+···+BiXi)
. (1)

Where, P = Probability of the event, B0 = Intercept, B1 . . . Bi =

Regression coefficients.
Correlations among the variables were observed before devel-

oping the model. Considering occurrence of fire as P = 1 and non-
occurrence as P = 0, the probability of fire occurrences is given
by:

P

=
1

1 + e−21.610+0.198∗FFDI−0.028∗FWI−0.001∗Ap+0.604∗Sl+19.903∗Elv−0.108∗Lc
.

(2)

In the equation, P is the probability that a point corresponds
to a fire ignition, Ap, Sl, Elv, Lc represent Aspect, Slope, Elevation
and Land cover, respectively. FFDI is the forest fire danger index
and FWI is the fire weather index. The obtained logistic regression
model showed that the most influential variable explaining the
spatial patterns of fire was Elevation (α = 19.903) Slope (β =

0.604), followed by FFDI (γ = 0.198), Land cover, and FWI. The
details on FFDI and FWI are available in works by Noble et al. [22]
and Beccari et al. [23]. Upon request source codes for the developed
model can be made available from the authors.

4.3. Scheduling algorithm

As discussed in the previous section, the main function of the
FireWorker Service is tomap requests to slave nodes based on their
capacity and user requirements. Within the scheduling module of
FireWorker Service the following functionalities are achieved:

• The splitting of the user’s request into several partitions or jobs,
which is determined by the capacity and the size of input data.

• Machines are added only if the number of machines is not
enough, which means machines should be added one by one
based on the requests’ requirements to avoid wastage of
resources.

• If the capacity available on the currently used machines is
enough to complete a request within its deadline, then the
request is queued for processing in the currently available slave
nodes.

The pseudo code of the scheduling algorithm is given below:
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Algorithm 1: Bushfire-Prediction Request Scheduling Algo-
rithm
Data: Input: User Request list = RList;// details of the

area of interest in terms of latitude and
longitude, and deadline

Result: AllocationList;// allocation of jobs
associated to each request to VMs

RList=Collect user requests in current time;
// Sort the requests by deadline
SortedReqList=Sort(RList);
for ri ∈ SortedReqList do

// find out the area for which data needs
to be processed

CalculateAreaReq(ri);
Based on the area, calculate number of jobs (or partitions)
i.e. NumJobs(ri);
RemainTime=Deadline(ri)-CurrentTime;// find the

time remaining for returning results to
user

// check whether time available is
sufficient to process the job

if RemainTime > 0 & RemainTime >
MinExecutionTime(Job(ri)) then

for j ∈ (1,NumJob(ri)) do
VM_withSpace=Find an existing virtual machine
that can process the job before deadline;
if VM_withSpace exists then

submit the job VM_withSpace;
else

Initiate a new machine and submit the job to
this machine;

end
end
Add the resulting allocation to AllocationList;

end
end

4.4. Partitioning algorithm for bushfire prediction model

The fire prediction model considered for this case study
computes the probability of fire at a given point and the probability
of fire occurrence at a given point is independent of another point
in a region of interest. In other words, to compute fire probabilities
for a given area of interest, each point in the area can be considered
separately. Therefore, for partitioning the request, the area of
interestwill be divided into different subareawhere each subarea’s
fire predictionmodel will be computed. As shown in Fig. 5, in order
to finish parallel computing, the request (for an area of interest)
should be divided into several jobs (for each subarea) that do not
need to communicate any data for processing and thus can run
independently on different processors.

Jobs in the figure indicate how many sub-tasks should be
created to finish the fire probabilities for a given area. For example,
the size of this area above is L*L. Let a user want to get this
computation done within T time. If a Local FireWorker service has
to finish the whole area calculation in T time (the user’s deadline),
we need to compute how many machines are needed for this area
and how many jobs can be executed by each machine in this T
time. This number of jobs depends on the capacity of themachines.
Firstly, the capacity of each computer is assumed to be known, and
we mark it as M[i]. The whole area of this map is L*L (the total
number of jobs). Therefore, based on the terminology, the pseudo
code for partitioning each request is described in Algorithm 2.
Algorithm 2: NumJobs(Request Ri)

Data: Input: User Request = Ri;// details of the area
of interest in terms of latitude and
longitude, and deadline

Result: JobList;// list of jobs associated to
each request

X =Remaining area for which processing has to be done;
M[i] = Capacity of each computer;
T = Deadline for the user;
Y= area for which fire probability will be computed on a
worker node;
while X > 0 do

Y=M[i]*T;
X=L*L - Y;
create a job to process Y amount of area and add to job
list;

end

4.5. Nectar cloud infrastructure

Nectar Cloud1 is a community research Cloud environment
which provides flexible scalable computing power to all Australian
researchers. The infrastructure is implemented and managed
using the OpenStack cloud computing framework. To create
virtual machines and run the experiments, we utilised application
EC2 APIs. The details of virtual machines initiated are given in
subsequent individual experimental sections.

4.6. Profiling fire model

To meet the user’s time constraints in regard to the processing
of the request, the FireWorker’s scheduler should know the
execution time of the fire model for the given data. Thus, we need
to profile the execution time of the fire model on multiple parallel
(distributed) machines. For the experiments, the daily weather
data was collected from July 2014 to July 2015 for Hobart weather
observation stations. Local noon measurements of temperature
(C), relative humidity (%), wind speed (km/h) and daily total
precipitation (mm) were used to calculate the component codes
and the Fire Weather Index (FWI) for each station. The Drought
factor index was collected as well to calculate the Forest Fire
Danger Index (FFDI) for each station. A digital elevation model
(DEM) was used to get the topographic information such as
height. We chose the area located near Hobart (Tasmania) for
computing different requests and amount of data to be processed.
For example, 8 MB means the data source about Hobart within a
range of 30 km; 20MBmeans the data source about Hobart within
a range of 50 km; 40 MB means the data source about Hobart
within a range of 65 km; 60 MB means the data source about
Hobart within a range of 75 km; 80 MB means the data source
about Hobart within a range of 82 km. Fig. 6 shows the execution
time taken for processing requests with the size of interested area
and number of machines utilised. The experiments are repeated
10 times and average values are presented for each scenario.
The experiments were conducted on a small size virtual machine
having 1 VCPU, 4 GB Ram, and 30 GB disc size. The deadlines are
generated between 0 and 10 s using uniform distribution.

1 https://nectar.org.au/research-cloud/

https://nectar.org.au/research-cloud/
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Fig. 5. Cloud based fire prediction.

Fig. 6. Processing time of fire model.

5. Evaluation

In this section, we will focus on the evaluation of our Cloud
service. As the main objective of the algorithm is to meet users’
deadlines and minimise number of machines to process their
requests, these are the main metrics that are used for evaluation:
(a) Average Waiting Time and (b) Number of Machines utilised
indicating the usage cost. The scheduling algorithm utilised by our
CFP service is compared with two other usage strategies that are
currently used:
• Single Machine: single machine is utilised by the user. It

processes the requests based on a First Come First Serve (FCFS)
basis and does not consider the deadline.

• Parallel Model: In this case, parallel computing machines are
utilised by the user to process the area of interest and requests
are served on a FCFS basis. For each request, the minimum
number of machines required is computed so that the request
can be processed just before the deadline specified by the user.

In the experiments, for the second criteria, i.e. the number of
machines used, the proposed algorithm is only compared with
the second strategy i.e. parallel computing machines are utilised
by the user. To ensure accuracy, the experiments are repeated
10 times and the average time is presented. The capacity of each
slave machine is assumed to be the same as used for profiling the
execution times presented in the previous section and the results
do not present data download times.

5.1. Experimental results

Fig. 7 shows the comparison results of different scheduling
strategies against the one proposed. Fig. 7(a) compares the average
waiting timeof different techniques utilised to process the bushfire
prediction model. In Fig. 7(a), we can clearly see that the average
waiting time spent on Cloud based service is the smallest, which
is about 50% lower than when the user only utilises parallel
computing. It is obvious single machine or desktops have very
limited processing capacities in comparison to clusters of parallel
machines. For this reason in the parallelmachines case, the average
time is around 4, much better than that on a single machine.
However, the reason behind the higher waiting time in the parallel
machine case over the Cloud service is much deeper. It is due
to the limitation of parallel machines in terms of expandability.
Most parallel machines or clusters in different organisations have
limited storage and processors which need to be shared between
several users. Moreover, the workload of each user is processed on
a First Come First Serve (FCFS) basis irrespective of the urgency of
their work. Due to this, waiting time is much longer in privately
owned clusters than in Cloud based systems. From Fig. 7(a), it can
also be observed that the average waiting time is nearly the same
in most of the cases. In summary, we can conclude that running
requests on a Cloud based service has the best performance,
shortening the waiting time for users in comparison with single
machine and parallel machines.

Fig. 7(b) compares the number of machines utilised in
each scenario. This factor is important to understand the cost
effectiveness of the Cloud service based scheduling strategy. For
the comparison of number of machines used, we only need to
compare the number of machines used on two strategies not with
a strategy when a single machine is utilised for each user request.
The reason for this is that the result for a single machine strategy
will obviously be very low and remain the same.

From Fig. 7(b), we can observe that the number of machines
used for the requests of 25 and 75 are nearly equal to the Cloud
service; however in cases 50, 100, and 125 requests the Cloud
service performs better than the parallel model. The reason for this
is the sharing model of the Cloud service based strategy. Users’
requests can be scheduled on the machines where other jobs are
running. Thus, resource utilisation is much more compact than
parallelmachineswhich in general run the jobs in amore exclusive
manner.

From the figure, we can also conclude that if the number of
requests from users is increasingly large, the number of machines
used on the Cloud service would be lower than the parallel model,
which means the Cloud service scheduling would help the server
in saving more computing resources when handling the same
number of requests.

6. Related work

As discussed earlier, with the emergence of Cloud computing,
several researchers are working to solve several geospatial science
problems using Cloud environments. In this section, we point out
some the most relevant work in this context and compare it with
our proposed framework.

Before Cloud computing, many researchers worked on utilis-
ing parallel computing technologies to handle computational re-
quirements of visualisation and analysis of large spatial datasets
[24–27]. Thus, many research projects focused on developing Cy-
berGIS frameworks [28,29] which integrate GIS with parallel and
distributing computing architectures to solve computationally in-
tensive problems. For example, Wang et al. [30] evaluated the per-
formance of GISolve in a distributed environment. Huang et al. [31]
proposed the CyberGIS framework that can support multiple data
sources. In their work, the Hadoop platform is used to scale the
processing of social media data for emergency situations. Yin
et al. [32] proposed a model knowledge database to enable util-
isation of parallel computing resources for computing GIS mod-
els. Chen et al. [33] proposed the efficient evacuation simulator
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(a) Average waiting time. (b) Number of machines utilised.

Fig. 7. Comparison of proposed cloud service with other strategies.
using parallel computing principles. Liu et al. [34] proposed GPU
based parallel algorithms to improve the efficiency of image pro-
cessing. [9] proposed a Software as a Service (SaaS) to utilise Cloud
computing for a wildfire risk and a wildfire spread simulation
service. Bhat et al. [35] proposed a multi-tiered architecture for
GIS cloud systems. Srinivas et al. [14] proposed a distributed ar-
chitecture for building spatial information geoportals based on
Cloud computing. In Cui et al. [36], the authors describe a cloud
computing model for image processing of remote sensing data.
Zhong et al. [37] proposed a geospatial data storage and processing
framework for a large-scale WebGIS based Hadoop platform. Miao
et al. [38] proposed a Web 2.0-based Science Gateway for Massive
Remote Sensing Image Processing using Cluster computing nodes.
Huang et al. [39] deployed GEOSS Clearinghouse which is a Meta-
data Catalog System on an Amazon EC2 Cloud virtual machine.
Schnase et al. [40] developed a climate-analytics-as-a-service sys-
tem (MERRA/AS) using a MapReduce platform. Shao et al. [41] de-
veloped a geo-processing service based on Amazon EC2 Cloud.

Morshed et al. [42] recommended environmental knowledge
as a linked open data cloud using semantic machine learning.
Dutta et al. [43] investigated deep cognitive imaging systems in
estimating fire incidence at a continental scale for Australia.

Most of these works do not utilise the autoscaling feature of
Clouds. Riteau et al. [15] proposed a Cloud based architecture
for CyberGIS analytics with autoscaling features. Wang et al. [44]
proposed pipsCloud system to manage data and processing of
remote sensing data. Their solutions do not consider the user
requirements in terms of deadline and also they do not focus on
minimising the number of machines. Yue et al. [16] compared the
geospatial data processing in theMicrosoft Azure andGoogle cloud
computing environments. They recommend a hybrid Cloud model
to get benefits from different Cloud environments.

There has been several work in the area of scheduling and
resource allocation [19]. Some of these algorithms also considers
quality of service requirements such as time and cost. However,
these work either consider very general application model or a
specific application. Scheduling algorithms designed for specific
applications are not directly applicable to the context of bushfire as
each application differ significantly from others. Other scheduling
approaches that havebeendesigned for general applicationmodels
cannot achieve limited amount of performance as they consider
application as blackbox without detailing how application should
be divided into different tasks.

In summary, our contribution is unique and novel because
our proposed framework provides a Cloud based fire prediction
service, it takes into consideration users’ time requirements and
also utilises the Cloud computing environment in such a way that
minimal amount of resources are utilised in addition to leverage
the elasticity of the Cloud resources. Our proposed framework also
utilises multiple Cloud datacenters tominimise the data download
time and also reuses previous processing that further minimises
the processing requirements. It allows integration of different
fire prediction models which are selected automatically based on
users’ requirements.

7. Conclusion and future works

The Cloud computing paradigm has changed the way we
utilise computing power for solving data and computationally
intensive problems. Thus, due to computational and fluctuating
user requirements, geospatial scientists have started to explore
scalable frameworks that utilise Cloud computing environments.
In this context, fire prediction and behaviour modelling is one
of the important areas of research which is gaining a lot of
attention due to huge losses of lives and properties that occur
during seasonal bushfires. We identified the various technical and
user requirements and challenges in designing such a system. We
proposed a novel framework for a Cloud based Fire Prediction
service that not only leverages the elastic feature of Cloud
infrastructure to handle dynamic user requirements in terms of
processing needs and time constraints but alsominimises resource
usagewhich helps in reducing cost.We also proposed a scheduling
algorithm for mapping user requests for fire prediction of a certain
regionwithin a certain deadline to Cloud computing resources. The
experimental study using the Tasmanian region firemodel showed
the efficacy of the proposed framework in addition to superiority
over previous usage models. The current prototype is applied in
the study area of the Tasmania, Australia but its flexibility enables
integration of several fire prediction models for different regions.

In future, we plan to do the experiments with a larger setup in
terms of number of machines, different fire prediction models and
different Cloud environments.
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