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HIGHLIGHTS

We propose a scalable parallel algorithm with two-dimension domain decomposition for atmospheric general circulation models.

We implement the parallelization of the IAP AGCM4.0 model whose parallel efficiency can reach up to 50.88% on 512 CPU cores.

We implement computing of thousands of cores of the IAP AGCM4.0.

We design different numerical experiments to test our algorithm, and the results demonstrate that our algorithm is effective and scalable.
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High-performance computing of atmospheric general circulation models (AGCMs) has been receiving
increasing attention in earth science research. However, when scaling to large-scale multi-core
computing, the parallelization of an AGCM which demands fast parallel computing for long-time
integration or climate simulation becomes extremely challenging due to its inner complex numerical
calculation. The previous Institute of Atmospheric Physics of the Chinese Academy of Sciences
Atmospheric General Circulation Model version 4.0 (IAP AGCMA4.0) with one-dimensional domain
decomposition can only run on dozens of CPU cores, so the paper proposes a two-dimensional domain
decomposition parallel algorithm for it. In the parallel implementation of the IAP AGCM4.0, its dynamical
core utilizes a hybrid form of latitude/longitude decomposition and vertical direction/longitude circle
direction decomposition. Through experiments on a multi-core cluster, we confirmed that our algorithm
is efficient and scalable. The parallel efficiency of the IAP AGCM4.0 can reach up to 50.88% on 512 CPU
cores, and the IAP AGCM4.0 can be run long-term simulations for climate change research.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Atmospheric general circulation models (AGCMs) are important
tools for weather forecasts and climate change research [1-4].
An AGCM is also one of the most important components of an
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earth system model. Because of the importance of AGCMs for
climate research, the Institute of Atmospheric Physics (IAP) of
the Chinese Academy of Sciences Atmospheric General Circulation
Model (IAP AGCM) has been developed since the 1980s [5-7]. As
the atmospheric component, the fourth version of the IAP AGCM
(IAP AGCM4.0) [8] has been used in the Chinese Academy of
Sciences-Earth System Model (CAS-ESM) [9-11].

To conduct climate simulation, AGCMs usually need to be
integrated for multiple years or decades [12]. Wehner et al.
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conducted a 27-year simulation using the Community Atmosphere
Model version 5.1 (CAM5.1) [13]. Nakaegawa et al. used the
Meteorological Research Institute AGCM3.1 model to perform


http://dx.doi.org/10.1016/j.future.2017.02.008
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2017.02.008&domain=pdf
mailto:jjr@sccas.cn
mailto:lizhe.wang@gmail.com
http://dx.doi.org/10.1016/j.future.2017.02.008

2 Y. Wang et al. / Future Generation Computer Systems 72 (2017) 1-10

25-year simulations for the present-day and future climate [4]. In
short, AGCMs usually involve a large amount of calculation and a
long computing time. Therefore, AGCMs have to be run on a high-
performance computing resource in order to meet the real-time
requirements of weather forecasting and climate research. Wehner
et al. utilized 7680 processing cores to perform the Atmospheric
Model Intercomparison Project simulations on a CRAY XE-6
supercomputer [13]. Meanwhile, with the rapid development of
supercomputers and high-performance computing technology,
AGCMs can have higher resolution [14]. Miyamoto et al. used a
nonhydrostatic icosahedral atmospheric model to conduct a sub-
kilometre global simulation on the K computer [15].

Before an AGCM is run on a high-performance computing plat-
form, it is necessary to develop a parallel version of the AGCM.
Parallel algorithms of AGCMs were studied by climate scientists
and computer scientists. Wehner et al. used a two-dimensional
latitude/longitude domain decomposition message-passing strat-
egy to implement the UCLA AGCM in a portable parallel form [16].
Mechoso et al. later optimized the parallel UCLA AGCM code,
after which the UCLA AGCM was about nine times faster [17].
Drake et al. designed a parallel global atmospheric circulation
model, PCCM2. During this development, parallel spectral trans-
form, semi-Lagrangian transport, and load balancing algorithms
were researched [18]. Mirin and Sawyer used a message passing
interface (MPI) 4+ OpenMP hybrid paradigm to perform a parallel
implementation of a finite-volume dynamical core in the CAM. A
one-sided communication technique was utilized in the paral-
lel implementation [1]. Similarly, the parallelization of the IAP
AGCMA4.0 also needed to be studied and implemented.

At first, the IAP AGCM4.0 used one-dimensional domain decom-
position, where each subdomain contained all longitude lines but
only a subset of latitude lines. Obviously, it is easy to develop a
parallel code for the model by using this method. However, the de-
composition strategy limits the maximum number of subdomains
and CPU cores which may be exploited. The previous IAP AGCM4.0
can only run on dozens of CPU cores, which is not sufficient to meet
the real-time computing demand of climate simulations. There-
fore, it is necessary to study more efficient parallel algorithms of
the IAP AGCM4.0. To realize this goal, this paper designs and im-
plements a two-dimensional domain decomposition parallel algo-
rithm for the IAP AGCM4.0. The two-dimensional decomposition
includes two types, latitude/longitude decomposition and vertical
direction/longitude circle direction decomposition, which are both
used in the implementation of the parallel algorithm. It is obvious
that the transformation from a kind of decomposition to another
during the parallel computing of the model has to be performed.
Using the two-dimensional domain decomposition strategy, the
global domain is decomposed into more subdomains, which are
assigned to each process (or MPI rank). Hence, the IAP AGCM4.0
can be processed by more than one thousand processes. Because
the IAP AGCMA4.0 uses the physics package of CAM3.1, the focus of
our research is mainly on the parallel implementation of the dy-
namical core. Based on a 61-day climate experiment, we evaluate
the parallel performance of the IAP AGCM4.0. The results indicate
that the IAP AGCM4.0 scales reasonably to 3120 CPU cores and has
a desirable parallel performance.

The rest of this paper is organized as follows. The following sec-
tion introduces the IAP AGCM4.0 model and its dynamical core. In
Section 3, we go into detail about the design and implementation
of the parallel algorithm with two-dimensional domain decompo-
sition. Section 4 discusses the experimental analysis of the parallel
algorithm performance, and the last section contains a summary.

2. Model description

2.1. IAP AGCM4.0 model

An AGCM usually consists of the “dynamics” (dynamical core)
and the “physics” (physical parameterizations). The dynamical
core calculates the atmospheric flow and solves the hydrodynamic
equations of the atmosphere. Then the physical parameterizations
for sub-grid phenomena such as long- and short-wave radiation,
moist process and gravity wave drag, are approximated [1]. The
dynamical core and physical parameterizations are expressed
according to the following formula:

oy

ot =DW) +P(¥), (1)
where 1 is forecast variables such as temperature, surface pres-
sure, horizontal wind field and specific humidity, D is the tendency
generated by the dynamical core and P is the tendency generated
by the physical parameterizations. The tendencies generated by
the dynamical core and the physical parameterizations are added
to derive an overall tendency of .

The IAP AGCM was developed by a group of atmospheric
scientists from the IAP. After decades of research and development,
the IAP AGCM has already shown a considerable capacity
for simulating climatic changes. The IAP AGCMA4.0 uses the
CAM3.1 physics package, while its dynamical core was developed
independently by the IAP. The IAP AGCM4.0 uses a finite-difference
scheme with a 1.4° x 1.4° or 0.5° x 0.5° horizontal resolution and
26 levels in the vertical direction.

2.2. Dynamical core

The IAP AGCM4.0 uses a terrain-following o coordinate [19]
in the vertical direction, so there are the following variable
definitions,
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where p is the pressure, ps is the surface pressure and p;, = 2.194
hPa is the pressure at the model’s top layer. The equations of the
dynamical core with the subtraction of standard stratification and
the IAP transformation are defined as follows
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InEgs. (3), t is the time, 6, = p;/p,f* = 282 cos&+ucotb/a, $2
is the Earth’s rotation angular velocity, 6 is the colatitude, a is the
Earth’s radius, A is the longitude, b = 87.8 m/s, po = 1000 hPa,
k = R/Cp, R is the gas constant for dry air, and G, is the specific
heat of dry air at constant pressure. Here, § = 0 represents the
standard stratification approximation. If it is set to 1, the set of
equations becomes the same as the primitive equations that are
commonly used. f”(p) is the standard atmospheric temperature,
T is the temperature, T'(0, A,p,t) = T(@,A,p,t) — 'f(p).
The IAP transformation parameter P = ./pes/po, (U,V,®) =

= K*Dsa/po-
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(Pu, Pv, PRT’/b), U is zonal wind velocity, V is meridional wind
velocity, @ is geopotential field. «* is the indication coefficient. The
horizontal advection operators Lq, L, and the vertical convection
operator L3 are calculated according to the following formulas:

1 doFu ou
Li(F) = - 2— —F—
2asinf oA oA
1 dFvsind dvsind
L(F) = - 2 —F (4)
2asinf 00 oA
Li(F) = 1 ZBFU 00
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where F is the diffusion operator, the vertical velocity on the o
levelis 6.
The pressure gradient terms are defined by
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where ¢'(0, A, p,t) = ¢, A, p,t) — ¢(), ¢ = gz is the
geopotential, g is the gravity acceleration, z is the height, Jb(p) is
the standard atmospheric geopotential.

The terms £2 and D are determined by
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the standard atmosphere density at the surface py, = f)S/RTS,
Ds is the standard surface pressure, T, is the standard surface
temperature, and the dissipation coefficient k,, = 0.1. The
equations of the dynamical core are described in detail in [8].

3. Parallel algorithm

3.1. Spatial discretization scheme and time-integration algorithm

The IAP AGCM4.0 uses an implicit finite difference discretiza-
tion scheme; its vertical distribution of variables is shown in Fig. 1.
The forecast variables such as U, V, and & are put on the inte-
ger layer (model layer), while the diagnostic variables are put on
the semi-integer layer (interface layer). The IAP AGCM4.0 utilizes
Arakawa’s C grid staggering [20] in its horizontal discretization.

o=0 6=0, p, =2.2hPa, ¢’
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Fig. 2. Horizontal distribution of variables in the IAP AGCM4.0.

Fig. 2 illustrates the horizontal distribution of variables in the IAP
AGCM4.0.

The differential form of Eqs. (3) under the standard stratification
approximation of § = 0 and without considering energy
dissipation («* = 0) is written as Eqs. (9) in Box L.

In Egs. (9), vertical velocity W = Pg, a*, B* and y* are the
flexible coefficients. Regardless of what values they are assigned,
Egs. (9) are conserved. By assigning different values to «*, 8* and
y*, it is convenient to conduct numerical experiments and design
decomposition algorithms.

A nonlinear iterative time integration method is used in the
model. For the sake of simplicity, Egs. (3) can be written as
oF A(F)=0
o T (F)=0,

where A is a nonlinear operator. The following formulas represent
the integration from time n to time n + 1.

F=(U,V,®,p), (10)
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where m = 1,2,3,....In the IAP AGCM4.0, the number of

iterative steps is 3 [5].
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Fig. 3. Statistics about serial computing time of each component in the IAP
AGCM4.0.

Using Egs. (9) with the differential form and the time
integration algorithm, we can conduct numerical computing and
design parallel algorithms for the IAP AGCM4.0.

3.2. Two-dimensional domain decomposition

When running the IAP AGCM4.0 with a 1.4° x 1.4° horizontal
resolution in series, the computation time of all its components
is indicated in Fig. 3. The physical parameterizations account for
56.48% of all the computation time, and the dynamic core accounts
for 38.02%. Therefore, the physical parameterizations and dynamic
core take most of the total computation time in the IAP AGCM4.0.
By analysing their computing characteristics, we design a two-
dimensional domain decomposition parallel algorithm for them.

The computation of the physical parameterizations in the
IAP AGCMA4.0 features the characteristics of a vertical single
column model. This means that the computation of the physical
parameterizations on every grid point needs to use related data
on the grid points in the vertical direction k and has to be
done in sequence, but it does not need related data on the grid
points in the horizontal direction. Therefore, the computation
task of the physical parameterizations can be decomposed in
the horizontal direction. In other words, the global domain is
decomposed by latitude and longitude, as shown in Fig. 4. Because
there is no data dependence in the entire computation, there
exists no data communication among processors in the physical
parameterizations.

The computation of the dynamical core on each grid point needs
to use not only related data on the grid points in the vertical
direction k and the direction j of the longitudinal circle, but also

i
Fig. 5. Two-dimensional domain decomposition in the vertical direction.

related data on the grid points in the direction i of the latitudinal
circle. Meanwhile, some computation in the directions i and k
needs to be done in sequence. Therefore, when the computation
in the direction i needs to be done in sequence, the task of the
dynamic core is decomposed in the vertical direction. This means
that the global domain is decomposed by latitude and level, as
shown in Fig. 5. When the computation in the direction k needs to
be done in sequence, the way that the task is decomposed is shown
in Fig. 4. For example, the subroutine sitb in the one-dimensional
decomposition version of the [AP AGCM4.0 is designed to drive the
semi-Lagrangian transport algorithm on a given latitude slice in the
extended data arrays using information from the entire latitudinal
extent of the arrays. In the two-dimensional decomposition of
the IAP AGCMA4.0, the slitb is decomposed into two subroutines
slth1 and sltb2. The sltb1 with vertical direction/longitude circle
direction decomposition is used for the horizontal interpolation of
scalar fields, and the slth2 with latitude/longitude decomposition
is used for the vertical interpolation of scalar fields. Obviously, it
is necessary to convert the data from one way of decomposition to
another during the entire computation of the dynamical core.
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Fig. 6. The whole running flow of the IAP AGCM4.0.

In the two-dimensional domain decomposition, the latitude
and longitude boundaries of each subdomain are both constrained
to have no fewer than three latitude and longitude lines to
form a halo zone. The aim of this limitation is to reduce
data communication costs, because data communication among
subdomains only occurs in the halo zone, not in the whole zone.
The same limitation also exists in the fvCAM [21].

According to the parallel algorithm above, the latitude and
longitude boundaries of each subdomain must have no fewer than
three latitude and longitude lines, so the maximum number of
processes in the directions of latitudinal circle and longitudinal
circle is [mi/3] and |mj/3], respectively, where mi is the number
of grid points in the direction of latitudinal circle, mj is the
number of grid points in the direction of longitudinal circle. The
maximum number of processes in the vertical direction is mk,
where mk is the number of grid points in the vertical direction.
In the decomposition strategy in Fig. 4, the maximum number
of processes is |mi/3] x |mj/3]. Similarly, in the decomposition
strategy in Fig. 5, the maximum number of processes is | mj/3] x
mk. The two decomposition strategies are both utilized in the
model, so the maximum number of processes used to run the IAP
AGCMA4.0 is calculated by the following formula:

lmj/3] x min (mk, [mi/3]) . (12)

Therefore, when the horizontal resolution is 1.4° x 1.4°, the IAP
AGCM4.0 can run on 1092 (|128/3] x min(26, [256/3])) cores;
when the horizontal resolution is 0.5° x 0.5°, it can run on 3120
(1361/3] x min(26, [ 720/3])) cores. The maximum number P, of
processes in the direction of longitudinal circle can be assigned the
value 42 or 120 and the maximum number P, of processes in the
vertical direction can be assigned the value 26. The processors in
the physical parameterizations are decomposed by P, x Py, where
Py is the number of processes used in the direction of latitudinal
circle. The processors in the dynamical core are decomposed by
P, x P, or Py x Py, and Py x P, = P, x P,, so the maximum value of
P, is 26.

3.3. Algorithm implementation

Fig. 6 illustrates the running flow of the IAP AGCMA4.0,
which mainly consists of the initialization and core phases. The
initializations for the parallel decomposition of grid, data structure,
/O management module and restarting management module are
performed at the initialization phase, where the initialization and
restarting data is also read. The forward integrals in the model time
direction are mainly performed at the core phase.

The dynamical core of the IAP AGCM4.0 also consists primarily
of the initialization and core programs, as indicated in Fig. 7. The
subroutine spmd_dyn in the initializing program is used to decom-
pose the grid of the dynamical core. The subroutine p_d_coupling

Initialization program Core program
spmd_dyn | p_d_coupling |
initcom dyfram
dynpkg
register_dyn_fields ) qpdata

read_initdat d_p_coupling

write_restart dynamics

~— )

Fig. 7. Running flow of the dynamical core.

read_restart dynamics

in the core program is used to couple from the physical param-
eterizations to the dynamical core. In contrast, the subroutine
d_p_coupling is used to couple from the dynamical core to the
physical parameterizations. It is necessary to create a transforma-
tion of variables between the physical parameterizations and the
dynamical core while running the IAP AGCM4.0. Generally, the
variables transmitted include zonal velocity U, meridional veloc-
ity V, temperature T, water vapour field Q, vertical velocity W,
the pressure at the bottom layer PS, and the geopotential height
PHIS. The subroutine dynpkg, which mainly consists of the subrou-
tines dyfram and gpdata, is used to solve dynamic partial differen-
tial equations. The call graph of the main subroutines in the IAP
AGCMA4.0 program is described in Fig. 8.

In the parallelization of the dynamical core, the PILGRAM
library [22] is used for the domain decomposition of mesh, and
the mod_comm library [23], which encapsulates MPI_Send and
MPI_Recv, is used for data communication among the subdomains.
The two libraries were used for the parallelization of the dynamical
core in the CAM [1]. Similarly, they can be utilized to parallelize
other AGCM:s.

The implementation of the two-dimensional domain decompo-
sition in Fig. 5 is shown in Algorithm 1, where npr_y is the number
of subdomains in y (the direction of the longitudinal circle), npr_z
is the number of subdomains in z (the vertical direction), npes is
the total number of MPI tasks, ydist(:) is the number of latitudes
per subdomain, nlat_p(:) is the number of latitudes per subdomain,
cut(:, :)is the partition for MPI tasks, plat is the number of latitudes,
myid_y is the subdomain index (0-based) in latitude (y), numlats is
the number of latitudes owned by a given MPI rank, beglatdyn is
the starting latitude for dynamical core, endlatdyn is the ending lat-
itude for dynamical core, beglatdynex is the extended starting lat-
itude for dynamical core, endlatdynex is the extended ending lati-
tude for dynamical core, and [loc_JB, loc_JE] of a processor is related
to [JB, JE]. The algorithm implementation of the decomposition in
Fig. 4 is similar to Algorithm 1.

In addition, there is Fourier filtering above 70° towards the
poles. The FFT99 [24,25], a commonly used software package for
the Fast Fourier Transform (FFT) in atmospheric numerical models,
works for any transform length of the form N = 2P x 37 x
5 > 0,q >0,r >0;p,q,r € Z). The previous IAP AGCMA4.0
also used the FFT99. To improve the computational efficiency of
the polar filtering in the IAP AGCM4.0, according to the special
needs of atmospheric numerical models, we have designed and
implemented a new package called SC_FFT, based on the Fastest
Fourier Transform in the West (FFTW) library [26]. The FFTW
takes account of the influence of hardware configuration and FFT
transformation parameters, so the SC_FFT is more efficient than
the FFT99. Ideal experiments show that the SC_FFT is 2.5-3.5 times
faster than the FFT99. In the IAP AGCM4.0, it is 39% faster [27]. The
algorithm of the SC_FFT is as follows.

(1) In the FFTW library, the planner is one of its three
components. In a FFT with a length N, the planner factors N in
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Fig. 8. The call graph of the main subroutines in the IAP AGCM4.0.

various decomposition ways, or plans. Then, the planner uses some
measuring methods to determine which plan is the fastest [28].
Therefore, the plan is one parameter of subroutines for fast Fourier
transform in the FFTW. Once a plan is produced, it can be utilized
for many times. In atmospheric models, a data sequence may be
processed by the FFT for many times. To produce such a plan for
a data sequence of atmospheric models, we create a subroutine or
function called SC_SETPLAN based on the FFTW.

(2) Then, based on the FFTW, the subroutines SC_FFT99
and SC_FFT991 with the same parameters of corresponding
subroutines in the FFT99 are created. Here, they can perform
a number of simultaneous real/half-complex periodic Fourier
transforms or corresponding inverse transforms, using ordinary
spatial order of grid point values (SC_FFT991) or explicit cyclic
continuity in the grid point values (SC_FFT99).

4. Result and discussion
4.1. Experimental setup

To evaluate the parallel performance of the IAP AGCM4.0,
an ideal climate simulation experiment for 61 model days is
designed. The time step of the IAP AGCM4.0 in the experiment
is 600 s. The simulating result is output once every month. The
initial conditions are from an earlier run of control simulations,
and boundary conditions (sea surface temperatures and sea ice
concentrations) are from the global Hadley Centre Sea Ice and Sea
Surface Temperature (HadISST) dataset [29]. In the study, the IAP
AGCMA4.0 is tested and evaluated at both 1.4° x 1.4° and 0.5° x 0.5°
horizontal resolutions.

The experimental platform for the simulation is the Sugon
TC4600H blade cluster in the Computer Network Information

Center of the Chinese Academy of Sciences, which now has
hundreds of compute nodes, each compute node having 20 or
24 CPU cores. The CPU is the Intel Xeon E5-2680 v2 or E5-2680
v3 processor. In each compute node, CPU cores share a 64 or
128 GB DDR3 system memory through QuickPath Interconnect.
As the basic compiler in the tests, we used an Intel C/Fortran
compiler version 13.1.3 with the optimizing level of O1. For MPI
communication routines, we used Intel MPI 4.1.3 implementation
binding with the Intel compiler.

4.2. Processors’ different ways of decomposition

When the number of processors used is constant, processors’
different ways of decomposition have an impact on the parallel
performance of a model. In this case, the computing time of the
IAP AGCM4.0 (1.4° x 1.4°)is shown in Table 1. The result indicates
that the larger P, is, the more quickly the IAP AGCM4.0 will run.

4.3. Parallel analysis

We conducted an experiment for the IAP AGCM4.0 on 32,
64, 128, 256 and 512 CPU cores respectively to test its parallel
computing performance. In these simulations, we employed the
processors’ optimal way of decomposition. The computing time
and speedup of the IAP AGCM4.0 with increasing the number of
cores are also plotted in Figs. 9 and 10. From the two figures, the
study can draw certain conclusions as follows.

First, when the resolutionis 1.4° x 1.4°, the parallelization of the
IAP AGCM4.0 with MPI reduces the computing time of 2787.82 s on
32 cores to 739.07 s on 256 cores, for a speedup of about 3.8x. But
the computing time on 512 cores begins to increase. This means
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Algorithm 1: Implementation of the two-dimensional do-
main decomposition in the vertical direction

|[Compute y decomposition
allocate (ydist(npr_y));
allocate (nlat_p(0:npes-1));
allocate (cut(2, 0:npes-1));
ydist(:)=0;
nlat_p(0:npes-1) = 0;
lat = plat | npr_y;
workleft = plat - lat * npr_y;
if lat < 3 then

call endrun (‘SPMDINIT_DYN: less than 3 latitudes per
L subdomain’);

for procid=1, npr_y do
| ydist(procid) = lat;
if workleft /= 0 then
procids = (npr_y+1) [ 2;
procidn = procids + 1;
while workleft /= 0 do
if procids == 1 then
| procids =npr_y;
ydist(procids) = ydist(procids) + 1;
workleft = workleft - 1;
if workleft /= 0 then
ydist(procidn) = ydist(procidn) + 1;
L workleft = workleft - 1;
procidn = procidn + 1;
procids = procids - 1;

|/Set the data structures

lat = 0;

for procid=0, npr_y-1 do

cut(1, procid) = lat+1;

lat = lat + ydist(procid+1);

cut(2, procid) = lat;

nlat_p(procid) = ydist(procid+1);

if myid_y == procid then

beglat = cut(1, myid_y);

endlat = cut(2, myid_y);

numlats = ydist(procid+1);

beglatdyn = plat+1-endlat;
endlatdyn = plat+1-beglat;
beglatdynex = max(1, beglatdyn - 1);
endlatdynex = min(plat, endlatdyn + 1);
loc_JB = max(2, beglatdyn);

loc_JE = min(plat-1, endlatdyn);

for k=1, npr_z-1do

forj=0, npr_y-1do
procid =j + kxnpr_y;
cut(1, procid) = cut(1,j);
cut(2, procid) = cut(2, j);
nlat_p(procid) = nlat_p(j);

//Eompute z decomposition
The algorithm of the z decomposition is similar to that of the
y decomposition.

that the IAP AGCM4.0 with 1.4° x 1.4° resolution on 256 cores has
the fastest computing speed on the Sugon cluster.

Second, when the resolution is 0.5° x 0.5° in comparison
with the 32 CPU cores, the speedup of the IAP AGCM4.0 with
50.88% parallel efficiency on 512 CPU cores can reach 8.14x. The
computing time on 512 cores still reduces as well. Therefore, the
IAP AGCM4.0 with 0.5° x 0.5° resolution has stronger scalability.

Table 1
Computing time (s) of the IAP AGCM4.0 with processors’ different
ways of decomposition.

Cores IAP AGCM4.0 (P x Py) Time
16 x 2 6198.94
8 x4 4239.79
32 4x8 3525.89
2 x 16 2974.48
1x32 2787.82
16 x 4 3204.28
64 8x8 2368.41
4 x 16 1756.35
2 x 32 1577.49
16 x 8 2186.15
128 8 x 16 1259.12
4 x 32 1038.58
16 x 16 1125.78
256 8 x 32 739.07
512 16 x 32 775.03
x 10*
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Fig. 10. Speedup of the IAP AGCM4.0.

To discover the reason why the IAP AGCM4.0 with 1.4° x 1.4°
resolution slows down on 512 cores or more, we counted the com-
puting time and speedup of both the physical parameterizations
and dynamical core, as indicated in Figs. 11 and 12 respectively.
From the curves, we know that the computing time of the physical
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Fig. 11. Computing time of the physical parameterizations and dynamical core.
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Fig. 12. Speedup of the physical parameterizations and dynamical core.

parameterizations decreases much more quickly than does that of
the dynamical core. The physical parameterizations can still speed
up on 512 cores, while the dynamical core cannot. There is no data
communication during the entire computation, so the physical pa-
rameterizations can have a better speedup. Accordingly, it is the
dynamical core which results in the decline in the IAP AGCM4.0
computing speed on 512 cores.

There are two main reasons why the dynamical core has
an unsatisfactory speedup. The first reason is the small meshes
(128 x 256 x 26) of the IAP AGCM4.0. When running the model
on larger-scale cores, the data communication cost significantly
increases, and the computational advantage of nodes cannot
be well-represented. The second reason is that there are too
many small computing tasks in the dynamical core. They are not
appropriate for being computed on larger-scale CPU cores.

Testing and analysing the code of the dynamical core have
shown that the subroutines tend_lin and scanslt_run take most
of the total computational time of the dynamical core, as shown
in Table 2. The former is designed to compute the tendencies
of P, T, U, and V, while the latter is designed to handle semi-
Lagrangian transport in the context of Eulerian spectral dynamics.
In the two subroutines, too many mp_send3d and mp_recv3d
operations, which encapsulate MPI_Send and MPI_Recv, are called
to transport some computing variables and to communicate
boundary information. In the meantime, MPI_Allgatherv is also

Cache miss rate of the IAP AGCM4.0 with 0.5°x0.5° resolution

60
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Fig. 13. Cache miss rate of the IAP AGCM4.0 with 0.5° x 0.5° resolution.

invoked in the tend_lin. In short, as the computing time of the two
subroutines on more CPU cores increases, the computing speed of
the dynamical core slows down. When the resolution is 0.5° x 0.5°,
the computing mesh is 361 x 720 x 26. However, the speedup of the
dynamical core slows down when the number of cores is more than
512. To further speed up the dynamical core, the two subroutines
can continue to be optimized in the future.

To improve fully the performance of the IAP AGCM4.0, the cache
miss rate of the parallel algorithm is evaluated by the Performance
Application Programming Interface (PAPI), a commonly used
performance analysis tool [30]. Fig. 13 shows that the L2 cache miss
rate of the algorithm ranges from 35% to 60%, so the algorithm can
be optimized on data locality later.

4.4. Long-time integration simulation

To evaluate the performance of the IAP AGCM4.0 with 1.4° x
1.4° horizontal resolution for long-term climate change, a numeri-
cal experiment simulating the global surface air temperature (SAT)
during the twentieth century is conducted. In the experiment, the
observed sea surface temperature and sea ice during the twenti-
eth century are used to drive the IAP AGCMA4.0; the observational
dataset GISS [31] is also used in this study. The simulated and ob-
served time series of the global mean SAT anomaly are shown in
Fig. 14. The correlation coefficient (CC) between the observation
and the simulation is 0.89, so the IAP AGCM4.0 can simulate the
global warming trend well. This means the model has good per-
formance for long-term climate change. It will take a lot of time
to simulate long-term climate change, so it makes sense to run the
model in parallel on a cluster. Therefore, the parallel algorithm pre-
sented in the paper is valuable for long-time integration simula-
tions of the IAP AGCM4.0.

5. Conclusions and future work

The scalable parallelization of an AGCM turns out to be
quite challenging for atmospheric scientists. It needs not only
many parallel algorithms of numerical computing but also huge
amounts of code implementation. Therefore, computer scientists
or software engineers are needed to provide professional help
during the design and development of an AGCM. As demonstrated
above in this paper, we put forward a two-dimensional domain
decomposition parallel algorithm for the IAP AGCMA4.0. The
algorithm is mainly used in the parallelization of the dynamical
core implemented with MPIL. After the parallelization, the IAP
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Table 2

Computing time (s) of the dynamical core, tend_lin and scanslt_run.

Resolution Cores IAP AGCM4.0 (P, x P)) Dynamical core tend_lin scanslt_run
32 1x32 122331 403.04 293.16
64 2 x32 685.93 259.84 157.68
1.4° x 1.4° 128 4 x 32 516.16 224.36 95.04
256 8 x 32 439.79 190.56 76.41
512 16 x 32 537.98 264.98 95.85
32 1x32 28195.02 1127145 7005.48
64 1 x 64 14980.62 6520.45 3353.91
0.5° x 0.5° 128 2 x 64 7351.81 3457.66 2003.58
: : 256 4 x 64 4723.65 2274.81 1145.48
512 8 x 64 3739.79 1889.30 894.67
1024 16 x 64 3421.69 1646.44 916.00
2872 | | | | (?CTO'? Foundation (No. 2016M601158), and National Key Research and
] r Development Program of China (No. 2016YFB0200800).
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286.8 A = References
a ] L
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it ] r [1] A.A. Mirin, W.B. Sawyer, A scalable implementation of a finite-volume
286.4 r dynamical core in the community atmosphere model, Int. J. High Perform.
7 r Comput. Appl. 19 (3) (2005) 203-212.
286.2 r [2] A. Molod, L. Takacs, M. Suarez, ]J. Bacmeister, Development of the GEOS-5
] L atmospheric general circulation model: evolution from MERRA to MERRA2,
286.0 —— — —— —— —F Geosci. Model Dev. 8 (5) (2015) 1339-1356.
1900 1920 1940 1960 1980 2000 [3] M. Satoh, Standard experiments of atmospheric general circulation models,
Year in: Atmospheric Circulation Dynamics and General Circulation Models,

Fig. 14. Time series of the SAT anomaly during the twentieth century for the
simulation (red solid line) and observation (black solid line) (units: K). (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

AGCM4.0 can run on 3120 CPU cores. The speedup of the IAP
AGCM4.0 with 50.88% parallel efficiency on 512 CPU cores can
reach 8.14x. The experimental result shows that our parallel
algorithm is efficient and scalable, and it will show a more desirable
parallel performance in the model with higher resolution and
with longer-time integration. Our work is meaningful for real-time
climate simulation. The parallel algorithm can also be used in the
parallelization of other AGCMs, because their parallel ideas are all
similar. Although the IAP AGCM4.0 does not have very high parallel
efficiency on thousands of cores, we have created a precedent
which will promote the development of climate simulation with
computing on thousands of cores. We will continue to optimize the
IAP AGCM4.0.

The dynamical core has many small computing tasks, so its par-
allelization can be implemented with OpenMP in the future. In this
way, the IAP AGCM4.0, implemented with the MPI + OpenMP hy-
brid paradigm which exploits two-level parallelism, will run more
quickly on a multi-core cluster. The physical parameterizations
have quite a good parallel performance, so we can expect to as-
sign more processors to the physical parameterizations in long-
time computing with large-scale cores. At present, some physical
parameterization schemes of the Weather Research and Forecast-
ing model (WRF) with a Graphics Processing Unit (GPU) version
have been implemented [32-36]. The IAP AGCM4.0 shares physical
parameterization schemes that are similar to the WREF, so running
the physical parameterizations on the GPU cores may also be con-
sidered. In other words, the GPU version of the physical parameter-
izations may be developed later. Moreover, a parallel I/O strategy
with high data throughput [37] for the IAP AGCM4.0 should be also
researched. In this way, the IAP AGCM4.0 will be more efficient and
scalable in large-scale multi-core computing.
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