
Future Generation Computer Systems 99 (2019) 86–105

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

IoTSim-Stream:Modelling stream graph application in cloud
simulation
Mutaz Barika a,∗, Saurabh Garg a, Andrew Chan b, Rodrigo N. Calheiros c, Rajiv Ranjan d,e

a School of Technology, Environments and Design (TED), University of Tasmania, Australia
b School of Engineering, University of Tasmania, Australia
c School of Computing, Engineering and Mathematics, Western Sydney University, Australia
d School of Computing, Newcastle University, United Kingdom
e School of Computer Science, China University of Geosciences, Wuhan, PR China

h i g h l i g h t s

• Simulation model for stream graph application execution on the cloud.
• A novel XML-based structure for stream graph application specification.
• Model Multicloud environment.
• IoTSim-Stream for development of scheduling algorithms on Multicloud environment.

a r t i c l e i n f o

Article history:
Received 20 July 2018
Received in revised form 21 February 2019
Accepted 3 April 2019
Available online 9 April 2019

Keywords:
Internet of Things (ioT)
Stream processing
Stream graph applications
Multicloud environment
Simulator

a b s t r a c t

In the era of big data, the high velocity of data imposes the demand for processing such data
in real-time to gain real-time insights. Various real-time big data platforms/services (i.e. Apache
Storm, Amazon Kinesis) allow to develop real-time big data applications to process continuous data
to get incremental results. Composing those applications to form a workflow that is designed to
accomplish certain goal is the becoming more important nowadays. However, given the current
need of composing those applications into data pipelines forming stream workflow applications (aka
stream graph applications) to support decision making, a simulation toolkit is required to simulate
the behaviour of this graph application in Cloud computing environment. Therefore, in this paper, we
propose an IoT Simulator for Stream processing on the big data (named IoTSim-Stream) that offers
an environment to model complex stream graph applications in Multicloud environment, where the
large-scale simulation-based studies can be conducted to evaluate and analyse these applications.
The experimental results show that IoTSim-Stream is effective in modelling and simulating different
structures of complex stream graph applications with excellent performance and scalability.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, there is an emergence of ‘‘big data’’ term
that has been introduced to deal with collecting, processing and
analysing voluminous amount of data. It has three characteristics
known as 3Vs of big data, which are volume (the size of data),
variety (the different types of data collected) and velocity (the
speed of data processing). To transact with big data, many big
data platforms have been developed, which allow designing and
building big data analysis applications to ingest, process as well
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as analyse tremendous amount of data. Composing those appli-
cations into data analysis pipeline forming big data workflow
applications allows delivering of valuable analytical insights to
make better decisions [1].

The execution and management of big data workflow applica-
tion need a dynamic environment that provides the underlying
infrastructure for big data processing, allowing parallel execu-
tion of this workflow application and to exploit large amount
of distributed resources. As Cloud computing offers on-demand
access to large-scale resources including compute, storage and
network which can tackle extensive computation problems [2,3],
it is seen as a visible solution for the execution of this workflow
application. Even more, the Multicloud environment that consol-
idates multiple Clouds is more visible solution for orchestrating
the execution of multiple applications included in such work-
flow application over various Clouds. Other than utilizing these

https://doi.org/10.1016/j.future.2019.04.004
0167-739X/© 2019 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.future.2019.04.004
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2019.04.004&domain=pdf
mailto:mutaz.barika@utas.edu.au
mailto:saurabh.garg@utas.edu.au
mailto:andrew.chan@utas.edu.au
mailto:R.Calheiros@westernsydney.edu.au
mailto:Raj.Ranjan@newcastle.ac.uk
https://doi.org/10.1016/j.future.2019.04.004


M. Barika, S. Garg, A. Chan et al. / Future Generation Computer Systems 99 (2019) 86–105 87

resources, the requirements of big data workflow applications
such as near real-time data analysis need to be ensured. The
requirement of orchestration systems that can help in execution
and management of big data workflow applications on a Cloud
and Edge infrastructure is pointed out by [1] as the most im-
portant and cutting edge research issue. Accordingly, the need
of understanding the behaviour of these applications when they
are executing in Cloud environment and for development of new
scheduling and resource provisioning techniques is important to
ensure that requirements of these applications can be successfully
met while utilizing Cloud infrastructure efficiently and effectively.

Studying how big data workflow applications will perform
in the Cloud and evaluating the efficiency of new scheduling
and resource allocation algorithms for such applications cur-
rently is not an easy task. These problems are often hard to
be investigated on real-world Cloud infrastructures due to the
following reasons: (1) unstable and dynamic nature of Cloud
resources, (2) scalability and complex requirements of stream
workflow application, and (3) real experiments on large, het-
erogeneous and distributed Cloud platforms are subject to the
impact of external events, notably not cost-effective, considerably
time-consuming and different conditions cannot be reproducible
to easily reproduce results. The visible approach for evaluating
application benchmarking study in repeatable, controllable, de-
pendable and scalable environments is via simulation toolkits,
where experimental results can be reproduced easily [4]. There-
fore, a simulator supporting stream graph application is a very
useful software toolkit, allowing both researchers and commer-
cial organizations to model their stream graph applications and
evaluate the performance of their algorithms in heterogeneous
Cloud infrastructures at an effective time and with no cost.

To address the above research problems, we design and im-
plement an IoT Simulator for Stream graph applications (IoTSim-
Stream) that extended a popular and widely used Cloud com-
puting simulator (CloudSim), where we model stream workflow
application in Multicloud environment. It provides the ability to
model and simulate the execution of stream graph application
over resources provisioned from various Cloud infrastructures. In
summary, the following are our contributions:

• Modelling stream graph application.
• Extending the XML structure of commonly existing non-

streaming workflow strictures (e.g. Montage, CyberShake) to
simulate stream graph applications.
• Modelling Multicloud environment as an execution environ-

ment for stream graph application.
• Proposing a new simulator named IoTSim-Stream that lever-

ages the features of CloudSim and integrating real-time
processing model with workflow scheduling and execution
to execute the modelled stream graph application in Multi-
cloud environment.

This paper is structured as follows: Section 2 describes what
stream graph application is, while Section 3 outlines design is-
sues of this type of workflow application. Section 4 reviews the
related simulation tools. Section 5 presents the architecture of the
proposed simulator (IoTSim-Stream), while in Section 6, we ex-
plain in detail the implementation of IoTSim-Stream including the
extended XML structure, proposed provisioning and scheduling
policy, proposed stream scheduling policy and proposed VM-
level scheduler. Section 7 presents our experiments to validate
and evaluate the performance and scalability of IoTSim-Stream in
simulating stream graph applications in Multicloud environment,
and discusses the obtained results. Section 9 concludes the paper
and highlights future improvements.

2. Stream graph application

Stream Graph application is a network of streaming data anal-
ysis components, where each individual component can be con-
sidered as a service and is executed independently over compute
resources that provisioned from the Cloud, even though data de-
pendencies among services should be maintained. Fig. 1 presents
an example of stream graph application with its data processing
requirements. The execution of this type of workflow applica-
tion is continuous (i.e. not one-time execution). It starts when
the data streams generated by external sources such as sensors
being continuously injected into data pipeline (particularly as
input data streams to services). The data processing on these
input data streams is continuously carried-out by those services
to produce continuous output data streams (i.e. online insights)
that are results of data processing computations. These output
data streams generated by internal sources (i.e. parent services)
are continuously injected into data pipeline, specifically as input
data streams to child services, which process them continuously
and then inject the results of computations into data pipeline.
Therefore, we simply can say that this graph application has
three main characteristics: continuous input data streams from
external sources towards connected services and from internal
sources (as results of computations that routed from these in-
ternal sources (i.e. parent services) to child services), continuous
data processing of input data streams and continuous output data
streams that are results of data processing computations at graph
services.

As noted in Fig. 1, each service has data processing require-
ment (the number of instructions required to process one MB of
data stream) and data processing rate (the amount of streaming
data the service can process per second such as 30MB/s). The
owner of stream graph application can define user specific per-
formance constraints in term of data processing rates on services,
where these constraints are always maintained during the execu-
tion of this application. In case of no user performance constraint
is specified on the service or the value defined is less than the
speed of incoming streams, the total size of incoming streams
for this service will be considered as a performance constraint.
During the continuous execution of stream graph application,
each service receives streaming input data from external sources
and/or internal sources (i.e. parent services), processes them con-
tinuously as they arrive and generates streaming output data as
results of computations which routed towards one or more child
services based on the specified data modes (replica or partition).
With replica mode, the output stream of parent service is repli-
cated on child service(s) while with partition mode, the output
stream of parent service is partitioned into portions based on
the pre-defined partition percentages and then each portion is
routed to corresponding child service. The end service(s) pro-
duces streaming output results for the execution of this graph
application.

3. Design issues of stream graph application

Unlike batch-oriented data processing model that intends to
process static data (i.e. the amount of input data is finite and
it is stored before being processed and analysed) [5,6], stream-
oriented data processing model is intended for processing contin-
uous data to gain immediate analytical insights. With this model,
data arrives in streams, which are assumed to be infinite and are
being processed and analysed (in a parallel and distributed man-
ner) as they arrive and as soon as possible to produce incremental
results at the earliest they are prepared [5,6]. Based on this model,
stream applications have been developed to process continuous
data to produce continuous analytical results. However, given
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Fig. 1. Sample stream graph application.

the demand of composing those applications into data pipelines
forming stream graph application, this graph application has spe-
cific design issues. In the subsequent paragraphs, we will review
these issues.

Modelling of graph nodes. − Streaming data applications included
in stream graph application can be considered as services since
they can be separately running over any virtual resources, even
though the data dependencies among them should be main-
tained. These independent processing nodes are allocated to ap-
propriate VMs according to their performance requirements for
processing continuous streams of data and producing analytical
insights at the earliest they are prepared. Therefore, the simulator
should models the nodes of graph as services adhering the data
dependencies among them.

Modelling of data flows. − The flow of data in this type of work-
flow application is streams, which are infinite continuous events.
These streams are continuously injected as inputs into nodes
(services) and continuously produced as results of computations,
i.e. outputs of nodes (services). The simulator should thus repre-
sent this type of data as a sequence of events and allow transmit-
ting them among VMs hosted by various datacentres.

Synchronization of data flows. − In stream graph application,
there exists data flow dependencies across analytical nodes, re-
sulting in the need of data flow synchronization. Therefore, the
execution of nodes (services) requires dynamic synchronization
of the states (e.g. output stream of parent service forms the basis
of input data stream to one or more child services) of parent and
child services. Hence, the simulator should preserve the synchro-
nization of data flows as it directly impacts the correctness of
stream graph application execution.

Modelling of Multicloud environment and its network performance.
− As the execution of stream graph application will be carried-
out over multiple Cloud infrastructures, the simulator should
model Multicloud environment as an execution environment for
this application. Not only this, but also the execution of this
application on resources provisioned from multiple Clouds means
by the way that the streams of data are being transferred be-
tween VMs of datacentre (inbound traffic) or between differ-
ent VMs hosted by various Cloud datacentres (outbound traffic).
Therefore, the simulator also requires to model the inbound and
outbound network performance (i.e. bandwidth and latency) be-
tween Cloud datacentres being used during simulation runtime,
as the amount of streams being transferred is subject to the
availability of bandwidth and the amount of delay.

4. Related simulation frameworks

With the emerging of Cloud computing, various simulation-
based toolkits have been developed in order to model the be-
haviour of different Cloud services and applications on Cloud
infrastructures. These simulators help researchers in evaluating
the performance of these systems and applications in controllable
environment.

To the best of our knowledge, there is no simulator that model
the execution of stream graph application in various resources
provisioned frommultiple Cloud infrastructures. The most related
simulators proposed by previous research works are described in
the below paragraphs.

CloudSim [4]. − It is a popular and widely used event-based
simulator that models and simulates Cloud computing infrastruc-
tures, applications and services. As an extensible and customiz-
able tool, it allows to model custom Cloud application services,
Cloud environments and application scheduling and provisioning
techniques. In this simulator, users create Cloud tasks (named
Cloudlets) to define their workloads and then submit them to
Virtual Machines (VMs) provisioned from Cloud datacentre to
be processed in the Cloud. The application model of CloudSim
is simpler and is more appropriate to simulate batch tasks, so
that it is not capable to support stream tasks (i.e. continuous
computation).

NetworkCloudSim [7]. − It is a simulation toolkit that models
Cloud datacentre network and generalizes applications (e.g. High
Performance Computing and e-commerce). It allows computa-
tional tasks involved in these applications to communicate with
each other. NetworkCloudSim supports advanced application
models and network model of datacentre, allowing researchers
to accurately evaluate the new scheduling and provisioning tech-
niques in order to enhance the performance of Cloud infras-
tructure. Despite the advanced application models (i.e. multi-tier
web application, workflow and MPI) supported by this simulator,
the lack of application model that describing big data workflow
applications is a major drawback in this simulator. Thus, it does
not have the capability to simulate stream tasks and even execute
stream workflow applications in Cloud environments.

MapReduce simulators (MRPerf [8], Mumak [9,10], SimMR [11], MR-
Sim [12] and MR-CloudSim [13]). − MRPerf [8] is phase-level
simulator for MapReduce processing model. It serves as a design
tool for analysing MapReduce based applications performance on
specific configurations of Hadoop system, and as a planning tool
for evaluating the proposed designs and topologies of cluster.
Mumak [9,10] is an Apache discrete event simulator for MapRe-
duce verification and debugging. It takes as input the job trace
data from real experiment along with the definition of cluster
and then feeds them into simulator to simulate the execution
of jobs in the defined virtual cluster with various scheduling
policies. SimMR [11] is MapReduce based simulator developed
in HP lab. It takes as input the execution traces derived from
production workloads and then replies them to facilitate perfor-
mance analysis and evaluating of new scheduling algorithms in
MapReduce platforms. MRSim [12] is a discrete event simulation
tool that extends SimJava, a Java discrete event engine to simulate
various types of MapReduce-based applications and uses GridSim
for network simulation. It offers functionalities for measuring the
scalability of MapReduce applications and studying the effects of
various Hadoop setup configurations on the behaviour of these
applications. MR-CloudSim [13] is a simulator tool for modelling
MapReduce based applications in Cloud computing environment.
It is extended the feature of CloudSim to implement bare bone
structure of MapReduce on CloudSim, supporting data processing
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operations with this model. Thus, MR-CloudSim provides the abil-
ity for examining MapReduce Model in a Cloud-based datacentre.
However, these simulators are only intended to support data
processing operations with MapReduce model, thus they lack of
support for modelling the streaming big data applications and
even streaming big data workflow applications.

IoTSim [14]. − It is a software toolkit that built on top of
CloudSim to simulate Internet of Things (IoT) applications in
the Cloud infrastructure. It integrates IoT application model to
allow processing of IoT data by the use of big data processing
platform in Cloud infrastructure, providing both researchers and
commercial entities with the ability to study the behaviour of
those applications in controllable environment. This simulator
is intended to support IoT application with MapReduce model,
where it lacks the support for stream computing model. There-
fore, it neither simulate stream big data application nor stream
workflow application.

CEPSim [15]. − It is a simulator for event processing and stream
processing systems in the Cloud computing environment. It uses
query model to represent user-defined query (application), where
the modelled query (with all its vertices) is allocated to a VM to
be simulated at once. With such simulator and by default, users
have to determine manually the placements of their queries when
submitting them to CEPSim. Therefore, the main drawbacks of
this simulator are (1) the user-defined query is executed entirely
in a single VM, (2) provisioning resources according to input
event streams of query is missing and (3) mapping of vertices to
VMs is manual.

WorkflowSim [16]. − It is a simulation toolkit that extends
CloudSim to support scientific workflow scheduling and execu-
tion in the Cloud with consideration of system overheads and
failures. It incorporates model of workflowmanagements systems
(similar to Pegasus workflow management system) in the Cloud
simulation environment, enabling researchers to study and eval-
uate the performance of workflow optimization algorithms and
methods more accurately. This simulator is intended to support
scientific workflow applications, where it lacks the support for big
data workflow applications (batch, stream or hybrid). Therefore,
it neither simulate streaming big data applications nor streaming
big data workflow applications.

Additionally, the common/shared drawback with all compara-
ble simulators mentioned above is that they do not leverage the
advantages of Multicloud environment to execute the modelled
application on resources provisioned from various Cloud infras-
tructures, where the proposed simulator supports that. This will
open the door for further research studies including proposing
resource and scheduling policies, improving performance and
minimizing execution cost. The summary of the above men-
tioned simulators along with their strengths and weaknesses are
provided in Table 1.

5. The proposed architecture of IoTSim-stream

The CloudSim is a simulation framework that models and sim-
ulates Cloud infrastructures and services [4]. It has rich features
that make it the best choice to be the core simulation engine for
our proposed simulator to simulate the behaviour of stream graph
applications and their execution in Multicloud environment. Fig. 2
shows the layered architecture of CloudSim with the essential
elements of IoTSim-Stream (shown by orange-outlined boxes). In
the subsequent paragraphs, we will describe these layers.

CloudSim core simulation engine layer. This layer takes care of the
interaction among the entities and components of CloudSim via
message passing operations [7]. It offers numerous key functions
e.g. events queuing and handling, Cloud entities creation (such as
datacenter, broker), entities communication, and simulation clock
management [14]. Entity within the ambit of the CloudSim is a
component instance, which could be either a class or group of
classes that depicts one CloudSim model (datacenter, broker) [4].
It individually and independently exists, and has the capability for
sending and receiving events to and from other CloudSim entities
as well as process the received ones [14]. Event is a simulation
event or message that passes among the CloudSim entities and
holds relevant information e.g. the type of event, time at which
this event occurs as well as the data passed in this event to
destination entity [14].

CloudSim simulation layer. This layer is designed to model the
core elements of Cloud computing. It contains several sub-layers
to achieve that. The Network sub-layer models the topology of
network among various datacentres, while Cloud Resource sub-
layer models datacentre and Cloud coordinator, thereby these
components of those sub-layers allow to design IaaS environ-
ments [14]. The Cloud and VM Services sub-layers offer the func-
tionality required for designing VM management and scheduling
algorithms for Cloud applications [14]. The sub-layer above, User
Interface Structures, allows users to implement their structures
for VM, Cloud application and application cloudlet.

Service layer. This layer concentrates on orchestrating the exe-
cution of streaming data applications included in stream graph
application.

User code layer. This layer consists of two sub-layers, Scheduling
Policy and Simulation Specification, providing the ability for users
to specify their simulation configurations and scenarios in order
to validate their scheduling and provisioning algorithms [7].

The descriptions of IoTSim-Stream elements are as follows:

• Graph Application − It is a Directed Acyclic Graph (DAG)
that represents a graph application.
• Graph Application Configuration − It defines simulation

runtime, application and user requirements.
• Graph Application Engine (GraphAppEngine) − It parses

DAG input file and handles the whole execution process of
graph application. This process includes provisioning VMs
from different providers, scheduling services of graph appli-
cation on the provisioned VMs and the submission of graph
application cloudlets to those VMs.
• Graph Application Cloudlet (GraphAppClouldlet) − It repre-

sents a graph application with multiple stream application
nodes (i.e. services).
• ServiceCloudlet − It represents a generalized stream appli-

cation node.
• Graph Application Cloudlet Execution − It executes the

submitted cloudlet (i.e. ServiceCloudlet) on VM.
• Big Datacenter (BigDatacenter) − It represents a Cloud re-

source whose has a list of virtualized hosts, offers various
flavours of VM, where the provisioned VMs are allocated on
these hosts.
• Stream VM (SVM) − It represents a Cloud resource where

the mapped ServiceCloudlet will be executed on it.

6. Implementation

As we mentioned before, the proposed simulator (IoTSim-
Stream) extends CloudSim with new functionality to support
modelling the execution of stream graph application in multiple
Cloud infrastructures. In line with the aforesaid design issues
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Table 1
Summary of related simulators.
Simulator Core engine Pl Strengths Weaknesses

CloudSim [4] GridSim Java • Model IaaS Cloud and batch tasks
(long-running tasks)
• Pluggable VM and application scheduling
policy
• Support of federated Cloud environment

• Lack of modelling application models that
have communicating tasks [7]
• Limited network support [7]

NetworkSim [7] CloudSim Java • Model parallel applications such as
(multi-tier web application, workflow and
MPI)
• Full network support (network-packet level)
• Customize type of switches (root, aggregate
and edge switch)

• Lack of big data applications support
• Lack of support for stream tasks and even
stream workflow applications
• No Multicloud support

MRPerf [8] CloudSim Mix of C++, Tcl
and Python

• Model big data batch processing
(MapReduce)
• Capture behaviour of Hadoop cluster
• Simulate the full network by relying on ns-2

• Limited application behaviour (job has
simple map and reduce tasks [11])
• Lack of stream / real-time processing support

Mumak [9] [10] Discrete event
simulator
engine

Java • Verify/debug Hadoop MapReduce framework
• Perform no actual I/O or computations
• Simulate behaviour of production cluster

• No modelling of shuffle/sort phase [11]
• No simulating of Cloud resources
• No job dependency
• No modelling of failure correlations (only
task-level failures)
• Lack of stream processing support

SimMR [11] Discrete event
simulator
engine

Not available • Simulate MapReduce applications
• Replayable MapReduce workload
• Pluggable scheduling policy

• Lack modelling of Cloud
• Lack of stream processing support

MRSim [12] SimJava and
GridSim
package

Java • Simulate Hadoop environment
• Model shared Multi-core CPUs, HDD, and
network topology and traffic
• Consider cluster configurations

• Limited network support
• Inherited limitations of SimJava (such as no
support to create new simulation entity at
runtime)
• Lack of stream processing support

MR-CloudSim [13] CloudSim Java • Model MapReduce-based applications • Single-state map and reduce computation
[14]
• Limited network support (no network link
modelling) [14]
• No support to allow multiple
MapReduce-based applications [14]
• Lack of stream processing support

IoTSim [14] CloudSim Java • Model IoT application with MapReduce
model
• Allow to simulate multiple IoT applications
• Model network and storage delays incurred
during the execution of IoT-based applications

• Lack of stream processing support
• Lack of big data workflows support

CEPSim [15] CloudSim Scala and Java • Model event processing queries
• Customize operator placement, scheduling
and load shedding strategies

• Limited network support
• Query is executed entirely in a single VM
• Provisioning resources according to input
event streams of query is missing
• Manual mapping of vertices to VMs

WorkflowSim [16] CloudSim Java • Model scientific workflows
• Consider diverse system overheads and
failures

• No simulation of stream workflow
applications

and requirements, the implementation of this simulator con-
sists of two parts, which are modification and addition. The
modification part is to modify the original code of CloudSim
components such as datacenter and VM. While addition part is
to add more components to meet the new requirements such as
GraphAppEngine.

Fig. 3 shows the class diagram of IoTSim-Stream. The compo-
nents with orange-outlined boxes as shown in this figure can be
classified either into an entity or a class as follows:

• Main entities

– GraphAppEngine: It extends SimEntity to handle the
execution of stream graph application. That is includ-
ing workflow provisioning and scheduling, Data Pro-
ducers (DPs) starting-up and shutting-down, and simu-
lation shutting-down based on pre-defined simulation
time.

– BigDatacenter: It extends native Datacenter, which is
an SimEntity, to support simulation of stream graph

application that includes handling of VMs and transfer-
ring streams in between VMs and out of this datacentre
to other datacentres.

– External Source: It extends SimEntity to represent any
king of DP connected to the data source such as sensor,
device or application and generates a continuous data
stream.

• Classes for modelling Multicloud environment

– VMOffers: It is an abstract class that encapsulates VM
instance options offered by different Cloud service
providers such as Microsoft Azure, Amazon EC2 and
Google Compute Engine. Each implementation of this
abstract class represents the VM options offered by a
particular Cloud provider.

– VMOffersBigDatacenter: It extends VMOffers abstract
class to encapsulates different VM options offered by
a particular Cloud provider (i.e. a BigDatacenter).
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Fig. 2. The proposed architecture of IoTSim-Stream (CloudSim with IoTSim-Stream elements). (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

– SVM: It is an extended class of the core VM object to
model a VM with input and output stream queues, to
be a Stream VM.

– ProvisionedSVM: It is a class designed to encapsulate
a provisioned SVM with its information including the
start and end time, and the cost.

• Classes for modelling basic BigDatacenter network

– Channel: It is a class designed to represent a chan-
nel, which can be either ingress channel for trans-
mitting streams between SVMs located at the same
datacentre or egress channel for transmitting streams
among SVMs located at different datacentres. It con-
trols the amount of data transmitted in a shared data
medium. Each channel, whether ingress or egress, is a
shared channel among different simultaneous stream
transmissions (time-shared mode).

– StreamTransmission: It is a class represents transmis-
sion of a stream from source SVM to destination SVM
located at the same datacentre or at different datacen-
tres.

• Classes for modelling stream graph application

– GraphAppCloudlet: It is a class designed to represent
a stream graph application with multiple graph nodes
i.e. services as described in the XML file of this graph
application.

– Service: It is a class designed to model atomic node
in stream graph application as a service that processes
incoming data stream(s) and produce output stream.
It contains service information including service iden-
tification, data processing requirement, user perfor-
mance requirement, its ServiceCloudlets, dependencies
streams, parent service(s), child service(s) and output
stream.

– ServiceCloudlet: It is an extended class of the core
Cloudlet object to implement an atomic graph node,

which will be submitted to the Cloud datacentre (i.e.
BigDatacenter) by GraphAppEngine and executed in
SVM. The atomic graph node or service can be mod-
elled using one or more ServiceCloudlets. That is allow-
ing parallel execution of service computations, and en-
hancing scalability and overall execution performance
while meeting user performance requirements easily.
Of course, each ServiceCloudlet contains the informa-
tion of service to which it belongs.

– Stream: It is a class designed to model data unit that
being processed in this simulator. This class is used to
represent both stream and stream portion when the
original stream splits into several portions.

• Classes for scheduling ServiceCloudlets

– Policy: It is an abstract class that implements the ab-
stract policy for provisioning resources and scheduling
of stream graph application (represented in DAG) in
an IaaS datacentre. This class performs common tasks
such as parsing the XML file describing the DAG, print-
ing the scheduling plan, and returning provisioning
and scheduling decisions to the GraphAppEngine.

– SimpleSchedulingPolicy: It is an extended class from
policy abstract class that represents the implemen-
tation of simple provisioning and scheduling policy
for stream graph applications. It is first responsible
for selecting the most suitable SVMs for each service
whose achieved user performance requirement, and
then scheduling the ServiceCloudlets of this service on
them for execution. The detailed of this scheduling
policy that offered in our simulator will be discussed
in the next section.

– ServiceCloudletScheduler: It is an extended class of the
core CloudletScheduler object to implement a space
shared scheduling policy performed by SVM to run
ServiceCloudlet. The detailed of this scheduler will be
discussed in the next section.
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• Class for scheduling streams on SVMs

– StreamSchedulingOnSVMs: It is a class designed to
schedule the divided portions of each stream either
input or output stream on SVMs of destination service
according to their computing power.

• Classes for customizing simulation parameters

– Properties: It is an enumeration class represented the
customizable parameters from simulation that are de-
fined in simulation properties file (named simulation.
properties).

– Configuration: It is a class implements properties man-
ager, which loads simulation properties file (i.e. simu-
lation.properties) contained parameters of simulation
that are customized by users.

6.1. Extending XML structure of synthetic workflows

Common workflow structures from different application do-
mains [17], such as Montage in Astronomy, Inspiral in Astro-
physics, Epigenomics in Bioinformatics and CyberShake in Earth-
quake science, operate on static data inputs and produce final
outputs. Therefore, the XML structure generated by a set of syn-
thetic workflow generators is describing these static workflows
and its parameters. However, the use of these workflow struc-
tures to simulate stream graph applications is practically feasible,
as each job is considered a service and the data flow becomes
streams of data. The inputs of a job incoming from static files (not
from parent jobs) become the continuous inputs of a service from
DPs (i.e. external sources). The service continuously processes
incoming data streams and continuously produces output stream.
The output of a parent job, which is sent to one or more child jobs,
becomes the continuous output of a parent service that is sent to
one or more child services.

Accordingly, there is a need for extending the original struc-
ture of those workflows to describe the additional parameters and
attributes of stream graph applications such as data processing
requirements, input and output data rates. By making this exten-
sion, those workflow structures become stream graph structures.
Table 2 lists the parameters and attributes being used in the
extended XML structure.

To aid understanding how to describe stream graph applica-
tion in the extended XML structure using the above mentioned
parameters and attributes, we use the presented sample stream
graph application in Fig. 1 and depict its XML structure in Listing
1.

Listing 1: Extended XML structure of sample stream graph
application

<?xml vers ion ="1 .0" encoding ="UTF 8 " ?>
< ! generated : 2018 02 27:11:00 >
< ! generated by : Mutaz >
<adag xmlns : xs i =" http : / /www.w3. org /2001/XMLSchema instance " version=" 1.0 "

count="6" name="SampleStreamGraphhApplication " serviceCount="6"
childCount="5">

< ! part 1: l i s t of a l l referenced outputs of serv ices (may be empty) >
< ! part 2: de f in i t ion of a l l serv ices ( at l ea s t one ) >
<externalsources>
<exsource id="PID00000" name="Producer0 " type=" stream" datarate="10" / >
<exsource id="PID00001" name="Producer1 " type=" stream" datarate="10" / >
<exsource id="PID00002" name="Producer2 " type=" stream" datarate="5" / >
<exsource id="PID00003" name="Producer3 " type=" stream" datarate="5" / >
<exsource id="PID00004" name="Producer4 " type=" stream" datarate="5" / >

< / externalsources>
<serv ice id=" ID00000" dataprocessingreq="400" userreq="10" namespace="

Sample" name=" BigService0 " version=" 1.0 ">
<uses l ink=" input " type=" stream" producerref="PID00000" / >
<uses l ink="output " type=" stream" s ize="5" / >

< / serv ice >
<serv ice id=" ID00001" dataprocessingreq="1000" userreq="5" namespace="

Sample" name=" BigService1 " version=" 1.0 ">
<uses l ink=" input " type=" stream" processingtype=" rep l i ca " se rv i ce re f ="

ID00000" / >
<uses l ink="output " type=" stream" s ize="10" / >

< / serv ice >
<serv ice id=" ID00002" dataprocessingreq="500" userreq="8" namespace="Sample

" name=" BigService2 " version=" 1.0 ">

<uses l ink=" input " type=" stream" processingtype=" rep l i ca " se rv i ce re f ="
ID00000" / >

<uses l ink=" input " type=" stream" processingtype=" par t i t ion "
part i t ionprecentage="30" serv i ce re f =" ID00001" / >

<uses l ink="output " type=" stream" s ize="8" / >
< / serv ice >
<serv ice id=" ID00003" dataprocessingreq="2000" userreq="7" namespace="

Sample" name=" BigService3 " version=" 1.0 ">
<uses l ink=" input " type=" stream" processingtype=" par t i t ion "

part i t ionprecentage="70" serv i ce re f =" ID00001" / >
<uses l ink="output " type=" stream" s ize="1" / >

< / serv ice >
<serv ice id=" ID00004" dataprocessingreq="3000" userreq="8" namespace="

Sample" name=" BigService4 " version=" 1.0 ">
<uses l ink=" input " type=" stream" processingtype=" rep l i ca " se rv i ce re f ="

ID00002" / >
<uses l ink="output " type=" stream" s ize="2" / >

< / serv ice >
<serv ice id=" ID00005" dataprocessingreq="1500" userreq="38" namespace="

Sample" name=" BigService5 " version=" 1.0 ">
<uses l ink=" input " type=" stream" producerref="PID00000" / >
<uses l ink=" input " type=" stream" producerref="PID00001" / >
<uses l ink=" input " type=" stream" producerref="PID00002" / >
<uses l ink=" input " type=" stream" producerref="PID00003" / >
<uses l ink=" input " type=" stream" producerref="PID00004" / >
<uses l ink=" input " type=" stream" processingtype=" rep l i ca " se rv i ce re f ="

ID00003" / >
<uses l ink=" input " type=" stream" processingtype=" rep l i ca " se rv i ce re f ="

ID00004" / >
<uses l ink="output " type=" stream" s ize="4" / >

< / serv ice >
< ! part 3: l i s t of control flow dependencies (may be empty) >
<chi ld re f =" ID00001">
<parent re f =" ID00000" / >

< / chi ld >
<chi ld re f =" ID00002">
<parent re f =" ID00000" / >
<parent re f =" ID00001" / >

< / chi ld >
<chi ld re f =" ID00003">
<parent re f =" ID00001" / >

< / chi ld >
<chi ld re f =" ID00004">
<parent re f =" ID00002" / >

< / chi ld >
<chi ld re f =" ID00005">
<parent re f =" ID00003" / >
<parent re f =" ID00004" / >

< / chi ld >
< / adag>

6.2. Stream scheduling

Since achieving user-defined performance requirement for a
service may need more than one SVMs, this service will need
more than one ServiceCloudlets, where each one is mapped to
one SVM, leading to this service being mapped to more than
one SVMs. Therefore, the incoming data streams from external
sources and parent services towards this service should be di-
vided into portions and distributed across its SVMs according to
their computing power. Similarly, the output data stream produc-
ing by parent service towards child service(s) should be divided
into portions and sent to the SVM(s) provisioned for such child
service.

Consequently, we implement stream scheduling policy de-
fined in the StreamSchedulingOnSVMs Java class. It divides each
data stream into portions and schedules them in round-robin
fashion according to computing power of SVMs of destination
service. For instance, if one of child services in stream graph
application has two SVMs, where the computing power of first
VM is twice computing power of the second one, the divided
portions of one output stream of parent service are distributed
into 2:1 way — two portions for first VM and one portion for
second VM.

6.3. Scheduler and execution of ServiceCloudlet

Before providing the details of the implemented scheduler
in IoTSim-Stream, we need to discuss how IoTSim-Stream is
initializing and what is the provisioning and scheduling pol-
icy being used to schedule stream graph application on Multi-
cloud environment. Algorithm 1 shows the pseudo-code of simple
provisioning and scheduling algorithm that we implemented in
IoTSim-Stream. This algorithm provisions the most suitable VMs
for services included in stream graph application which meet the
user performance requirements for those services, where all VMs
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Fig. 3. Class diagram of IoTSim-Stream. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 2
Additional parameters of stream graph application.
Parameter XML attribute name Data type Value

Data Processing Requirement dataprocessingreq Integer ex. 1000 (in MI/MB)
User Performance Requirement userreq Number ex. 10 (in MB/s)
Reference Input from Parent Service serviceref String Referenced id of parent service as defined in XML file (ex. ID00001)
Processing Type of Input from Parent Service processingtype String replica or partition
Partition Processing Type for Input Stream partitionprecentage Integer 1–99
External Source Identifier id String ex. PID00000
External Source Name name String ex. Producer0
External Source Data Rate datarate Number ex. 12.5 (in MB/s)
Reference Input from External Source producerref String The referenced id of external source as defined in XML file (ex. PID00000)
Service Output Data Rate size Number ex. 20 (MB/s)

Fig. 4. Sequence Diagram: The flow of communication for initializing IoTSim-Stream and scheduling ServiceCloudlet on SVMs.
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for a service are provisioned from one Cloud-based datacentre.
For each service, it finds VMs with higher computing powers upto
required MIPS value (that is calculated based on user performance
requirement and service processing requirement) and provisions
them to achieve as much as possible from this value. Then,
it backs to VMs with lower computing powers to achieve the
remaining value. Nevertheless, in case of the selected VMs list
for any service is empty, IoTSim-Stream shows a message to the
user indicating that, and then is terminated. This happens because
there is no VM offer available in the selected datacentre that can
achieve the required MIPS for processing at least one stream unit
according to the value of data processing requirement of such
service. Therefore, the user in that case can either reduce the
value of minimum stream unit (leading to reduction in the value
of required MIPS for processing one stream unit) or add VM offer
that satisfies processing at least one stream unit for this service.

Fig. 4 presents the flow of communication for initializing
IoTSim-Stream, provisioning SVMs and scheduling ServiceCloudlet
on the provisioned SVMs. Once a stream graph application is
submitted, GraphAppEngine handles this submission and sends
to itself START_DELAY event to allow enough time for BigDat-
acenters to initialize. During processing this event, GraphAp-
pEngine sends RESOURCE_CHARACTERISTICS event to each Big-
Datacenter and waiting for their replies. When all BigDatacen-
ters send their replies as RESOURCE_CHARACTERISTICS events,
GraphAppEngine processes them and then triggers the process
of provisioning and scheduling such application by sending to
itself DO_PROVISIONING_AND_SCHEDULING event. In doProvi-
sioningAndScheduling() procedure, the following functions are
performed:

1. call collectVMOffers() procedure to collect all VM offers
provided by BigDatacenters by querying them.

2. send XML file of submitted application along with the list
of VM offers to scheduling policy. This policy then ex-
ecutes processDagFileAndScheduling() procedure to parse
this file, extracts the structure of application, selects the
best suitable SVMs and prepares the scheduling plan. After
the selection of suitable VMs, the objects for SVM and
ServiceCloudlet are created.

3. retrieve the generated scheduling plan or table.
4. use this scheduling plan to provision and create SVMs

by sending messages (VM_CREATE_ACK) to corresponding
BigDatacenters via event mechanism.

While receiving acknowledgements (i.e. VM_CREATE_ACK
events) for SVM creations from BigDatacenttres, each acknowl-
edgement for one SVM is processed as it arrives and the cor-
responding ServiceCloudlet is dispatched to this SVM by call-
ing dispatchServiceCloudlets() procedure; this procedure sends
CLOUDLET_SUBMIT event to corresponding BigDatacenter, which
processes the received event (CLOUDLET_SUBMIT) and schedules
this ServiceCloudlet on a SVM.

Fig. 5 shows the process of sending data streams from ex-
ternal sources and transferring input and output data streams
to and from SVMs. Once a stream graph application is being
scheduled on SVMs (i.e. ServiceCloudlets of application services
have been scheduled on SVMs and ready for execution), the
GraphAppEngine sends to itself END_OF_SIMULATION event with
the delay specified by user-defined requested simulation time;
this event will being sent after this delay, which triggers the end
of simulation process. Then, it sends SEND_STREAM events to
all external sources requesting them to start sending their data
streams to corresponding BigDatacenters, where these datacen-
tres will forward those streams to respective SVMs. At that time,
the simulation begins.

Algorithm 1: Simple Provisioning and Scheduling Policy.
Require: minDPUnit a data processing rate for minimum stream unit in an

application
1: for each service in Services do
2: selectedVMs← φ

3: requiredMIPS← service.userreq ∗ service.dataprocessingreq
4: placementCloud← pick random Cloud from avaliable Clouds
5: VMOffers← get VM flavours in accending order of power
6: for each vmi in VMOffers do
7: vmMIPS← get vmi power
8: if vmMIPS/service.dataprocessingreq < minDPUnit then
9: continue
10: end if
11: if vmMIPS ≤ requiredMIPS then
12: if i+ 1 < n then
13: nextvmMIPS← get vmi+1 power
14: if nextvmMIPS > requiredMIPS then
15: toProvisionVM← true
16: end if
17: else
18: selectedVMs← selectedVMs ∪ vmi
19: requiredMIPS← requiredMIPS− vmi power
20: i← i− 1
21: end if
22: else
23: if i− 1 ≥ 0 then
24: previousVmMIPS← get vmi−1 power
25: if previousVmMIPS ≥ requiredMIPS &&
26: previousVmMIPS < vmMIPS &&
27: previousVmMIPS/service.dataprocessingreq ≥ minDPUnit then
28: i← i− 2
29: else
30: toProvisionVM← true
31: end if
32: else
33: toProvisionVM← true
34: end if
35: end if
36: if toProvisionVM == true then
37: selectedVMs← selectedVMs ∪ vmi
38: requiredMIPS← requiredMIPS− vmi power
39: toProvisionVM← false
40: end if
41: if requiredMIPS ≤ 0 then
42: break
43: end if
44: end for
45: if selectedVMs is empty then
46: show message ‘provisioning failed’ to the user
47: terminate the currently running simulator (i.e exit)
48: end if
49: end for

Each external source that receives SEND_STREAM event will
process it and queries StreamSchedulingOnSVMs object about the
portions of its stream and the information of BigDatacenters and
SVMs where these portions should be transferred and available.
When these portions are received along with the relevant infor-
mation (i.e. destination BigDatacenters and SVMs), this external
source immediately sends them as EXSOURCE_STREAM events to
destination BigDatacenters. Each EXSOURCE_STREAM event will
be processed by corresponding BigDatacenter whose will send
to itself STREAM_AVAILABLE event. It then processes this event
to make stream portion available in the corresponding SVM by
adding such portion to the input queue of corresponding SVM and
sends to itself VM_DATACENTER_EVENT.

When VM_DATACENTER_EVENT being received by BigData-
center, it processes this event and then updates the state of all
simulated entities in a BigDatacenter. At this point, all stream
portions available in input queues of all SVMs in all hosts will
be moved to the input queues of corresponding ServiceCloudlets
via their schedulers, making them available for processing. As
well, all output streams available in output queues of Service-
Cloudlets as results of computations will be moved to output
queues of corresponding SVMs in order to be transferred later.
Next, this BigDatacenter sends another VM_DATACENTER_EVENT
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Fig. 5. Sequence Diagram: Transferring and exchanging data streams among SVMs.

to itself for future updating. After that BigDatacenter starts the
next communication flow to transfer output streams of Service-
Cloudlets available at their SVMs to destination SVMs in order
to be input streams for others ServiceCloudlets. Thus, BigData-
center checks output queues of all hosted SVMs looking for any
output stream available as a result of completed computation.
For each output stream available at a SVM, it queries Stream-
SchedulingOnSVMs object about the portions of such stream and
the information of destination BigDatacenters and SVMs where
these portions should be available. It then use this information
to send each stream portion to destination BigDatacenter as a
message (i.e. TRANSFER_STREAM event) via event mechanism.

Each TRANSFER_STREAM event is processed by corresponding
BigDatacenter whose creates an ingress or egress channel based
on whether the transmission of included stream portion is in-
bound or outbound if such channel does not exist. It then updates
its network and adds a new stream transmission to such channel
for transferring stream portion. During the addition, if such trans-
mission is between co-hosted SVMs or it is inbound transmission
with short transmission delay, this BigDatacenter sends to it-
self STREAM_AVAILABLE event with cohosted delay for cohosted
transmission or with ingress latency for inbound transmission.
While if the transmission is outbound transmission and transmis-
sion delay is short, this BigDatacenter sends STREAM_AVAILABLE
event to the destination BigDatacenter with egress latency to such
BigDatacenter. Whereas in case of transmission delay for either
inbound or outbound transmission is longer than the pre-defined
minimum quantum of time between events (i.e. 0.01 s - 10 ms),
this BigDatacenter sends to itself UPDATE_NETWORK event with
this delay. Furthermore in network update, this BigDatacenter
updates the processing of stream transmissions in all ingress
and egress channels, where for each arrived stream, it sends

STREAM_AVAILABLE event with ingress or egress latency based
on transmission type to corresponding destination BigDatacenter
(i.e. itself or other BigDatacenter). Such Bigdatacenter will process
this event to make the transferred stream portion available into
the corresponding SVM.

Nevertheless, the whole process of transferring and exchang-
ing streams among different SVMs hosted in different BigDat-
acenters continues until END_OF_SIMULATION event being re-
ceived (i.e. thereafter the pre-defined delay at the begin of sim-
ulation). At that time, GraphAppEngine receives this event and
processes it, and then starts the end of simulation process, which
includes the followings:

1. stop external sources from sending their streams to corre-
sponding BigDatacenters by sending STOP_SENDING_
STREAM events to them.

2. change the status of all ServiceCloudlets to ‘Success’, indi-
cating the end of their executions.

3. destroy all provisioned SVMs by sending VM_Destroy
events to their BigDatacenters, which process these events
and destroy the hosted SVMs.

When dealing with scheduling, CloudSim has two schedulers,
which are VmScheduler and CloudletScheduler. The VmScheduler
is host-level scheduler that can run either in space-shared or
time-shared mode for allocating cores of processor from a host
to VMs (i.e. virtual machine monitor allocation policy). While,
the CloudletScheduler is VM-level scheduler that can also run in
one of the aforementioned modes for determining the computing
power share between Cloudlets in a VM [4]. Since each Service-
Cloudlet is submitted to one SVM and this SVM needs to handle
the continuous execution of this cloudlet to process incoming
streams and produce output stream, the new VM-level scheduler
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is required. Therefore, we implement VM-level scheduler named
ServiceCloudletScheduler for each SVM within IoTSim-Stream.
This scheduler runs in space-shared scheduling mode.

As the ServiceCloudletScheduler is running, it continuously
checks its input queue (inputQueue) looking for any incoming
streams. If inputQueue is not empty and the waitingStreams-
ForNextPC flag is true (see Line 37), the ServiceCloudletScheduler
enters into the while-loop and performs the following steps on
each iteration (see Line 39–57):

1. Fetches the head of inputQueue (i.e. input stream portion
with least portion id) and dequeues this stream in case
of this stream is not existing in working input stream list
(workfingInputStream), and then adding it into such list,
preparing for next PC (see Line 42–46).

2. Checks if all required stream portions for one PC arrive and
they are added to workfingInputStream in order to perform
the appropriate action (see Line 47–56):

• If yes, it then checks if the time required to process
streams included in this PC based on the capacity
of cloudlet is less than 0.1, therefore it moves those
streams to assumeProcessedStreams list and empties
workfingInputStream list. Otherwise, it changes the
flag of ‘‘check’’ to false. This flag helps to get out of
while-loop either in case of stream portions included
in workfingInputStream list need processing time at
least as long as the minimum time for one PC (i.e. 0.1)
or the head of inputQueue is stream portion for next
PC based on portion id.
• If no, it changes the ‘‘check’’ flag to false if the value of

continueCheck flag is false. The continueCheck flag is
used to continue in while-loop as the previous head of
inputQueue has been dequeued from this queue (see
Line 42–46), so that in next iteration, the next head
can be fetched and checked to be either dequeued or
not. That is very important to fetch and dequeue all of
those streams required for one PC as they arrive and
before the next update of the scheduler if possible,
ensuring low-latency data processing.

When all required stream portions for one PC arrive and
they are added to workfingInputStream, and waitingStreams-
ForNextPC flag is true, the scheduler calculates the total size
of input stream portions and using it with the value of data
processing requirement for a service to update the length of
cloudlet. Then, it changes the startPC flag to true that indicates
the start of one PC and waitingStreamsForNextPC flag to false
as we are in the phase of starting the execution of one PC (see
Line 60–70). After that, the scheduler starts the execution of
this PC to process the included stream portions in such PC and
updates completion/progress accordingly (see Line 10–13). While
the execution of one PC and updating its progress, the scheduler
also checks the completion of this PC, so that when the execution
finishes (i.e. renaming cloudlet length equals zero), it performs
the following steps (see Line 15–35):

1. changes the startPC flag to false that indicates the end of
execution of one PC (this PC).

2. produces the output stream and add this stream into out-
putQueue.

3. empties the working stream list (workfingInputStream)
4. changes the waitingStreamsForNextPC flag to true that in-

dicates the current status backs to wait for stream portions
to be arrived if they are not arrived yet and to fetch those
portions from input queue required to start new PC.

Algorithm 2: ServiceCloudletScheduler for scheduling and
executing ServiceCloudlet on a VM.
1: outputQueue← φ

2: inputQueue← φ ▷ PriorityQueue sorting stream portions by ids - ascending
order

3: workingInputStreams← φ ▷ list of input streams for a Processing Cycle (PC)
4: assumeProcessedStreams← φ ▷ list of input streams that is assumed to be

processed
5: startPC← false ▷ flag for starting one PC
6: waitingStreamsForNextPC← true
7: totalOutputSize← 0
8: totalInputSize← 0
9: for each ServiceCloudlet cl in CloudletExecList do ▷ One ServiceCloudelt exists
10: if startPC == true then ▷ when all required input stream portions are

available for one PC
11: start processing stream portions in this cycle
12: update the completion of this cycle
13: end if
14:
15: if waitingStreamsForNextPC == false then ▷ Execution of one PC for

ServiceCloudlet is in progress
16: if rcl.getRemainingCloudletLength() == 0 then ▷ Completion of one PC
17: startPC← false
18: produce output stream
19: if totaOutputSize == 0 then
20: totaOutputSize← size of output stream
21: end if
22: if totalInputSize == 0 then
23: totalInputSize← sum sizes of required input streams
24: end if
25: numOfProcessedStreams ←

size of workingInputStreams + size of sassumeProcessedStreams size
26: processedPortionsSize← max portion size * numOfProcessedStreams
27: proportionInToOut ← totalOutputSize/totalInputSize
28: outputStreamSize← processedPortionsSize ∗ proportionInToOut
29: create output stream with outputStreamSize
30: enqueue created output stream in outputQueue
31: workingInputStreams← φ

32: assumeProcessedStreams← φ

33: waitingStreamsForNextPC← true
34: end if
35: end if
36:
37: if inputQueue is not empty && waitingStreamsForNextPC == true then
38: check← true
39: while check && inputQueue is not empty do
40: continueCheck← false
41: stream_portion← retrieve the head stream portion of this queue ▷ not

dequeue from priority queue
42: if stream_portion is not in workingInputStreams then
43: stream_portion← perofrm dequeue operation from inputQueue
44: add stream_portion in workingInputStreams
45: continueCheck← true
46: end if
47: if stream portions required for one PC being arrived then
48: if required MIPS for processing these streams in this PC / cloudlet

capacity < 0.1 then ▷ 0.1 is min. time for one PC
49: move stream portions to assumeProcessedStreams list
50: workingInputStreams← φ

51: else
52: check← false
53: end if
54: else if continueCheck == false then
55: check← false
56: end if
57: end while
58: end if
59:
60: if stream portions required for one PC being arrived && waitingStreams-

ForNextPC == true then
61: InPortionsSize← sum sizes of input stream portions
62: clLength← service_processing_req ∗ InPortionsSize ▷ length of

ServiceCloudlet
63: if cloudlet length == 1 then ▷ value assigned when cloudlet initialized
64: cl.length = ((current total length of ServiceCloudlet + clLength) / cpus) -1
▷ length in MIPS

65: else
66: cl.length = (current total length of ServiceCloudlet + clLength) / cpus ▷

length in MIPS
67: end if
68: startPC← true
69: waitingStreamsForNextPC← false
70: end if
71: end for
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Table 3
Configuration of datacenters.
Parameter configuration Datacenter 0 Datacenter 1

Hosts 1000 1000
PEs 64 64
MIPS per PE 1000 2000
RAM per Host (MB) 144000 176000
Storage per Host (MB) 1400000 1500000
VM Boot Delay Time (sec) 20 20

Table 4
Types and configuration of VMs in modelled datacenters.
VM type Datacenter 0 Datacenter 1

Small PEs: 2
MIPS: 1000
RAM (MB): 4096
Storage (MB): 8192
Bandwidth (MB/s): 1000

PEs: 2
MIPS: 2000
RAM (MB): 4096
Storage (MB): 8192
Bandwidth (MB/s): 1000

Medium PEs: 4
MIPS: 1000
RAM (MB): 7168
Storage (MB): 16384
Bandwidth (MB/s): 1000

PEs: 4
MIPS: 2000
RAM (MB): 8192
Storage (MB): 18432
Bandwidth (MB/s): 1000

Large PEs: 8
MIPS: 1000
RAM (MB): 14336
Storage (MB): 32768
Bandwidth (MB/s): 1000

PEs: 8
MIPS: 2000
RAM (MB): 16384
Storage (MB): 34816
Bandwidth (MB/s): 1000

Extra Large PEs: 16
MIPS: 1000
RAM (MB): 30720
Storage (MB): 65536
Bandwidth (MB/s): 1000

PEs: 16
MIPS: 2000
RAM (MB): 32768
Storage (MB): 69632
Bandwidth (MB/s): 1000

7. Validation and evaluation

To validate and quantify the efficiency of IoTSim-Stream in
simulating stream graph applications in Multicloud environment,
we design two experiments, which are simulator validation, and
performance and scalability evaluation. We conduct these ex-
periments on a machine that had Intel Core i7-6600U 2.60 GHz
(with 2 cores and 4 logical processors), 16GB of RAM memory
and running Windows 10 Enterprise, and then collecting the
experimental results. In this section, we present our experimental
methodology (including Multicloud environment configuration,
network configuration, simulation configuration parameters and
evaluation experiments) and discusses the experimental results.

7.1. Multicloud environment

Multicloud environment consolidates multiple Clouds in order
to maximize the benefits from Cloud services, which opens the
door towards orchestrating the execution of multiple applications
over various Clouds. To model this environment for our experi-
ments, we define two Clouds (i.e. two Cloud-based datacentres)
and configure them as listed in Table 3. For each datacentre, we
define four different flavours of VMs, which are Small, Medium,
Large and Extra Large, where the configurations of VM vary from
one datacentre to another, matching what the Cloud datacentre
is in real. Table 4 shows the configurations of VM for the both
defined datacentres. This Multicloud environment configuration
is consistent throughout the entire evaluation.

7.2. Network configuration

Network performance of Multicloud environment determines
the amount of data being transferred within the Cloud-based dat-
acentre (ingress traffic) and between different Cloud-based data-
centres (egress traffic). For our experiments, we have conducted

Table 5
Configuration of network performance of modelled multicloud environment.
Network parameter Datacenter 0 Datacenter 1

Ingress Bandwidth 770 MB/s 780 MB/s
Ingress Latency 0.00077 s 0.00075 s
Egress Bandwidth 170 MB/s 180 MB/s
Egress Latency 0.028 s 0.026 s

TCP bandwidth and latency tests between different zones of Nec-
tar Cloud1 [18] using IPerf2 and Ping utility, and then collected
the results for both bandwidth (in MB/s) and latency (in second).
We chosen average values to model network performance for
both ingress and egress traffic for Cloud-based datacentres in
the modelled Multicloud environment as listed in Table 5. Since
studying the network performance is out of scope of this paper
and for simplicity purpose, we made the configuration of network
performance for both Cloud-based datacentres in the modelled
environment is identical with slight difference. This configura-
tion of network performance for those datacentres is consistent
throughout the entire evaluation.

7.3. Simulation configuration properties

Prior to run the simulator, we need to configuration its pa-
rameters that are defined in simulation properties file (simula-
tion.properties). These parameters will be read by IoTSim-Stream
during initialization for preparing to simulate given stream graph
application according to specified configurations. Table 6 shows
the simulation parameters that included in this file with their
description and values used in our experiments.

The parameters from ‘‘cloud.provider’’ to ‘‘external.latency’’
shown in the above table need to be repeated for each Cloud
provider (i.e Cloud-based datacentre) defined in Multicloud envi-
ronment. As we mentioned earlier for our experiments, we define
and configure two datacentres as listed in Table 3. Thus, two
sets of these parameters are defined in simulation.properties file,
where the first set is for the first datacentre and the second set
is for the second datacentre.

7.4. Evaluation experiments

As we mentioned earlier, two experiments are considered for
our evaluation of IoTSim-Stream, which are as follows:

• Experiment 1 (Simulator Validation): Validate the correct-
ness of IoTSim-Stream in modelling, scheduling and ex-
ecuting stream graph applications in Multicloud environ-
ment. This experiment presents a comparison between the
amount of data streams being processed in simulated and
real time (theoretical) executions for different structures of
stream graph applications. Theoretical execution is a manual
(hand-held) process to execute stream graph application
service-by-service and collect the results for total amount of
data streams being processed by this application, providing
a rigorous results to compare with simulated results. Using
these applications in their simple form (called simple stream
graph applications) rather than their complex form (called
complex stream graph applications) in this comparison is
sufficient. That is because conducting this comparison for
complex stream graph applications is not only so compli-
cated in real time using theoretical execution, but it adds

1 The National eResearch Collaboration Tools and Resources project (Nectar)
provides Cloud computing infrastructure for Australia’s research community.
2 IPerf is a cross-platform network performance measurement tool for both

Transmission Control Protocol (TCP) and User Datagram Protocol (UDP).
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Table 6
User-defined simulation parameters configuration.
Parameter Description Value

simulation time The requested simulation time in seconds Refer to experiments
scheduling.policy Provisioning and scheduling policy SimpleSchedulingPolicy
dag.file Path of XML file of stream graph application path_value
cloud.datacenter Number of Clouds in Multicloud environment, where each Cloud is

represented by a datacenter
2

engine.network.bandwidth Network bandwidth of GraphAppEngine 300
engine.network.latency Network latency of GraphAppEngine 0.05
cloud.provider Index of Cloud provider in Multicloud environment (index starting from

0)
value

datacenter.hosts#index
(ex. datacenter.hosts#0)

number of hosts in datacenter value

vm.delay#index Average delay of VM boot time value
vm.offers#index Path of Java class for offerings of Cloud-based datacentre packagename.classname
host.cores#index Number of cores (PEs) available for each host value
host.memory#index Amount of memory available for each host value (unit: MB)
host.storage#index Amount of storage available for each host value (unit: MB)
core.mips#index MIPS for each core or PE value
internal.bandwidth#index Internal network bandwidth available for each VM within Cloud-based

datacentre
value (unit: MB/s)

internal.latency#index Network delay between VMs within Cloud-based datacentre value (unit: MB/s)
external.bandwidth#index External network bandwidth available by Cloud-based datacentre for

transferring data streams to other datacentres
value (unit: MB/s)

external.latency#index Network delay from Cloud-based datacentre to other dataentres value (unit: MB/s)

Fig. 6. Stream graph applications with their parameter configurations for our experiments.

more complication without any need or benefit in such
validation. Thus from this comparison, we can ensure the
correctness of modelling simple stream graph applications
in Cloud infrastructures, inferring to the correctness of mod-
elling even more complex stream graph applications as well,
since only the complexity of application structure and its
performance requirements are what varies.

• Experiment 2 (Performance and Scalability Evaluation):
Study of the performance of IoTSim-Stream in term of ex-
ecution time, CPU and memory usage along with the total
amount of processed data streams with small to medium to
extremely large stream graph applications. This experiment
shows the ability of proposed simulator to model, simulate
and schedule not only simple stream graph applications, but
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Table 7
Mapping services of stream graph applications on VMs.

APP1 APP2 APP3

Required MIPS per Service S0: 2000
S1: 2000
S2: 4000
S3: 4000

S0: 2000
S1: 2000
S2: 4000
S3: 8000

S0: 8000
S1: 4000
S2: 8000
S3: 4000
S4: 16000
S5: 32000
S6: 16000

VM Type per Service S0: Small - Datacenter 0
S1: Small - Datacenter 0
S2: Small - Datacenter 1
S3: Small - Datacenter 1

S0: Small - Datacenter 0
S1: Small - Datacenter 0
S2: Small - Datacenter 1
S3: Medium - Datacenter 1

S0: Medium - Datacenter 1
S1: Medium - Datacenter 0
S2: Large - Datacenter 0
S3: Medium - Datacenter 0
S4: Large - Datacenter 1
S5: Extra Large - Datacenter 1
S6: Extra Large - Datacenter 0

Fig. 7. Real and simulated total size of processed data streams of three graph applications.

even more complex stream graph applications in Multicloud
environment. That makes researchers confidently study the
behaviours of different structures and configuration sizes
of stream graph applications for further evaluations and
improvements. For example, developing new provisioning
and scheduling policies, improving execution performance,
and studying QoS and SLA requirements for this type of
applications.

Fig. 6 shows the structures and parameter configurations of
three stream graph applications (named App1, App2 and App3)
that will be used in our experiments. For Experiment 1, we use

those modelled applications in their simple form as shown in this
figure. While for Experiment 2, we use them in their complex
form (i.e. each one of them is replicated several times to generate
the complex graph structure with hundreds and thousands of
nodes (services)) to assess the performance and scalability of
IoTSim-Stream. As seen from this figure, each stream graph appli-
cation is composed of multiple services with one or more external
sources. Each external source produces output data stream per
second according to its data rate (in MB/s) that will be feed
into corresponding service(s). And each service in this application
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needs the following configurations: data processing requirement,
user performance requirement, input streams and output stream.

7.5. Experiment 1: validation

To validate the behaviour of IoTSim-Stream, two tests are con-
ducted. In the first test, we undertook the theoretical execution of
the three modelled stream graph applications for 20 s and collect
the total size pf processed data streams as experimental results
for this real execution. While in the second test, we undertook the
simulated execution of these applications on real Cloud infras-
tructure using IoTSim-Stream for also 20 s and collect the total
size of processed data streams as experimental results. In these
experiment tests, we use the default value of data processing rate
for minimum stream unit (i.e 1MB/s) defined in IoTSim-Stream
for both real and simulated executions. Thus, any stream that is
larger than minimum stream unit will be divided into portions
and each portion is 1MB in size. For example, if the input rate of
service is 4MB/s, the stream will be divided into four portions. As
well for this experiment, we pre-defined the mapping of services
of modelled applications (App1, App2 and App3) on VMs, where
each service has one ServiceCloudlet mapped on one VM as listed
in Table 7. Of course, there are many possible VM mappings
of services of these applications, but we only present one VM
mapping and use it in these experiment tests.

As comparing the total amount of data streams being pro-
cessed by each modelled application in given time is a real
indication for measuring the accuracy, we then compare the col-
lected experimental results of both real and simulated executions
in order to quantify the accuracy and precision of IoTSim-Stream
. Fig. 7 shows the real and simulation results for modelled stream
graph applications. Certainly, the increase in time leads to an
increase in the amount of data streams being processed by a
stream graph application. The difference between both results is
very slight and the results of IoTSim-Stream simulation match
very closely to the real ones. As the time increases, the little
difference occurred between both results is being reduced and
the simulation results become more closer to match real ones.
Consequently, the accuracy of simulation results from IoTSim-
Stream in comparison with theoretical results is indicated that
IoTSim-Stream is efficient in modelling and simulating the exe-
cution of different structures of stream graph applications on real
Multicloud environment.

7.6. Experiment 2: performance and scalability evaluation

As we mentioned before, the aim of this experiment is to
analyse the overhead and scalability of CPU and memory us-
ages as well as measuring the execution time of IoTSim-Stream
simulations along with the total amount of data streams being
processed during these simulations. Thus in this experiment, we
use the modelled stream graph applications (App1, App2 and
App3) with varying configuration sizes (ranging from very small
to extremely large) as listed in Table 8. Each configuration size
has different number of services and DPs.

The CPU usage information is collected using built-in Java
management interface for the operating system (called ‘‘Operat-
ingSystemMXBean’’) on which the Java Virtual Machine (JVM) is
running. This usage is measured every second during simulation
time and the average value is taken. While the memory usage
information is collected using Java Runtime. The execution time
is the time required to simulate given application at a given sim-
ulation time. Each test was repeated 10 times and average results
are obtained and used in representation of experimental results.
The provisioning and scheduling policy presented in Algorithm 1
is used to schedule each configuration size of each application

on SVMs, where the scheduling plan for each one is the same
across all ten repeated simulations. The default value of data
processing rate for minimum stream unit (i.e 1MB/s) defined in
IoTSim-Stream is also used in this experiment.

7.6.1. Experimental tests under fixed simulation time
The first set of tests are aimed at evaluating performance and

scalability of IoTSim-Stream with different configuration sizes of
the modelled applications when the simulation time is set to
5 min. Prior to analysis the obtained performance and scalabil-
ity results, it is worth discussing the experimental results for
the total amount of data streams being processed by modelled
applications with their different configuration sizes. This discus-
sion gives an indication about the amount of computations that
carried-out and helps to quantify the performance of IoTSim-
Stream by magnitude of processed data streams. Fig. 8 shows the
experimental results for total size of data streams being processed
by each configuration size of each modelled application. From
this figure, it is clear that as the configuration size of applica-
tion increases the amount of processed streams is increasing,
where the total size of processed streams reaches about 3TB with
App2_doublelarge and App3_doublelarge for 5 min simulation.
The exception from this increasing is App1_doublelarge since this
application is linear and replicating it is also in linear way, and as
simulation time is set to 5 min, the additional 1000 services from
the prior configuration size did not process any streams (i.e. they
are waiting for them). Therefore, the total amount of processed
streams for this configuration size is the same as App1_verylarge.

Another point from Fig. 8 is that the total amount of streams
processed by App3 in comparison with App2 is approximately the
same in some cases and less in other cases particularly from small
configuration size, even though App3 has a close or even more
number of services and its parameter configurations shown in
Fig. 6 indicated that the total amount of streams being processed
per second by its services according to user performance require-
ments is also greater. The reason behind it is that by considering
the number of services of this application (i.e. 7 services), the
replication of App3 several times to reach the number of services
required at each configuration size makes the total number of
services being replicated is less than those services being repli-
cated in App2, where some more intermediate and final merging
services are needed to merge outputs of replicated services and
produce outputs as original application. For example, to generate
App3_small and App3_verylarge, App2 services are replicated 2
times and 141 times (i.e. # of services be 14 and 987) respectively,
while to generate App2_small and App2_verylarge, App2 services
are replicated 5 times and 248 times (i.e. # of services be 20
and 992) respectively, and the rest service(s) is/are added as
intermediate and final merging services (i.e. 3 for App3_small,
15 for App3_verylarge, 1 for App2_small, and 9 for App2_Large).
Overall, the amount of data being processed by those applications
is huge and IoTSim-Stream is simulating them effectively.

The performance and scalability results for modelled stream
graph applications with their different configuration sizes are
depicted in Fig. 9. From the experimental results shown in this
figure, our analysis and findings are summarized as follows:

• The results of execution time showed that the execution
time is slightly increasing from very small to large config-
uration sizes with all modelled applications, where IoTSim-
Stream is able to simulate large configuration size of App1,
App2 and App3 for 5 min in approximately 6 s, 5 s and 5 s
respectively and using less than 560MB of memory, where
the total size of processed streams is approximately 149GB
by App1, 148GB by App2 and 157GB by App3. While for very
large and double large configuration sizes of the modelled
applications, the execution time is significantly increased.
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Table 8
Number of services and DPs in each configuration size for each modelled stream graph application.
SIZE APP1 APP2 APP3

Very Small 4 Services - 1 DP
(called App1_verysmall)

4 services - 1 DP
(called App2_verysmall)

7 services - 2 DPs
(called App3_verysmall)

Small 20 services - 5 DPs
(called App1_small)

21 services - 5 DPs
(called App2_small)

17 services - 4 DPs
(called App3_small)

Medium 52 services - 13 DPs
(called App1_medium)

53 services - 13 DPs
(called App2_medium)

45 services - 12 DPs
(called App3_medium)

Large 100 services - 25 DPs
(called App1_large)

100 services - 24 DPs
(called App2_large)

108 services - 30 DPs
(called App3_large)

Very Large 1000 services - 250 DPs
(called App1_verylarge)

1001 services - 248 DPs
(called App2_verylarge)

1002 services - 282 DPs
(called App3_verylarge)

Double Large 2000 services - 500 DPs
(called App1_doublelarge)

2001 services - 496 DPs
(called App2_doublelarge)

2001 services - 564 DPs
(called App3_doublelarge)

Fig. 8. Total size of processed data streams with different configuration sizes of the modelled applications.

Fig. 9. Performance of the modelled applications with different configuration sizes.

This behaviour is expected as the number of services is
10 times and 20 times more than the number of services
in large configuration size respectively as well as the total
amount of streams being processed by those applications
is also sharply increased. As an instance, IoTSim-Stream
simulates App2_verylarge and App2_doublelarge for 5 min
in approximately 1.8 min and 6 min respectively and using
less than 200MB of memory, with total amount of processed
streams is approximately 1.5TB by App2_verylarge and 3TB
by App2_doublelarge. Thus, IoTSim-Stream is able to simu-
late a complex stream graph application with thousands of
services that process huge amount of data streams (big data)
with excellent performance and scalability.
• The results of CPU usage for all modelled applications with

all configuration sizes except very small and small config-
uration sizes is not exceed 27%. This usage is an excellent
CPU performance in the machine that has 4 logical proces-
sors where this experiment is conducted, which translates
to roughly usage of one logical processor. Certainly, more
computing power allocated to VM leads to further decline
in CPU usage. For CPU usage with very small and small

configuration sizes of modelled applications, the percentage
is little higher as the simulation of these applications is
completed in less than 2.2 s, so that some of measured
usages are CPU bursts.
• The results of memory usage showed that memory fluctu-

ates with different configuration sizes of different modelled
application. These results also showed that IoTSim-Stream is
able to simulate double large configuration size of modelled
applications used less than 220MB of memory. These ob-
servations proved that IoTSim-Stream is capable of simulat-
ing complex stream graph applications with little memory
overhead.
• IoTSim-Stream not only provides the ability to simulate

different stream graph applications, it also offers signifi-
cant gains in regards to easily measure and evaluate the
execution performance. These gains are very important as
it is almost unattainable to calculate and collect the exe-
cution time and performance (in term of CPU and mem-
ory usage) in a large-scale test environment on Multicloud
environment.
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7.6.2. Experimental tests under varying of simulation times
The second set of tests are aimed at evaluating performance

and scalability of IoTSim-Stream with chosen configuration sizes
for the modelled applications when simulation time is varying.
For these tests, we chose two configuration sizes to study non-
complex and complex structure of the modelled stream graph
applications with the following simulation times: 300 (5min),
600 (10min), 1200 (20min), 1800 (30min), 2400 (40min), 3000
(50min) and 3600 (1 h).

Fig. 10 depicts the total amount of streams processed by cho-
sen configuration sizes of the modelled applications. As expected,
the amount of processed data streams is increased as simulation
time increases for all modelled applications, where the maximum
total size of processed streams with small configuration size is
approximately 379.6GB for App2, and with very large configura-
tion size is 18TB for App1 in 1 simulation hour. That is showing
how the amount of streams being processed is huge and IoTSim-
Stream is effectively simulating those applications on Multicloud
environment.

Fig. 11 depicts the performance and scalability results of cho-
sen configuration sizes of the modelled applications. The results
showed that the execution time with small configuration size
of all modelled application except App3 is scaled sub-linearly as
simulation time increases, where IoTSim-Stream is completed 1 h
of simulation for small configuration size of App1 in less than
17 s, App2 in less than 15 s and App3 in less than 8 s. These
performance observations for execution time with small config-
uration size proved that IoTSim-Stream is effectively simulating
those applications for long simulation times in a very short time,
within a matter of seconds. For very large configuration size of all
modelled application, the results showed that the execution time
is scaled sub-linearly as simulation time increases, where IoTSim-
Stream is completed 1 h of simulation for very large configuration
size of App1 in less than 29 min, App2 in less than 24 min and
App3 in less than 27 min. These performance observations for
execution time with very large configuration size of modelled
applications proved that IoTSim-Stream is effectively simulating
those complex applications for long simulation times in a short
and reasonable time, within a matter of minutes.

In regards to CPU usage with small configuration size, we
observed that a fluctuation between approximately 10% and 41%
for modelled applications when simulation time is 5 min. As
simulation time increases, we observed a steady usage and this
usage is not exceed 26%. While with very large configuration size,
we observed a steady usage as simulation time increases and the
this usage is not exceed 28%.

As regards memory usage with small configuration size, the
results showed a significant dropping in this usage for App1 at
40 min of simulation and slight dropping in this usage for App2
and App3 at 30 min of simulation due to the behaviour of mod-
elled application, and then it becomes steady as simulation time
increases with all modelled applications. The lowest memory
usage recorded with small configuration size is 36MB. While with
very large configuration size, we observed that memory usage is
scaled sub-linear and never grew beyond 660 MB even for 1 h of
simulation. Therefore, less than 700MB of memory is sufficient for
IoTSim-Stream to simulate very large configuration size of each
modelled application for 1 h, where each application processed
several terabytes of data streams during this simulation.

8. Significance and practicality of IoTSim-stream

To have a look on the practicality of the proposed simulator,
we discuss one of IoT graph applications in smart cities as a real
world example. Connected cars application has become largely
and widely accepted. By 2020, Gartner foresees more than a

quarter billion connected vehicles on the road, where each one of
them produces approximately 25GB of data per driving hour [4].
Analysing the flood of data coming from roadside infrastructure
(e.g. traffic lights, cameras) and connected cars allow to get real-
time analytical insights that help in different services of smart
city such as traffic condition and control, and smart parking.
Modelling such type of IoT application using IoTSim-Stream is
a straightforward task to investigate how this application will
behave and evaluate its performance in Cloud infrastructures at
no execution cost.

In this IoT graph application, each roadside infrastructure de-
vice or connected car can be modelled as an external source, and
each analytical component (such as vehicle detection, roadside
data analysis, traffic analysis and traffic controlling) can be mod-
elled as an independent service and is executed over any virtual
resources. The coordination of application execution (i.e. control
flow) and data dependencies (i.e. data flow) among the modelled
services are defined in accordance of application logic. Based on
that, the flows of data from external sources are continuously
injected into the corresponding services and those flows from
internal sources as continuous output streams which are results
of the continuous computations carried-out by modelled services
are routed towards the corresponding services.

The structure of this graph application involves heteroge-
neous services, multiple data sources, multiple input and output
streams, can now be expressed in DAG file by including all
modelled services with their data processing requirements and
performance constraints that defined by the owner of this appli-
cation, and data dependencies among them. Moreover, IoTSim-
Stream supports the modelling of different patterns/structures
of stream workflow applications, which are linear, branching
and hybrid. Linear workflow pattern (like App1) is a multi-stage
application, where each stage processes input stream gener-
ated by the previous stage and produces the output stream to
the following stage. Branching workflow pattern (like App2) is
an application with limited precedence constraints that splits
data stream to perform different parallel processing and then
combining the results for further analysing. Hybrid workflow
pattern (like App3) is a mix of linear and branching patterns.
Thus, whether the pattern/structure of the aforementioned IoT
graph application is linear, branching or hybrid with various
data processing requirements and configuration complexities,
IoTSim-Stream is able to simulate it in Multicloud environment.
Furthermore, IoTSim-Stream enables the researcher to define the
execution environment with its network performance (i.e. Multi-
cloud environment), providing the full capability to study and in-
vestigate the performance of this application in Cloud computing
platforms.

Accordingly, the aforementioned real world example illus-
trates the need of modelling and orchestrating sIoT graph ap-
plication in simulation environment to support experiments at
planning phase for further enhancing and improving prior to
being deployed in real Cloud infrastructures at production phase.
By controlling the configurations of graph application, execution
environment and simulation environment, the difficulty of hand
over the power of real-time data analytics is simplified even
with most complicated and distributed data pipelines. Thus, the
requirements of achieving real-time data analysis and efficient
workflow orchestration can be investigated through controllable
and repeatable experiments, leading to further research stud-
ies including proposing resource and scheduling policies that
adheres to user-defined SLA and QoS requirements, improving
performance and minimizing execution cost - that is what the
generalized IoTSim-Stream aims to provide.

From the above discussion, our proposed simulator offers sig-
nificant benefits to researchers, allowing them to (1) study how
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Fig. 10. Performance evaluation with small and very large configuration sizes of the modelled applications.

Fig. 11. Performance of the modelled applications with small and very large configuration sizes.
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stream graph applications will perform in the Cloud and its
performance, (2) evaluate the efficiency of new scheduling and
resource allocation policies for such applications in a real-world
simulation environment, (3) test SLA-oriented management and
execution optimization of stream graph applications in Cloud
infrastructures free of cost, and (4) tune the performance bot-
tlenecks at planning and testing stage prior to go production by
deploying the stream graph application on multiple commercial
Cloud platforms. Furthermore, IoTSim-Stream is designed in mind
to be extensible and customizable simulation toolkit, so that it
provides the ability for researchers to extend and define their
policies for adhering user-defined SLA and QoS requirements,
and execution optimization as well as extending and defining
policies in all components of CloudSim software stack since it was
built on top of CloudSim. As a result, IoTSim-Stream is a right
research simulation toolkit that deals with both complexities
emerging frommodelling stream graph application and simulated
environments.

9. Conclusion

In this paper, we proposed IoTSim-Stream, a simulation toolkit
for modelling stream graph applications in Multicloud environ-
ment. We also presented the main components of IoTSim-Stream
with their functionalities. IoTSim-Stream provides fully custom
simulation parameters, making it a suitable research tool to assist
researchers in simulating and studying the behaviour of stream
graph application in Cloud computing environments with easy
to set-up Multicloud environment and customizable user per-
formance requirements. From the results of real and simulated
experiment, IoTSim-Stream has been validated and its correct-
ness is proven in simulating various structures of stream graph
applications. Moreover from the results of extensive performance
and scalability evaluations, IoTSim-Stream is proved to be ef-
fectiveness in modelling and simulating linear, branching and
hybrid patterns/structures of stream graph applications with var-
ious data processing requirements and configuration complex-
ities ranging from simple to moderate to even more complex
configurations.

As IoTSim-Stream a customizable and extensible simulation
toolkit, it enables both industry and research communities to
conduct further research studies by extending and defining poli-
cies for meeting user-defined SLA and QoS requirements, and
for execution optimization in addition to define custom ones
in all components of CloudSim software stack, to test the per-
formance of stream graph applications with their policies more
accurately in a controlled, repeated and easy to set-up simulation
environment.

In the future, we will include failure model to simulate the oc-
currences of failures at service-level or virtual machine-level, and
study more service level agreement constraints such as deploy-
ment costs, performance. We would also like to support workflow
monitoring to monitor the continuous execution of stream graph
applications.
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