
From the editors

4	 IT Pro  March/April 2017	 P u b l i s h e d  b y  t h e  I E E E  C o m p u t e r  S o c i e t y 	 1520-9202/17/$33.00 © 2017 IEEE

Urban Risk 
Analytics in the 
Cloud

R
apid population growth 
in cities demands ef-
fective plans to protect 
people from vulnerabili-

ties, for example, natural disasters. 
Urban risk analytics can play a sig-
nificant role in enabling dynamic 
and timely decision-making for 
risk management in cities. Urban 
risk analytics is the process of ana-
lyzing huge amounts of urban data 
to understand and model city vul-
nerability in a holistic way. Due to 
the complexity of risk management 
for cities, this process requires so-
phisticated techniques such as data 
integration, pattern detection, and 
data mining to manage and process 
big city data from different sources 
using both real-time and batch-
processing models.

Here, we propose a cloud-based 
general framework for facilitating 
effective urban risk analytics over 
big city data. We also discuss re-
search challenges in developing 
cloud-based data integration and 
analytics algorithms for urban 
risk management.

Urban Risk Analytics 
Scenario
Urban data collection systems de-
rived from pervasive sensors are be-
ing deployed in many cities across 

the UK and beyond, including 
Newcastle. These systems—while 
currently delivering moderate data 
volumes (in Newcastle, for in-
stance, we receive about 5 million 
observations per day)—will soon 
ramp up to produce significant data 
volumes for real-time computation 
and data-mining-type computa-
tion of historical data. Additional 
streams of potentially valuable data 
are already being created via social 
media (Twitter, Instagram, and so 
on) and mobile apps. A city is over-
flown many times a day by various 
orbital platforms that provide near 
real-time Earth observation (EO) 
data covering various metrics, from 
urban temperature to atmospheric 
conditions. Infrastructure systems 
underpin the movement of people, 
power, water, and waste around 
the city. Many of these systems 
also provide real-time information 
on the state or flows within them 
and are underpinned by static 
map-type data of features and their 
locations.

A public health official interest-
ed in the air quality risk to asthma 
patients might wish to

•	 analyze an historical archive of  
EO data to look at changing patterns  
across the city;

•	 find hotspots and examine his-
torical real-time observations; 

•	 relate hotspots to particular flow 
indices in the traffic network;

•	 analyze social media for relevant 
keywords or phrases to ascer-
tain visibility issues; and

•	 develop real-time warning sys-
tems for poor air quality.

Individually, each of these tasks 
requires a huge amount of data 
collection, data preparation, and 
subsequent analysis. 

Cities exhibit multiple levels of 
complexity across a large number 
of interacting domains (transport, 
air quality, climate, traffic con-
trol, surface water management, 
and so on) that operate on many 
temporal and spatial scales. This 
diversity of data and associated 
temporal and spatial variability 
has direct impacts on our ability 
to reliably and objectively monitor 
and characterize the environmen-
tal condition of cities. For exam-
ple, although it might be possible 
to monitor several streets in detail 
with regard to their temperature 
and air quality, it is unrealistic to 
undertake this for every street in 
a city. However, images acquired 
by EO satellites and airborne re-
mote sensing devices could let us 
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As several emerging new applications demonstrate, IT plays a major role in creating a connected, smarter 
world and in improving operations in industry and business. Deployment of these applications is further 

fueled by advancements in cloud computing and software development and testing.
Highlighting these trends, in this issue, we feature six articles that focus on smart dairy farming, citizen well-

being, energy harvesting for body area networks that find applications in healthcare and assisted living, smart 
building management, cloud computing, and software development beliefs that help identify process improve-
ment actions for creating quality software and applications.

In the first article, “Opportunistic Wireless Networking for Smart Dairy Farming,” Chamil Kulatunga, Laurence 
Shalloo, William Donnelly, Eric Robson, and Stepan Ivanov highlight increasing the efficiency of milk production as a 
key to meeting the increasing worldwide demand for organic dairy products and succeeding in this niche market. By 
adopting smart dairy farming principles that harness the promise of the Internet of Things (IoT), cloud computing, 
and big data analytics, dairy farmers can increase milk production efficiency. A key challenge, however, is dissemi-
nating large volumes of data from the farms to the cloud for data analytics. The authors address this challenge by 
proposing an opportunistic networking paradigm and a delay-tolerant networking (DTN) approach to transmit dairy 
data to a fog computing node at an Internet gateway. This approach allows use of ultra-low-power short-range wire-
less technologies, such as ANT+, over a wider geographical terrain without an infrastructure network.

To help deliver better health and well-being services to citizens, smart city systems are now gaining greater 
interest. Besides using various types of sensors to collect required data, these systems can harness the con-
cept of people as sensors, also known as human sensing, to gain insight or collect subjective information from 
humans. In “A Web-Based Portal for Assessing Citizen Well-Being,” Darren O’Neill and Cathryn Peoples present 
an interesting Web-based portal that lets citizens provide personal details and answer a set of questions that 
ascertain their mood and well-being. The authors harnessed a range of open source technologies to offer a 
cross-platform, interoperable, and rapidly deployable portal.

Wireless body area networks (WBANs) find applications in health monitoring, assisted living, telemedicine, 
and other areas. A WBAN can transmit data from distributed, low-power, wearable, and implantable sen-
sor nodes to remote locations for further processing and decision making. Though powering them is a major 
challenge, the generation of electrical energy from ambient sources, known as energy harvesting, is a viable 
approach to address this challenge. In “Energy Harvesting for Self-Sustainable Wireless Body Area Networks,” 
Fayaz Akhtar and Mubashir Husain Rehmani examine energy harvesting techniques for WBANs. They review  
potential harvestable sources and their characteristics and usability in minimizing energy constraints, and  
discuss current challenges in exploiting these sources and possible future research directions.

The next three articles focus on IT systems—cloud computing and system testing beliefs. Providing dedicated 
cloud services that ensure users’ dynamic quality-of-service (QoS) requirements and avoid service-level agree-
ment (SLA) violations is a key challenge facing cloud service providers. This calls for better resource allocation 
in the cloud, accounting for heterogeneity, dynamism, and failures. In the article “The Journey of QoS-Aware 
Autonomic Cloud Computing,” Sukhpal Singh, Inderveer Chana, and Maninder Singh present a broad literature 
analysis of resource management techniques in cloud computing, including autonomic resource provisioning 
and scheduling. They also discuss future directions of cloud resource management.

Next, in “Cloud Adoption in Brazil,” Jorge Pereira and coauthors provide an overview of the cloud adoption sce-
nario in Brazil. They also outline the initiatives undertaken by governmental organizations, private companies, and 
universities for enhancing cloud adoption. Furthermore, they discuss the impact and challenges of cloud adoption 
in Brazil by identifying trends and the most widely used models and technologies.

Beliefs held by software developers and testers are a key factor in determining quality software that runs a huge 
number of applications. In the final article, “Examining Software Engineering Beliefs about System Testing Defects,” 
Akito Monden, Masateru Tsunoda, Mike Barker, and Kenichi Matsumoto explore four basic software engineering 
beliefs held by two midsize embedded software development organizations in Japan, and identify possible process 
improvement actions for each organization. They recommend that other organizations also use this approach to 
find possible directions to improve their process, which will result in better products.

Collectively, these six articles present a glimpse of emerging new applications and current advances in 
development and adoption of IT systems. They should inspire IT professionals and researchers to make further 
advances in their domains of interest to realize the vision of a better world for our own benefit and that of the 
generations that follow us.

—San Murugesan, Editor in Chief

In This Issue: IT for a Smarter World
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extrapolate such measurements 
to the entire city. However, to 
gain maximum utility from such 
a diverse range of data, we require 
new integration approaches and 
associated analytics. This has 
been identified as a grand chal-
lenge problem in the computing 
science domain.1,2

State of the Art 
Figure 1 shows the conceptual 
architecture of our cloud-based 
urban risk analytics framework. 
This proposed framework com-
prises comprehensive components  
that satisfy the requirements of 
general urban r isk analy tics. 
The framework has several main 
components.

Big City Data Processing 
Technology Ecosystem
This layer includes big data process-
ing frameworks (BDPFs) that enable 
the creation of a big data application 
architecture. These frameworks 
can be classified as follows.

Distributed message queuing 
frameworks. Such frameworks 
provide a reliable, high-throughput, 
and low-latency system of queuing 
real-time datastreams from social  
media and other streaming sources.  
Examples include Amazon Kinesis 
and Apache Kafka.

Data mining frameworks. These 
frameworks implement a wide 
range of data analysis algorithms 
for analyzing massive datasets, 
from natural language processing 
(NLP, including latent Dirichlet 
allocation, regression, or naïve 
Bayes) to computational statistics 
(Bayesian networks or state vec-
tor machines). Examples include 
FlexGP, Apache Mahout, MLBase,  
and Apache SAMOA.

Parallel and distributed data 
programming frameworks. 
These f rameworks,  such a s 
Apache Hadoop, Apache Spark, 
and Apache Storm, provide a dis-
tributed system implementation of 

big data programming models that 
includes stream processing and 
batch processing. Distributed sys-
tem resource management com-
plexities such as task scheduling, 
data staging, fault management, 
inter-process communication, and 
result collection are automatically 
taken care of in Apache Hadoop 
and Apache Storm. The large-scale 
data mining frameworks men-
tioned previously are generally 
implemented on top of Hadoop, 
Spark, or Storm (see Figure 1).

Data store frameworks. These 
include SQL and NoSQL data-
base frameworks in which message 
queuing, data mining, and parallel 
or distributed data programming 
frameworks persist the intermedi-
ate and final data. NoSQL frame-
wo r k s  ( s uc h  a s  MongoDB, 
HyperTable, Cassandra, or Amazon  
Dynamo) support data manipula-
tion based on nonrelational primi-
tives. Such nonrelational data 
manipulation patterns lead to better  

Figure 1. An urban risk analytics framework for processing heterogeneous city data. The framework comprises 
comprehensive components that satisfy the requirements of general urban risk analytics.
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scalability and performance for un-
structured data (for instance, so-
cial media postings or mobile app 
data). On the other hand, SQL data 
stores (MySQL, SQL Server, or 
PostgreSQL) are based on relation-
al data manipulation primitives in 
which SQL can be used to manipu-
late data (insert, delete, or update). 
Urban risk analytics frameworks 
will use both NoSQL and SQL data 
stores (see Figure 1), driven by data 
variety and querying needs.

Cloud Computing Ecosystem
This layer comprises hardware 
resources (CPU, storage, and net-
working) provided by private (the 
Natural Environment Research 
Council datacenters, for example) 
and public (Amazon Web Services) 
cloud datacenters. The hardware 
resources at this layer provide 
computational and storage capa-
bilities to the big data processing 
frameworks (mentioned previ-
ously). The end-to-end lifecycle 
operations3 (including selection, 
deployment, monitoring, and 
runtime control) of big data pro-
gramming frameworks on cloud 
resources can be dynamically 
controlled via research orchestra-
tion frameworks.4

Current big data analysis frame-
works (such as Apache YARN or 
Mesos) do not need to meet the 
requirement raised by new classes 
of applications—that is, no work-
flows, no dynamic indexing of 
existing and new data sources, 
no cloud-based implementation, 
and no dynamic tuning of the 
performance of big data process-
ing frameworks to meet users’ 
decision-making requirements. 
Applications such as urban risk 
analytics, however, require sup-
port for holistically processing 
data emitted by multiple sources.

Data Analytics Challenges
A variety of urban risk manage-
ment applications can lead to new 

research opportunities in urban 
risk analytics. The following re-
search challenges—including data 
classification, data indexing, tra-
jectory data, and edge analytics—
arise when developing cloud-based 
data integration and analytics algo-
rithms for urban risk management.

Data Classification
Datasets from multiple sources 
(social media, mobile apps, Insta-
gram, and sensor networks, for 
example) flow at different speeds 
and volume, and in heteroge-
neous formats (text streams from 
social media or mobile apps and 
numeric streams from landslide 
sensors, for instance). This leads 
to heterogeneous requirements 
in terms of developing computer 
algorithms for data classification 
(NLP for text streams, and con-
tinuous numeric computation, 
including finding the max, min, 
average, and standard deviation, 
over streams from landslide sen-
sors) and event detection (detect-
ing the occurrence of keywords 
from social media streams and 
detecting flooding, landslide, or 
tsunami signals from real-time 
sensor streams).

Furthermore, based on data 
characteristics (static versus real-
time), these computer algorithms 
will need to be implemented in 
multiple BDPFs that support 
heterogeneous programming ab-
stractions. For example, static 
or historical datasets are in gen-
eral handled by frameworks such 
as Apache Hadoop and Apache 
Mahout (a machine learning li-
brary for Hadoop), which offer 
map and reduce functions. On 
the other hand, computer algo-
rithms for classification and event 
detection (also known as sliding 
window analytics) over real-time 
data will need to be implemented 
in stream processing frameworks 
such as Apache Storm and Yahoo 
S4. It is well understood that pro-

gramming computer algorithms 
in these BDPFs that can handle 
multisource and multiformat data 
simultaneously—while ensuring 
data processing efficiency (that is, 
minimizing query response time, 
maximizing event detection preci-
sion and accuracy, and so on)—is 
a hard research problem.1,2

Data Indexing
Developing an indexing algorithm 
that can seamlessly integrate and 
establish relationships among 
static and real-time data across 
multiple sources in a multidimen-
sional querying context (spatial, 
temporal, semantics, source types, 
event types, and so on) remains a 
very challenging problem.5 Al-
though it is relatively straight-
forward to design relational or 
nonrelational schema to store the 
raw or classified data for a single 
source type (such as social me-
dia or sensor feeds), establishing 
a relationship and dependencies 
among the sources in a multidi-
mensional querying context re-
mains an unsolved problem.

Trajectory Data
Dealing with the trajectories of 
dynamic data produced by multi-
ple sources is also a challenge (for 
example, the trajectories of taxis 
and buses are sequences of GPS 
samples, whereas the trajectories 
of smartcard ticketing devices are 
sequences of bus or subway sta-
tions). Notably, these trajectories 
differ in terms of data velocity, 
volume, and location accuracy.

Edge Analytics
Latency-sensitive data analytics 
tasks (such as analyzing stream-
ing data from sensors) can benefit 
from “edge analytics” techniques,6 
which have benefits including

•	 reduced network congestion 
achieved by filtering non-relevant 
events at the edge; and
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•	 reduced event-detection latency 
(such as detecting dangerous 
water flow levels by analyzing 
real-time images in on-board 
processors available in sensor 
gateways such as Raspberry  
Pi 3), as sensors and gateways 
no longer need to send data to 
far-off cloud datacenters.

However, it remains an open chal-
lenge how to enact and provision 
data analytics tasks across edge 
and cloud datacenters so that 
decision-making latency is mini-
mized while event-detection pre-
cision and accuracy is maximized.

Research Gap Analysis
Despite the recent emergence of 
clouds (Microsoft Azure, Google 
App Engine, and Amazon Web 
Services, for instance) that provide 
virtualized hardware resources and 
BDPFs, the state of the art in effi-
ciently undertaking multisource 
and multidimensional big data an-
alytics for urban risk management 
domains is still fairly primitive. For 
example, BDPFs such as Apache 
Mahout and Apache SAMOA pro-
vide a platform for developing and 
executing classification and event-
detection algorithms (based on ma-
chine learning algorithms for NLP) 
over Apache Hadoop and Apache 
Storm, respectively. However, they 
provide no guidance on how to de-
fine and model “events” relevant 
to a particular data source type or 
how to train the existing NLP algo-
rithms to automatically detect and 
query7 these events from the real-
time and historical data.

Moreover, BDPFs have no 
knowledge of the underlying ma-
chine learning algorithm and the 
overarching data analytics appli-
cation. Hence, they are unable to 
adapt the algorithm’s performance 
based on application requirements 
and cloud resource availability. 
Furthermore, there is still a gap in 
the development of unsupervised 

machine learning approaches that 
can help match a given data source 
to the best and most accurate ma-
chine learning algorithm based 
on application-level goals,8 such 
as maximizing event detection ac-
curacy and precision, minimizing 
querying latency across multiple 
data sources, and so on.

Furthermore, the Spark project 
at the University of California, 
Berkeley, released a new hetero-
geneous data querying engine 
called Spark SQL.9 Spark SQL’s 
DataFrame API is able to man-
age a distributed collection of data 
organized into named columns,10 
which is similar to a traditional da-
tabase. Multiple data sources from 
both external databases ( Java-
Script Object Notation, relational 
database management systems, or 
Apache Hive) and internal Spark 
data collections can be manipu-
lated and processed through this 
API. In addition, the mechanisms 
of multidimensional querying and 
ad hoc analysis are important to 
urban risk analysis frameworks. 
Integrating online analytical pro-
cessing—a business intelligence 
technique—with DataFrame is 
one potential challenge for big 
data integration. Although Spark 
SQL can query multiple struc-
tured data sources, it cannot au-
tomatically integrate and resolve 
dependencies across those data 
sources in a multidimensional 
querying context, as noted.

Integrating and analyzing het-
erogeneous sensor data from 
multiple sources in an urban risk 
analytics framework is very hard 
due to the variety of data formats 
and sources. An effective ur-
ban risk analytics framework is 
driven by enabling technologies, 
which can range from in situ sen-
sor technology to remote sensing 
technology. Moreover, with the 
high volume and extremely high 
rate of the datastreams generated 
by heterogeneous sensors, ontol-

ogy and Semantic Web technolo-
gies have emerged as one possible 
solution for integrating heteroge-
neous data. In other words, to de-
velop an effective mechanism for 
urban risk data integration, there 
is a strong requirement to provide 
a formal description of the rela-
tionships among the variety of 
data sources.

Ontology engineering is a wide-
ly used technique in data integra-
tion, in which a knowledge base 
is captured from multiple sources 
(articles, domain experts, process-
es, and so on), and knowledge is 
modeled using some standardized 
ontology language (for instance, 
the Web Ontology Language). 
Recently, a number of method-
ologies have been proposed for 
developing multisource data inte-
gration ontologies.11 METHON-
TOLOGY is one method that is 
widely used to develop ontologies 
in several domains.12 This meth-
od provides completed processes 
that cover the whole lifecycle of 
ontology development. Based on 
this, ontology engineering has be-
come important in establishing a 
common understanding among 
experts from different areas that 
are working toward urban risk 
data analytics frameworks. 

The Semantic Sensor Network 
Ontology (SSN) is a W3C stan-
dard for describing the concepts of 
sensors and observations. These 
concepts include sensor and sen-
sor network modeling, measur-
ing capabilities, sensor data, 
constraints, processes, deploy-
ments, and so on. SSN is widely 
used in sensor-based applications, 
including satellite imagery, scien-
tific monitoring, and industrial 
infrastructure (www.w3.org/TR/
vocab-ssn/). SSN is a key ontology 
used for integrating varieties of 
sensor data and analyzing disas-
trous events. However, these com-
prehensive concepts do not cover 
descriptions related to specialized 
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urban risks such as flooding, tsu-
namis, landslides, and so on.

Future Research Directions
We envision the following re-
search activities within the con-
text of cloud-based urban risk 
analytics frameworks: 

•	 algorithmic techniques for ur-
ban risk analytics that support 
storage, classification, and event 
detection over data obtained 
from multiple sources, both in 
real time (such as data emitted 
by wireless sensor networks) 
and via historical repositories 
(for example, Twitter Firehose);

•	 scalable data integration (meta-
data management) techniques 
that can enable multidimension-
al querying over heterogeneous, 
real-time, and historical data in 
multiple contexts (spatial, tem-
poral, semantics, source types, 
event types, and so on); and

•	cloud resource management 
methodologies that can seam-
lessly deal with heterogeneity 
in data analytic tasks, compu-
tational models, big data pro-
gramming models, and cloud 
resource types (datacenter ver-
sus network edge, for example).

I n summary, urban risk an-
alytics has exhibited great 
potential in cloud comput-

ing and big city data research to 
realize urban risk management. 
Our proposed framework pro-
vides a conceptual architecture 
along with comprehensive guid-
ance that supports data integra-
tion and analytics for urban risk 
management.�
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