
J. Parallel Distrib. Comput. 103 (2017) 3–10
Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

A CPS framework based perturbation constrained buffer planning
approach in VLSI design
Xiaodao Chen a,b, Xiaohui Huang a, Yang Xiang a,c,∗, Dongmei Zhang a,b,∗, Rajiv Ranjan d,
Chen Liao e

a China University of Geosciences, Wuhan, 430074, China
b Hubei Key Laboratory of Intelligent Geo-Information Processing, China University of Geosciences, Wuhan, 430070, China
c Deakin University, Australia
d Computing Science at Newcastle University, United Kingdom
e Marvell Semiconductor, USA

a r t i c l e i n f o

Article history:
Received 5 May 2016
Received in revised form
15 October 2016
Accepted 23 November 2016
Available online 20 December 2016

Keywords:
Buffer insertion
Buffer planning
Perturbation
Integer linear programming
Parallel computing

a b s t r a c t

As VLSI technology advances towards nanoscale devices, interconnect delay is becoming increasingly
important, and could be effectively reduced using buffer insertion. The widely-used buffer insertion
technique in industry is to insert a set of buffers on the chip, which may overlap some gates, and then
greedily move the buffers to the nearest available buffer holes. The moving distance of inserted buffers
largely affects thewirelengthwhichmay result in the increase of the interconnect delay. This necessitates
efficient algorithms to minimize the moving distance of buffers for effective buffer insertion to obtain
high-performance VLSI designs.

This paper proposes an efficient, perturbation constrained buffer planning algorithm to maximize the
candidate buffer holes with regarding to the feature of CPS based buffering design framework. Instead
of directly moving buffers to the existing available buffer holes, the proposed algorithm changes the
original placement bymoving some gates tinily to providemore flexibility for buffer insertion. The integer
linear programming based technique is designed for the physical design flow which allows small moving
range of gates. Parallel technique is utilized to solve the ILP problems efficiently when the scale of chip
is increasing. Experimental results have shown that the proposed algorithm achieves at most 41.49%
increase in the available buffer holes when compared to the algorithm with no gate movement.

© 2016 Elsevier Inc. All rights reserved.
1. Introduction

As VLSI technology advances nanoscale devices, interconnect
delay is becoming increasingly critical. As an effective technique
to reduce interconnect delay, buffer insertion is indispensable in
physical flow design [4]. The widely-used buffer insertion tech-
nique in industry is to insert a set of buffers on the chip, whichmay
overlap some gates, and thenmove the buffers to the nearest avail-
able buffer holes. However, themoving distance of inserted buffers
itself may increase the wirelength, which results in the increase of

∗ Corresponding authors at: China University of Geosciences, Wuhan, 430074,
China.

E-mail addresses: cxdao@yahoo.com (X. Chen), xhHuang94@iCloud.com
(X. Huang), yxiang2@gmail.com (Y. Xiang), cugzdm@foxmail.com (D. Zhang).

http://dx.doi.org/10.1016/j.jpdc.2016.11.013
0743-7315/© 2016 Elsevier Inc. All rights reserved.
interconnect delay. This necessitates efficient algorithms to max-
imize the candidate buffer holes on chip which can minimize the
moving distance of buffers for effective buffer insertion.

Buffer insertion has attracted significant research attention in
the recent past. Many existing works focus on the interconnect de-
lay by developing buffer insertion techniques. In [17], a depth first
search technique based algorithmhas been proposed tominimized
Elmore Delay. In [2], a context-aware buffer insertion method is
proposed based on the Dynamic Programming technique. In [8],
a full polynomial time approximation scheme is proposed for the
buffer insertion. In [11], an approach is proposed for simultane-
ous routing and buffer insertion. There are also different objectives
oriented buffer insertion works, such as handling noise [1], floor-
planning [5], buffer cost [9,10],wire sizing [3], variations [6], power
consumptions [13] and 3D IC design [15]. However, most of the ex-
isting works only concentrate on exploring buffer insertion based
on the given placement without considering the total moving

http://dx.doi.org/10.1016/j.jpdc.2016.11.013
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2016.11.013&domain=pdf
mailto:cxdao@yahoo.com
mailto:xhHuang94@iCloud.com
mailto:yxiang2@gmail.com
mailto:cugzdm@foxmail.com
http://dx.doi.org/10.1016/j.jpdc.2016.11.013


4 X. Chen et al. / J. Parallel Distrib. Comput. 103 (2017) 3–10
(a) The given placement. (b) The changed placement.

Fig. 1. Effects of placement changes on the moving distance of buffers.
Fig. 2. An energy aware buffer insertion procedure.

distance of inserted buffers. Actually, stringently applying buffer
insertion algorithms to the given placement may lead to a large
moving distance of inserted buffers, which imposes negative im-
pact on interconnect delay. As a contrast, a slight change in place-
ment may provide more flexibility for buffer insertion to improve
the performance of a chip.

The example shown in Fig. 1 illustrates the effects of placement
changes on themoving distance of buffers. In the given placement,
the buffer can be only placed at the location between gate 2 and
gate 3. If gate 8 is moved right, the fractional space between gate
8 and gate 9 is large enough for an inserted buffer. The moving
range of the buffer in the changed placement is obviously less than
that of the given placement, which leads to better effect of buffer
insertion, and more available buffer holes are created for more
inserted buffers.

The gate perturbation which is used to create more candidate
buffer positions can be integrated with buffer insertion to form an
energy aware buffer insertion framework. In this framework, the
timing requirements of the circuits are checked. When timing re-
quirements are not all satisfied, buffer insertion technique can be
utilized to improving the timing. But if there are not enough can-
didate buffer positions for buffer insertion, the gate perturbation,
which is themaximization algorithm for candidate buffer position,
is performedon apart of the chip. Note that, if the gate perturbation
and the buffer insertion continually proceed after timing require-
ments have been met, it will take more computational resources
in terms of energy. This can further impact the energy consump-
tion of the high level infrastructures [19,12]. For considering this
issue, an energy aware buffer insertion procedure can perform as
shown in Fig. 2. From the energy-saving point of view, to meet the
timing requirements, the energy aware buffer insertion framework
first evaluateswhether the time requirements are satisfied. If not, a
part of the chip performs the gate perturbation technique followed
with buffer insertion technique. After that, timing constraints are
re-evaluated to determine whether a new iteration of gate pertur-
bation and buffer insertion are required on another part of the chip.
This procedure iteratively proceeds until the timing requirements
have been met. The above exhibits essential properties of a Cy-
ber–Physical System (CPS), which is very popular inmany research
fields, such as researches on cyberinfrastructures [18] and parallel
computing [14,20]. Since there are several mature buffer insertion
algorithms, thiswork only focus on the gate perturbation in buffer-
ing stage of the design CPS. In this paper, an innovative technique
is proposed for perturbation constrained buffer planning problem.
Perturbation is referred to as the moving of gates, the proposed al-
gorithm is able to create more buffer holes on chip, and compute a
good placement to minimize the total moving distance of inserted
buffers. Experimental results demonstrate that the proposed algo-
rithm achieve at most 41.49% increase in the numbers of avail-
able buffer holes on chip when compared to the algorithm with
no movement of gates, and with the increase of available buffer
holes on chip, the inserted buffers can choose nearer buffer holes,
which can effectively reduce the total moving distance of inserted
buffers, which indicates that the effectiveness of buffer insertion
can be significantly improved.

Themain contributions of the paper are summarized as follows.

• To the best of authors’ knowledge, this is the first work dealing
with perturbation constrained buffer planning problem in a CPS
design framework.

• A novel technique for perturbation constrained buffer planning
problem is proposed. Instead of greedily moving buffers to the
available buffer holes, the proposed algorithm make changes
to the placement to explore available more buffer holes by
utilizing the ILP technique. The proposed algorithm maximizes
the candidate buffer positions for improving the effectiveness
of buffer insertion.

• The divide and conquermethod and parallel techniquewhich is
based on theMPI technique are used according to the features of
the CPS design. It helps to improve the computation efficiency.

The rest of the paper is organized as follows. Section 2 presents
the problem formulation for the perturbation constrained buffer
planning. Section 3 proposes the techniques for perturbation
constrained buffer planning problem. Section 4 presents the
experimental results and analysis. Section 5 concludes the paper.

2. Problem formulation

In the buffering design CPS framework, the chip for the design
is divided into number of sub-regions. Buffer planning algorithm
and buffer insertion algorithm are performed on the sub-regions
till the timing constraints have beenmet. In this work, we focus on
the buffer planning approach, and for a sub-region of the chip this
problemcan be interpreted as follows. Given a placement of n gates
on a sub-region, the base area of the sub-region can be treated as a
2-D plane, which is divided into a set of rows. In this paper, a cell is
referred to as either a buffer or a gate. As is shown in Fig. 3, a cell is
aligned with an integer track. The intersection of a track and a row
is a grid point. The lower left corner of a cell can only be placed at a
grid point. Denote by gi the gate i, where i ≤ n. Denote by b a buffer.
Each gate gi is associated with a moving range Lgi . This means that



X. Chen et al. / J. Parallel Distrib. Comput. 103 (2017) 3–10 5
Fig. 3. A placement of gates on a chip.

for vertical moving, a gate can bemoved at a grid point as far as Lgi ,
and for horizontal moving, all gates can be placed in a row as far
as Lgi .

After placement design, the space between gates varies. Some
of them are large enough to contain one or several buffers, but
some of them are not able to contain one buffer.Within themoving
range, gates can be moved to explore more flexibility for buffer in-
sertion in the layout. Hence, the space between gates can be tuned
and be better utilized for buffer insertion. Given a placement of n
gates and the moving range of each gate, after randomly generat-
ing a set of buffers on the sub-region, the perturbation constrained
buffer planning problem is to minimize the total moving distance
of inserted buffers, which need to be located at an available buffer
hole, such that the cells do not overlap. Perturbation is referred
to as the moving of gates, the moving range of a gate can limit
the impact of perturbation to maintain the quality of the original
placement. Note that, during this moving procedure, no overlap is
allowed. In practice, for different technology nodes, such as 32 or
45 nm technologies, the buffer size can be different. Thus the cor-
responding candidate buffer position size can be set according to
different technology nodes. Formally, the problem is defined as fol-
lows.
Perturbation constrained buffer planning problem:

Given somebufferswith unit length andwidth, a placement of n
gates on a sub-region of a chip where each gate is associated with
a moving range, and a set of randomly generated buffers on the
chip, the goal is to maximize the total candidate buffer holes on
this sub-region of the chip, by subjecting to moving distance.

3. Algorithms

The proposed algorithm which is designed for the physical
design flow allows small moving of gates. The problem is
formulated as an integer linear programming (ILP) problem. Since
a large number of gates impose negative effects on the efficiency
of ILP solving, a strip-based technique adopting divide and conquer
method is applied to decompose the ILP problem into a set of ILP
subproblems. Boundary issues on the chip are also effectively taken
care of by the proposed algorithm.

3.1. Integer linear programming formulation

A grid point can be either occupied by a buffer holes or a gate.
More buffer holes on a sub-region of the chip, more flexibility it
has to move inserted buffers to reduce the total moving distance.
The goal of the buffer planning is to optimize the available buffer
holes on the sub-region of the chip by adjusting the location of
gates within their moving range. The buffer planning problem can
be represented as integer linear programming (ILP) that optimizes
for the number of buffer holes.
A buffer is tentatively inserted at each grid point called a
candidate buffer hole. Denote by a binary variable β the candidate
buffer hole, i.e., β ∈ {0, 1}. βk = 1means that the lower left corner
of a buffer b can be placed at the kth candidate buffer hole. That is,
it is a buffer hole. Otherwise, the buffer cannot be placed at the
kth candidate buffer hole. That is, it is not a buffer hole. The total
number of the candidate buffer hole is the number of grid points
on a chip, denoted bym, where k ≤ m.

For each gate gi, all the possible grid points within its moving
range of Lgi are considered as candidate locations of the gate. Define
a binary variable γi,j to be the jth candidate location of gi, i.e.,
γi,j ∈ {0, 1}. γi,j = 1 means that the lower left corner of the gi
is placed at the jth candidate location. Otherwise, it is not placed
at the jth candidate location. In the solution, each gi needs to be
placed at exactly one location, for 1 ≤ i ≤ n. Then one has

j

γi,j = 1, ∀gi. (1)

To ensure that gates or buffers do not overlap with one another,
at most one cell can be placed to cover a grid point. As is shown in
Fig. 4, grid point k may be covered by some candidate locations of
cell 1, cell 2 and cell 3. However, at most one cell can be placed
at grid point k. In this example, cell 2 is placed at the grid point.
Formally, for any grid point p, denote by G(p) all the candidate
locations γi,j of all gates, where γi,j must cover the grid point p.
Denote by B(p) the candidate buffer holes βk which can cover the
grid point p. The sum of all the candidate locations for all cells at
the grid point and all the candidate buffer holes at the grid point
cannot be greater than one. That is,
i,j

G(p) +


k

B(p) ≤ 1, ∀ grid point p. (2)

The objective of buffer planning is to maximize the number of
the buffer holes, i.e., max

m
k=1 βk, wherem is the total number of

grid points. Assuming that the boundary issues have been taken
care of for simplicity, the complete integer linear program for
perturbation constrained buffer planning problem is shown as
follows:

max
m

k=1

βk

s.t. 
j

γi,j = 1, ∀gi
i,j

G(p) +


k

B(p) ≤ 1, ∀grid point p

βk, γi,j, G, B ∈ {0, 1}.

(3)

It is helpful to look at a simple example for illustration of the
above integer linear programming formulation. As is shown in
Fig. 5, there are 1 row and 6 tracks in a chip area. Thus, there are
6 grid points. Suppose that there are 2 gates. The moving range
of gate 1 is 1, and the moving range of gate 2 is 2. The candidate
locations of gate 1 and gate 2 are shown. Buffers are tentatively in-
serted at each grid point. Thus, one has candidate buffer holes βk,
1 ≤ k ≤ 6, The objective of the integer linear programming is to
maximize the number of buffer holes, i.e.,

6
j=k βk. For each gate,

the sum of the candidate locations needs to be equal to one, i.e.,
γ1,1+γ1,2+γ1,3 = 1, and γ2,1+γ2,2+γ2,3+γ2,4+γ2,5 = 1. For each
grid point, the sum of the candidate locations that can cover the
grid point cannot be greater than one. For example, for grid point
1, one has, γ1,2 +γ2,1 +β2 ≤ 1. Note that γi,j = {0, 1}, βk = {0, 1}.

The object and related constrained conditions of Fig. 5 are as
follows.



6 X. Chen et al. / J. Parallel Distrib. Comput. 103 (2017) 3–10
Fig. 4. Illustration of a covered grid point.

Fig. 5. Illustration of the integer linear programming formulation.

3.2. Strip division and combination

As discussed in Section 1, in the buffering CPS design frame-
work, the perturbation constrained buffer planning is performed
on part of the chip to check if the buffer planning can satisfy the
timing constraints. Once the timing constraints have been met,
no more planning or buffering insertion is required, such that the
computing resource can be saved. For this reason, the targeting
chip is divided into a set of disjoint strips of uniform sizes. Each
strip consists of a number of gates. By now the original ILP prob-
lem is decomposed into a set of ILP subproblems as shown in Fig. 6.
These ILP subproblems are solved independently and can be pro-
ceeded in parallel. After all timing constraints have been met, the
strips are summed up as a whole chip.

max
6

k=1

βk

s.t.
γ1,1 + γ1,2 + γ1,3 = 1
γ2,1 + γ2,2 + γ2,3 + γ2,4 + γ2,5 = 1
γ1,1 + β1 ≤ 1
γ1,2 + γ2,1 + β2 ≤ 1
γ1,3 + γ2,2 + β3 ≤ 1
γ2,3 + β4 ≤ 1
γ2,4 + β5 ≤ 1
γ2,5 + β6 ≤ 1.

(4)
Fig. 6. Illustration of a gate which crosses the boundary line of strip.

Since the proposed approach is to be performed after place-
ment&routing stage, the moving distance of gates has to be
restricted to a relatively small area, such that the results of place-
ment&routing are not changed too much. For this reason, the chip
can be conceptually divided into sub-regions and the proposed ap-
proach canbe ran on each sub-region.When the chip is divided into
sub-regions, gates located on the boundary need to be took care of.
As shown in Fig. 6, the gate on the boundary can be treated as sub-
gates, each of them has a fixed location on the corresponding sub-
region. This kind of sub-gates are not able to be moved with the
proposed algorithm. Thus, these sub-gates can be guaranteed to
be combined as one when sub-regions merge together. Note that,
in the experiment of this work, the chip is divided into sub-regions
which has fixed size. The size of the sub-region is set to be 100×48
which contains about 80 gates. In addition, most of chips are row
based ones and their have gates with identical height. For this rea-
son, the proposed algorithm always perform the horizontal cuts
along gate rows; and only vertical cuts introduce sub-gates.

3.3. Parallel technique

3.3.1. Divide and conquer method
The proposedmethod aims to provide candidate buffer holes on

chip,whichhas been converted into an integer linear programming
problem. For a whole chip, the number of gates follows the divide
and conquer method to achieve a better performance for the CPS
based energy aware buffer insertion. Take Fig. 7 as an example,
the chip can be divided into four sub-regions. For each of them, an
ILP can be formulated to maximize the candidate buffer locations.
These integer linear programs can be solved in parallel as long as
the gates on the boundaries being processed in a proper way. In
this work, these crossing boundary gates are set to be fixed, such
that, they have no impact on the combining step of sub-regions
solutions.

3.3.2. MPI cluster
According to the attributes of the proposed algorithm, divide

and conquer method is utilized to decompose the chip into a
number of sub-regions. The integer linear program of the large
chip is decomposed into a number of integer linear programs of
sub-regions, each of them can be processed in a parallel way. In
this work, a customized MPI cluster has been built to speed up the
integer linear programs solving procedures. The main idea of the
proposed MPI cluster has been shown in Fig. 8(a), which consists
of a master node and several client nodes.



X. Chen et al. / J. Parallel Distrib. Comput. 103 (2017) 3–10 7
Fig. 7. An energy aware buffer insertion procedure.
(a) An MPI cluster example. (b) The process procedures in MPI cluster.

Fig. 8. MPI cluster process procedure.
The computing procedures in the MPI cluster can be divided
into four steps which has been shown in Fig. 8(b). Firstly, a chip
of large size is divided into a number of sub-regions on the master
node. In this way, the integer linear programs of the chip is de-
composed into several smaller size integer linear programs of sub-
regions. These decomposed integer linear programs are about to be
solved by client nodes independently. Themaster node utilizes the
MPI_Send function to send these integer linear programs of sub-
regions to client nodes. Once a client node receives an integer lin-
ear program from the master node using MPI_Recv function, the
computation of the corresponding integer linear programs can take
place to solve independently. After integer linear programs being
solved, the client node sends the result back to the master node by
MPI_Send function. At last, the master node calls the MPI_Recv,
receives all the computation results sent by the client nodes in clus-
ter, and integrates all the computation results.

4. Experimental results

The experiments have been performed on an MPI cluster with
four computation nodes, each node of the cluster is with 3.4 GHz
Intel(R) i7 cores and 8 GB memory. The proposed perturbation
constrained buffer planning approach is implemented in C++. The
MPICH 1.4, which is the widely used MPI standards [7], is utilized
for communication functions in the Cluster. We took part of the
Capo’s solution on bigblue1 benchmark circuits [16] as the initial
chip placement for our experiments. Note that, since this work
focused on the buffer planning approach, we do not perform the
buffer insertion and timing constraints check in the experiment.
Fig. 9. The distribution of gates and buffers on the chip based on the widely-used
buffer insertion technique.

We assume that the chip needs as much buffer candidate location
as possible.

To illustrate the correctness and effectiveness of the proposed
method, we first show the results for a small part of the chip.
The chip has been divided into pieces of subchips for parallel
computing, where red blocks refer to gates that can be moved
within their moving ranges and green blocks refer to gates that are
fixed at the boundary of the chip. It is clear that the moving ranges
of these gates are 0.

Fig. 9 gives available candidate buffer insertion positions
without running our proposed algorithm, where blue blocks refer
to the available candidate buffer insertion positions. In contrast,
Fig. 10 shows available candidate buffer insertion positions after
running our proposed algorithm. It is clear that, before our
proposedmethod is run, most gaps on chip are not wide enough to



8 X. Chen et al. / J. Parallel Distrib. Comput. 103 (2017) 3–10
Table 1
Experimental results on the number of buffer holes by applying gates moving based technique and the computation time by utilizing different computation nodes in the
MPI cluster.

Test case GateNum Nbefore Nafter Improvement T1 (s) T2 (s) T3 (s) T4 (s)

1 12402 1533 2169 41.49% 1403 683 468 451
2 23684 3579 4728 32.10% 2479 1410 877 885
3 34560 5841 7446 27.48% 3478 1746 1265 1159
4 45201 8256 10148 22.92% 4570 2435 1647 1407
5 55614 10051 12594 25.30% 6033 3089 2056 1673
Fig. 10. The distribution of gates and buffers on the chip based on the gates-moving
buffer insertion technique.

Fig. 11. Computation time with different gate num and computation nodes.

insert buffers, which somehow leads to a waste of chip resources.
In contrast, after our proposed method is run, only a few narrow
gaps remain and the total number of candidate buffer positions are
significantly increased.

Fig. 11 shows the computation cost with different computing
nodes which includes the master node and client nodes. The
following observations are made:

• The parallel technique can effectively reduce the computational
time. The reason is that, the proposed method has a large
amount independentworkloadwhich can be paralleled, and the
communication cost is considerable less than the computing
cost.

• With increasing number of computing nodes in the MPI clus-
ter, the computational time is gradually decreased. The com-
putational time of four nodes is significantly decreased when
compared to the case of one node. However, the communica-
tion time and parallel overhead between nodes in the MPI clus-
ter increase when we increase the number of computing node.

Table 1 compares the numbers of candidate buffer holes before
and after running our proposed algorithm. It also shows the
computing time of the proposed algorithmwhen utilizing different
number of computing nodes in theMPI cluster. In Table 1,GateNum
refers to the total gate number of the chip, Nbefore refers to the
number of candidate buffer holes of the chip before running
our proposed algorithm, Nafter refers to the number of candidate
buffer holes of the chip after utilizing our proposed algorithm,
Improvement refers to the improvement ofNbefore overNafter , and T1,
T2, T3, T4 refers to the computing time in theMPI cluster by utilizing
up to 4 computation node(s).

Following observations are made:

• The candidate buffer holes of the chip both before and after
running the proposed method are increased, when we increase
the gate number and the chip size. Because there are more
spaces that can be utilized on the chip.

• The proposed method can always provide more candidate
buffer holes when compared to the initial placement. The
improvement can be up to 41.49% (GrowthRate =

Nafter−Nbefore
Nbefore

).
• The improvement ratio of buffer holes is decreasing from

testcase 1 to testcase 4. The reason is that gates on the chip are
not evenly distributed, thus some parts of the chip initially have
more number of gates andmore blank space. But as the number
of gates are increasing, the number of buffer holes, which refers
to Nafter , are always increasing as shown in Table 1.

Our proposed approach is targeting to provide more candidate
buffer position for buffer insertion based on the placement
testbench which has gate size and location information. But the
testbench does not have interconnection information to perform
the buffer insertion algorithm. To verify the relation between
the number of candidate buffer locations and circuits timing, we
utilize the benchmark which contains 500 industrial nets and
run the buffer insertion algorithm [8] with different number of
candidate buffer locations. Results have been shown in Fig. 12.
With increasing number of candidate buffer locations, the average
delay over 500 industrial nets is decreasing. When the number of
candidate buffer locations is increased by 40%, the timing delay
can be improved by 8.9%; and if the number of candidate buffer
locations is increased by 20%, the timing delay can be improved
by 5.9%. Note that, in Table 1, the improvement of the proposed
algorithm is in between 22.92% and 41.49%.

5. Conclusion

As VLSI technology advances towards nanoscale devices,
interconnect delay is becoming increasingly important, and could
be effectively reduced using buffer insertion. The widely-used
buffer insertion technique in industry is to insert a set of buffers
on the chip, identify overlapping buffers and gates, and move the
buffers to the nearest available buffer holes. The moving distance
of inserted buffers largely affects the wire length which may
result in the increase of the interconnect delay. Meanwhile the
CPS based buffering design framework desires a power aware
buffering approach can efficiently handle the timing issue of the
chip. This paper is the first work that proposes efficient algorithms
on perturbation constrained buffer planning in placement based
on integer linear programming under a CPS based buffering
design framework. Instead of directly moving buffers to existing
available buffer holes in the given placement, the proposed
algorithm changes the placement with constrained perturbation
for better buffer insertion. In addition, the proposed technique
is respectively designed for given small moving ranges of gates
on chip. Experimental results demonstrate that the proposed



X. Chen et al. / J. Parallel Distrib. Comput. 103 (2017) 3–10 9
Fig. 12. Circuits delay with different number of candidate buffer locations.

algorithms achieve up to 41.49% increase in the number of buffer
holeswhen compared to the algorithmwith nomovement of gates,
which indicates that the effectiveness of buffer insertion can be
largely improved to obtain high-performance VLSI designs.

Acknowledgment

This study was supported in part by the National Natural
Science Foundation of China (No. 61501411).

References

[1] C. Alpert, A. Devgan, S. Quay, Buffer insertion for noise and delay opti-
mization, in: Proceedings of ACM/IEEE Design Automation Conference, 1998,
pp. 362–367.

[2] C. Alpert, M. Hrkic, S. Quay, A fast algorithm for identifying good buffer
insertion candidate locations, in: Proceedings of International Symposium on
Physical Design, 2006, pp. 47–52.

[3] C. Chu, D. Wong, A new approach to simultaneous buffer insertion and wire
sizing, in: Proceedings of the International Conference on Computer Aided
Design, 1997, pp. 614–621.

[4] J. Cong, An interconnect-centric design flow for nanometer technologies, Proc.
IEEE 89 (4) (2001) 505–528.

[5] J. Cong, T. Kong, D. Pan, Buffer block planning for interconnect-driven
floorplanning, in: Proceedings of the International Conference on Computer
Aided Design, 1999, pp. 358–363.

[6] L. Deng, M. Wong, Buffer insertion under process variations for delay
minimization, in: Proceedings of the International Conference on Computer
Aided Design, 2005, pp. 317–321.

[7] http://www.mpich.org/, http://www.mpich.org/.
[8] S. Hu, C. Alpert, J. Hu, S. Karandikar, Z. Li, W. Shi, C.N. Sze, Fast algorithms

for slew constrainedminimum cost buffering, IEEE Trans. Comput.-Aided Des.
(TCAD) 26 (11) (2007) 2009–2022.

[9] S. Hu, Z. Li, C.J. Alpert, A fully polynomial time approximation scheme for
timing driven minimum cost buffer insertion, in: Proceedings of ACM/IEEE
Design Automation Conference, DAC.

[10] Z. Jiang, S. Hu, J. Hu, Z. Li, W. Shi, A new RLC buffer insertion algorithm, in:
Proceedings of the International Conference on Computer Aided Design, 2006,
pp. 553–557.

[11] E. Kan, C. Uttraphan, Shaikh-Husin, An optimized algorithm for simultaneous
routing and buffer insertion in multi-terminal nets, in: Proceedings of
International Conference on Electrical and Electronic Engineering, 2015,
pp. 1–9.

[12] S.U. Khan, L. Wang, L.T. Yang, F. Xia, Green computing and communications,
J. Supercomput. 63 (3) (2013) 637–638.

[13] R. Li, D. Zhou, J. Liu, X. Zeng, Power-optimal simultaneous buffer inser-
tion/sizing and wire sizing, in: Proceedings of the International Conference on
Computer Aided Design, 2003, pp. 581–586.

[14] Y.M.A.Z. Lizhe Wang, Jining Yan, Pipscloud: High performance cloud
computing for remote sensing big data management and processing, Future
Gener. Comput. Syst. (2016) http://dx.doi.org/10.1016/j.future.2016.06.009.
[15] M.A.A.S. Mohapatra, M. Chrzanowska-Jeske, Buffered interconnects in 3d ic
layout designs, in: Proceedings of Proceedings of the 18th System Level
Interconnect Prediction Workshop, (4), 2016, pp. 4:1–4:8.

[16] J. Roy, D. Papa, S. Adya, H. Chan, A. Ng, J. Lu, I.Markov, Capo: Robust and scalable
opensource mincut floorplacer, in: Proceedings of International Symposium
on Physical Design, 2005, pp. 224–227.

[17] L. vanGinneken, Buffer placement in distributedRC-tree networks forminimal
elmore delay, in: Proceedings of International Symposium on Circuits and
Systems, 1990, pp. 865–868.

[18] L.Wang, D. Chen, Y. Hua, Y. Ma, J. Wang, Towards enabling cyberinfrastructure
as a service in clouds, in: Proceedings of International Symposium on Physical
Design, Vol. 39, (1), 2013, pp. 3–14.

[19] L. Wang, S.U. Khan, D. Chen, J. Kolodziej, R. Ranjan, C. Xu, A.Y. Zomaya, Energy-
aware parallel task scheduling in a cluster, Future Gener. Comput. Syst. 29 (7)
(2013) 1661–1670.

[20] L. Wang, J. Tao, R. Ranjan, H. Marten, A. Streit, J. Chen, D. Chen, G-hadoop:
Mapreduce across distributed data centers for data-intensive computing.,
Future Gener. Comput. Syst. 29 (3) (2013) 739–750.

Xiaodao Chen received the B.Eng. degree in telecommuni-
cation from the Wuhan University of Technology, Wuhan,
China, in 2006, the M.Sc. degree in electrical engineer-
ing from Michigan Technological University, Houghton,
USA, in 2009, and the Ph.D. in computer engineering
from Michigan Technological University, Houghton, USA,
in 2012. He is currently an Associate Professor with School
of Computer Science, China University of Geosciences,
Wuhan, China. His research interests include Design Au-
tomation for petroleum system, High Performance Com-
puting and Optimization.
XiaohuiHuang received B.S. degree fromChinaUniversity
of Geosciences. He is currently a graduate student
with School of Computer Science, China University of
Geosciences, Wuhan, China. His research interests include
Optimization and data analysis.

Yang Xiang received his Ph.D. in Computer Science
from Deakin University, Australia. He is the Director of
Centre for Cyber Security Research, Deakin University. His
research interests include network and system security,
data analytics, distributed systems, and networking. In
particular, he is currently leading his team developing
active defense systems against large-scale distributed
network attacks. He is the Chief Investigator of several
projects in network and system security, funded by the
Australian Research Council (ARC). He has publishedmore
than 200 research papers in many international journals

and conferences, such as IEEE Transactions on Computers, IEEE Transactions on
Parallel and Distributed Systems, IEEE Transactions on Information Security and
Forensics, and IEEE Journal on Selected Areas in Communications. Two of his papers
were selected as the featured articles in the April 2009 and the July 2013 issues
of IEEE Transactions on Parallel and Distributed Systems. Two of his papers were
selected as the featured articles in the Jul/Aug 2014 and the Nov/Dec 2014 issues
of IEEE Transactions on Dependable and Secure Computing. He has published
two books, Software Similarity and Classification (Springer) and Dynamic and
Advanced Data Mining for Progressing Technological Development (IGI-Global). He
has served as the Program/General Chair for many international conferences such
as SocialSec 15, IEEE DASC 15/14, IEEE UbiSafe 15/14, IEEE TrustCom 13, ICA3PP
12/11, IEEE/IFIP EUC 11, IEEE TrustCom 13/11, IEEE HPCC 10/09, IEEE ICPADS 08,
NSS 11/10/09/08/07. He has been the PC member for more than 60 international
conferences in distributed systems, networking, and security. He serves as the
Associate Editor of IEEE Transactions on Computers, IEEE Transactions on Parallel
and Distributed Systems, Security and Communication Networks (Wiley), and the
Editor of Journal of Network and Computer Applications. He is the Coordinator, Asia
for IEEE Computer Society Technical Committee on Distributed Processing (TCDP).
He is a Senior Member of the IEEE.

Dongmei Zhang received Ph.D. from China University
of Geosciences. She is currently a Professor with School
of Computer Science, China University of Geosciences,
Wuhan, China. Her research interests include Optimiza-
tion and 3D visualization.

http://refhub.elsevier.com/S0743-7315(16)30173-3/sbref4
http://www.mpich.org/
http://www.mpich.org/
http://refhub.elsevier.com/S0743-7315(16)30173-3/sbref8
http://refhub.elsevier.com/S0743-7315(16)30173-3/sbref12
http://dx.doi.org/10.1016/j.future.2016.06.009
http://refhub.elsevier.com/S0743-7315(16)30173-3/sbref19
http://refhub.elsevier.com/S0743-7315(16)30173-3/sbref20


10 X. Chen et al. / J. Parallel Distrib. Comput. 103 (2017) 3–10
Rajiv Ranjan received the Ph.D.degree in 2009 in engi-
neering from the University of Melbourne. He is a research
scientist and a julius fellow in CSIRO Computational Infor-
matics Division (formerly known as CSIRO ICT Centre). His
expertise is in data center cloud computing, application
provisioning, and performance optimization. He has pub-
lished 62 scientific, peer-reviewedpapers (seven books, 25
journals, 25 conferences, and five book chapters). His hin-
dex is 20, with a lifetime citation count of 1660+ (Google
Scholar). His papers have also received 140+ ISI citations.
Seventy percent of his journal papers and 60% of confer-

ence papers have been A*/A ranked ERA publication. He has been invited to serve
as the guest editor for leading distributed systems journals including IEEE Trans-
actions on Cloud Computing, Future Generation Computing Systems, and Software
Practice and Experience. One of his papers was in 2011s top computer science jour-
nal, IEEE Communication Surveys and Tutorials.

Chen Liao received Ph.D. in Computer Engineering from
Michigan Technological University. Houghton, USA in
2013. She is currently an engineer in Marvell Semi-
conductor. Her research interests are in the area of
Computer-Aided Design of VLSI Circuits and Combinato-
rial Optimizations.


	A CPS framework based perturbation constrained buffer planning approach in VLSI design
	Introduction
	Problem formulation
	Algorithms
	Integer linear programming formulation
	Strip division and combination
	Parallel technique
	Divide and conquer method
	MPI cluster


	Experimental results
	Conclusion
	Acknowledgment
	References


