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Abstract
Information confidentiality is an essential requirement for cyber security in critical infrastruc-

ture. Identity-based cryptography, an increasingly popular branch of cryptography, is widely

used to protect the information confidentiality in the critical infrastructure sector due to the

ability to directly compute the user’s public key based on the user’s identity. However,

computational requirements complicate the practical application of Identity-based cryptog-

raphy. In order to improve the efficiency of identity-based cryptography, this paper presents

an effective method to construct pairing-friendly elliptic curves with low hamming weight 4

under embedding degree 1. Based on the analysis of the Complex Multiplication(CM)

method, the soundness of our method to calculate the characteristic of the finite field is

proved. And then, three relative algorithms to construct pairing-friendly elliptic curve are put

forward. 10 elliptic curves with low hamming weight 4 under 160 bits are presented to dem-

onstrate the utility of our approach. Finally, the evaluation also indicates that it is more effi-

cient to compute Tate pairing with our curves, than that of Bertoni et al.

1 Introduction
Many countrieshave thrived on the wealth fromthe information technologies(IT) have enabled,
and IT forms the backbone of many aspects of the critical infrastructure sectors [1, 2]. There
are 16 critical infrastructure sectors in the U.S. [3]. As noted by both scholars [4–10] and gov-
ernment agencies, such as U.S. Homeland Security, the critical infrastructure represents sys-
tems and assets, and it is also defined in detailed [3].

The interconnective of the systems in the critical infrastructure sector, and the increasing
sophistication, scale and the persistent nature of cyber attacks against such systems, can poten-
tially result in equipment being forced to operate beyond its intended design and safety limits,
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resulting in cascading system malfunctions and shut downs such as the collapse of an entire
electricity grid; or operating procedures or conditions being manipulated to slow the effort of
restoring essential services [11, 12]. It is, therefore, unsurprising that the cyber security of a
nation’s critical infrastructure (including assets, networks, and systems) is regarded as a top
priority of national security by countries around the world [13–17].

One of the key requirements in critical infrastructure cyber security is information confi-
dentiality, and the cryptography is generally the core technology to provide information confi-
dentiality [18].

Identity-based cryptography(IBC) is a relatively new branch of cryptography, which can
directly compute a user’s public key using publicly available information from the user’s iden-
tity [19]. Therefore, one does not need to distribute his digital certificate signed by a certificate
authority (CA), or query the certificate database to get the other party’s public key when con-
ducting electronic transactions. In other words, IBC resolves the challenges and complexity
associated with certificate management and traditional public-key cryptosystem. A limitation
of IBC is, however, the computation cost involving in constructing the pairings [20]. IBC has
the subject of various research, but it remains a topic of ongoing research interest, and one of
the research challenges is the generation of efficient parameters such as pairing-friendly elliptic
curves.

The existing efficient algorithms to compute Weil and Tate pairings [21, 22] are generally
based on Miller’s algorithm [23]on (hyper) elliptic curves. One line of research which focuses
on reducing the loop in Miller’s algorithm was initiated by Duursma-Lee [24] and, subse-
quently extended by Barreto et al. [25] to supersingular abelian varieties.

In practice, the cryptographic pairings used to construct these systems are based on the
Weil and Tate pairings on elliptic curves over finite fields [26]. Both pairings are a bilinear map
from an elliptic curve group on the finite field Fp to the multiplicative group of some extension
field Fpk . The parameter k is called the embedding degree of the elliptic curve. The pairing is

considered to be secure if both discrete logarithms in the groups E(Fp) and Fpk are computa-

tionally infeasible.
To optimize the application performance, the parameters p and k should be determined

according to this standard that both discrete logarithm problems approximately have the equal
difficulty when using the best known algorithms. Moreover, a large prime factor r should be
included in the order of the group #E(Fp). For example, if the large prime factor r� 2160, the
pairing is generally considered to be safe against existing attacks. Therefore, it is essential to be
able to construct elliptic curves efficiently for arbitrary p and k values to differ the security level
or to meet the requirement of discrete log in future improvements. This is the gap we attempt
to address in this paper.

This paper is organized as follows. In the next two sections, we introduce the reader to
related literature and Tate pairing, respectively. In Section 4, we describe our approach to con-
structing pairing-friendly elliptic curves under embedding degree 1 and preliminary evaluation
results to demonstrate utility and practicality. Our discussion and concluding remarks are pro-
vided in the last two sections.

2 RelatedWork
Constructing elliptic curves with various embedding degrees has been the subject of ongoing
research. For example, Cocks and Pinch [27] constructed the curves with arbitrary embedding
degree k, but the efficiency is very low because the size q of the field Fp is limited by the sub-
group of prime order r with q� r2. Fotiadis and Konstantinou [28] presented two general
methods to produce sparse families and applied them to four embedding degrees k, where k.
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Barreto and Naehrig [29] constructed the curves of prime order with k = 12. Freeman [30] pro-
posed a construction for the curves with embedding degree k = 10. A complete characterization
of common elliptic curves of prime order with k = 3, 4, or 6, is provided by Miyaji, Nakabaya-
shi, and Takano [31]. Menezes, Okamoto, and Vanstone [32] illustrated that embedding degree
k should be not more 6 in a supersingular elliptic curve, especially k� 3 and k 6¼ 2 or k 6¼ 3.

Some researches [33] reduced the ratio p ¼ log p
log r

for arbitrary k between the characteristicp of

the finite field and the prime order r of the subgroup. However, no concrete examples have
been proposed with ρ small enough to construct curves with prime order.

In fact, if k = 1, the pairing will become a bilinear map from the elliptic curve group on the
finite field Fp to the elliptic curve group on the same finite field Fp. In other words, we would
not involve the extension field Fk

p when computing the pairing, which is the constraintin pair-

ing-based cryptography applications.
Izuta, Nogami and Morikawa [34] proposed a method for generating a certain composite

order ordinary pairing-friendly elliptic curve of embedding degree 1. In their method, the
order has two large prime factors such as the modulus of RSA cryptography. Lee and Park [35]
proposed a new algorithm to construct Brezing-Weng-like elliptic curves having the Complex
Multiplication(CM) equation of degree 1, as well as presenting new families of curves with
larger discriminants.

It is clear from the literature that pairing-friendly elliptic curves under embedding degree
1 are constructed on the base field, rather than the extension field, which can significantly
improve the computation efficiency of Tate pairing. This is the gap that this paper attempts to
address. More specifically, this paper proposes an effective method to construct pairing-
friendly elliptic curves with low hamming weight 4 under embedding degree 1.

3 Tate Pairing
In practice, as the theoretical model is unknown, we use the Monte-Carlo method [36] to gen-
erate the required data based on a fixed theoretical model.

Weil pairing was first introduced into cryptography by Menezes, which was used to study
the elliptic curve discrete logarithm problem on certain elliptic curves [32]. Extending on the
work of Menezes, Frey introduced Tate pairing to cryptography [37], which is now widely used
to design pairing-based cryptosystems because Tate pairing is twice as efficient as Weil pairing.

Let E be an elliptic curve over a finite field Fp, and r be a positive integer which is co prime
to p. In most applications, r is a prime and r|#E(Fp). Let k be a positive integer such that the
field Fpk . contains the r-th roots of unity, and k is called the embedding degree. Then Tate pair-

ing is a mapping [38]:

tðP;QÞ : EðFpkÞ½r� � EðFpkÞ=rEðFpkÞ ! F�pk=ðF�pkÞr

According to the definition of Tate pairing, if the embedding degree k 6¼ 1, then the compu-
tation of Tate pairing is related to the extension field Fpk , and the computation process will be

time-consuming. However, if the embedding degree k = 1, the computation of Tate pairing
only runs on the base field Fpk rather than the extension field Fpk . This will greatly improve the

computation efficiency of Tate pairing.
In Tate pairing, both the point P and the point Q are from two different subgroups with the

same order r as subgroup EðFpk ½r�Þ and ðF�pkÞr respectively. That is to say, if k = 1, then the point

P and the point Q come from two different subgroup G1 and G2 of E(Fp) with the same order r,
and G1 \ G2 = ;. However, “How to construct the elliptic curve which includes two different
groups with the same order r when r is a large prime with r� 2160?” and “How to find the two
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different groups?” are two key challenges in designing pairing-friendly elliptic curves under
embedding degree 1.

In this paper, we propose an effective algorithm to construct pairing-friendly elliptic curves
under embedding degree 1. In our algorithm, it can be ensured that both the point P and the
point Q are from two different subgroups with the same order r, which enables the computa-
tion of Tate pairing to run only on the base field.

4 Constructing Pairing-friendly Elliptic Curves
In this section, a new method to generate pairing-friendly elliptic curves is proposed, which
comprises three algorithms as follows.

1. The first algorithm is used to generate a large prime of low hamming with weight 4.

2. The second algorithm is used to generate the finite field p, the order u of a non-supersingu-
lar elliptic curve over Fp, the order r of a point on the elliptic curve.

3. The last algorithm is used to construct pairing-friendly elliptic curves under embedding
degree 1.

4.1 The Construction Method
In the common method [31, 35]to construct elliptic curves, the equation u = p + 1 ±W is used
to generate the parameters of the elliptic curves. This equation provides a means to determine
the order #E of an elliptic curve E according to the characteristic p of the finite field Fp. How-
ever, the order #E generated using the equation is generally unable to meet the security
requirement. Therefore, it is a challenge to generate a suitable elliptic curve using the common
method. Moreover, even if a suitable elliptic curve can be generated, it will take a long time.
For example, in the method of Izuta, Nogami and Morikawa [34], it will take about 20 hours
to generate an elliptic curve.

In our method, we present a new equation p = u ±W + 1 to generate the parameters of ellip-
tic curves. On first glance, the new equation may appear similar to the common equation. How-
ever, in the new equation, the order #E is known, and we need to obtain p from the order #E
(rather than the order #E from p). Thus, we only need to determine the characteristic p of the
finite field Fp from the order #E of an elliptic curve E, and our algorithm 2 describes the process
required to generate p from the order #E. In other words, we can generate an elliptic curve
under arbitrary order, while the order #E of an elliptic curves E can be trivially obtained using
u = r � r (from the security requirement), where r is a large prime, and r has a low hamming
with weight 4 (based on our algorithm 1). As the order of the subgroup is a large prime of low
hamming with weight 4, the efficiency of generating elliptic curves is significantly improved.
More specifically, our method requires about 200 ms to generating a suitable elliptic curve.

Theorem 1 If E is a non-super singular elliptic curve over Fp with order u, D is the CM dis-
criminant for p, according to the discriminant condition 4p =W2 + DV2 and u = p + 1 ± 1, then

p ¼ u� X þ 1

whereW = X ± 2, V = Y.
Proof. It is well known that the CM discriminant D for pmeets the Eqs (1) and (2) for every

non-super singular elliptic curve over Fp with order u.

4p ¼W2 þ DV2 ð1Þ
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u ¼ pþ 1�W ð2Þ

The Eq (3) can be gotten from the Eq (2).

4u ¼ 4pþ 4� 4W ð3Þ

The Eq (4) can be gotten by replacing 4p with the Eq (1) in the Eq (3).

4u ¼W2 þ DV2 þ 4� 4W ð4Þ

The Eq (4) can be written as the Eq (5).

4u ¼ ðW � 2Þ2 þ DV2 ð5Þ

The Eq (5) can be written as the Eq (6).

4u ¼ X2 þ DY2 ð6Þ
where X =W ± 2 and Y = V.

Therefore, the Eq (1) can be converted to the Eq (7) with X =W ± 2.

4p ¼ ðX � 2Þ2 þ DY2 ð7Þ

The Eq (8) can be gotten from the Eqs (6) and (7)

4p ¼ 4u� 4X ¼ 4 ð8Þ

The Eq (8) can be be written as the Eq (9)

p ¼ u� X þ 1 ð9Þ

This ends the proof.
Theorem 1 provides a method to calculate the characteristic p of the finite field Fp according

to the order u of an elliptic curve. That is to say, for any elliptic curve with the order u expected,
we can easily calculate the characteristic p of the finite field Fp according to the Eq (9). This is a
new way, which can generate an elliptic curve under any order we expected.

In Miller algorithm of computing Tate pairing, if some bit of the binary representation for the
order r of subgroup is ‘1’, operators would be needed to compute multiplication and inverse oper-
ations [39]. Otherwise, (i.e. if the binary bit is ‘0’), no additional operator is needed. It is clear that
the process to compute Tate pairing will be more efficient if the binary representation of the
order r has fewer ‘1’ bits and more ‘0’ bits. This forms the basis of the three relative algorithms.

4.2 Algorithm 1
Algorithm 1 outlines the method to generate a large prime of low hamming with weight 4. In
other words, there are only two ‘1’ bits in addition to the highest bit and the lowest bit in the
binary representation for the large prime. The large prime will be used as the order r of sub-
group in algorithms 2 and 3.

In algorithm 1, the input parameter is the lengthm(m� 160) of the binary representation
for the large prime, the output result is the large prime r of low hamming with weight 4.
Algorithm 1. Generating a large prime of low hamming with weight 4.
Input: The length m(m� 160) of the binary representation for the large
prime; a positive integer t for the number of trials.
Output: The large prime r of low hamming with weight 4.
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step 1 Choose random s, t in the interval (0, m − 1) to ensure 0 < s < t < m − 1;

step 2 r 20 + 2s + 2t + 2m − 1;

step 3 Compute v and an odd value w, such that r − 1 = 2v w

step 4 For j from 1 to t do

step 4.1 Choose random a in the interval 0 < a < r;

step 4.2 Set b aw mod r

step 4.3 If b = 1 or b = r − 1, goto step 4.6;

step 4.4 For i from 1 to v − 1 do

step 4.4.1 Set b b2 mod r

step 4.4.2 If b = r − 1 goto step 4.6;

step 4.4.3 if b = 1, goto step 1;

step 4.4.4 Next i.

step 4.5 goto step 1;

step 4.6 Next j;

step 5 Output r.

4.3 Algorithm 2
Algorithm 2 describes the method to generate the finite field p, the order u of a non-supersin-
gular elliptic curve over Fp, and the order r of a point on the elliptic curve according to the
lengthm(m� 160) of the finite field p.
Algorithm 2. Generating the finite field p, the order u of a non-supersingu-
lar elliptic curve over Fp, and the order r of a point on the elliptic curve.
Input: The length m(m� 160) of the finite field p.
Output: The finite field p, the order u of a non-super singular elliptic
curve over Fp, the order r of a point on the elliptic curve.

step 1 Generate a large prime r of low hamming with weight 4 using algorithm 1;

step 2 Compute the order u of a non-supersingular elliptic curve u = r2;

step 3 Assign D = 3, set X = r, Y = r, such that the values of both X and Y satisfy
the condition 4u = X2 + DY2;

step 4 Compute p = r2 + r + 1 according to p = u ± X + 1 when u = r2, X = r;

step 5 If p is not a prime, goto Step 1;

step 6 Output the finite field p, the order u of a non-supersingular elliptic
curve over Fp, the order r of a point on a elliptic curve.

We would also remark that “the IEEE Standard Specifications for Public-Key Cryptogra-
phy” [40] recommends that in the construction of a curve with prescribed CM, if D = 3, the
coefficients a0 and b0 of E should be 0 and 1 respectively.

4.4 Algorithm 3
Algorithm 3 presents the method to construct pairing-friendly elliptic curves under embedding
degree 1. We assume that there are two different subgroups with the same order r on the elliptic
curve generated by algorithm 3, where r is a large prime.

In algorithm 3, the input parameter is the lengthm(m� 160) for the subgroup order, and
the output results are a, b and the prime p as the parameters of the elliptic curve y2	 x3 + ax + b
mod p, low hamming prime r as the order of subgroup, point P1 as the base point for
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generating subgroup G1 while calculating Tate pairing, where rP1 = 0, and point P2 as the
base point for generating subgroup G2 while calculating Tate pairing where rP1 = 0, rP2 = 0
and G1 \ G2 = ;.

Algorithm 3 is designed to be convenient for users generating pairing-friendly elliptic curves
under embedding degree 1, as the only input parameter is the length of the binary representa-
tion for the order r of the subgroup. Algorithm 3 runs by calling algorithm 2, which in turn
calls algorithm 1.
Algorithm 3. Constructing pairing-friendly elliptic curves.
Input: The length m(m� 160) for the subgroup order.
Output: a, b and the prime p denote the parameters of the elliptic curve
y2	 x3 + ax + b mod p, low hamming order r denotes the order of subgroup, point
P1(rP1 = 0) and point P2(rP2 = 0).

step 1 Generate the finite field p, the order u of a non-supersingular ellip-
tic curve over Fp, the order r of a point on the elliptic curve using
algorithm 2;

step 2 Select an integer ζ with 0 < ζ < p;

step 3 Set a 0 and b b0ζ mod p;

step 4 Locate a point P1 with order r on the curve y2	 x3 + ax + b mod p.

step 5 If the output of Step 4 is in the wrong order, goto Step 2.

step 6 Locate a point P2 with order r on the curve y2	 x3 + ax + b mod p, where
P2 =2 {kP1|k 2 {1, 2. . ., r}}.

step 7 The output p, a, b as the parameters of the elliptic curve y2	 x3 + ax + b
mod p, the large prime r with low hamming weight as the order of sub-
group, the point P1 as the base point for generating subgroup G1 while
calculating Tate pairing, where rP1 = 0, and the point P2 as the base
point for generating subgroup G2, while rP2 = 0 and G1 \ G2 = ;.

The elliptic curve generated by algorithm 3 can potentially include two different subgroups G1

and G2, with large prime order r with low hamming weight for computing Tate pairing. Because
the order r of subgroup is a public parameter, these parameters generated by the algorithms pre-
sented in the paper do not impact on the security of Pairing-based cryptosystems(PBC).

4.5 Preliminary Findings
We implement the construction described in Section 4.1 using Pentium 4 PC (CPU 3.06GHz),
and the findings are as follows.

Algorithm 1:
r = 730750818686719107034401070324602422792720220161 = 2159 + 2124 + 228 + 20

Algorithm 2:
p = 53399675901131022287481940452568268554861807611629722703698801201
2286237103997609758897031086083
r = 730750818686719107034401070324602422792720220161
u = r2 = 53399675901131022287481940452568268554861807611556647621830129
2905251836033673007336104310865921

Algorithm 3:
Table 1 describes 10 elliptic curves generated by algorithm 3 under the above p, r, u.

5 Discussion
In the Miller algorithm, for every bit of the order r of the subgroup, we would need to compute
16 multiplication and 7 inverse operations. If the bit is 1, however,we would need to compute
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11 multiplication and five inverse operations. For the order r of the subgroup with 160 bits in
ordinary PBCs, there are 80 ‘1’ bits on average. Therefore, we would need to compute 3,429
multiplication and 1,515 inverse operations. It is pleasing to note that using the parameters in
our approach, we only need 2,593 multiplication and 1,135 inverse operations, as shown in
Table 2.

An inverse operation is estimated to be 5.18 multiplication operations [39], and implement-
ing our method outlined in this paper will save 24.9% of the time required to compute the Tate
pairing:

2593þ 1135 � 5:18
3429þ 1515 � 5:18 ¼ 0:751 ¼ 75:1%

To demonstrate the practicality of the new method we proposed,using the parameters with
160 bits presented in Table 1, we implement a proof-of-concepton a Pentium 4 PC (CPU
3.06GHz) in Table 3, using the parameters with 160 bits presented in Table 1.

As shown in Fig 1., our implementation takes 12.93 ms to compute a pairing. We then com-
pared with the findings from Bertoni et al. [39], as shown in Table 3. In the latter, the large
prime of the order of the subgroup is 160 bits, but with a Hamming weight equal to 3 and the
embedding degree of 2. As shown in Table 3, our algorithm is more computationally efficient
compared to that of Bertoni et al.

The computation results depicted in Fig 1. can also be verified using the bilinear characteris-
tic of Tate pairing, as explained below:

tðP; 2QÞ ¼ tð2P;QÞ ¼ tðP;QÞ2

tðP; 3QÞ ¼ tð3P;QÞ ¼ tðP;QÞ3

Recall that in Tate pairing, if the embedding degree k 6¼ 1, then the computation of Tate
pairing is related to the extension field Fpk , which is very time consuming. Building on Miller’s

algorithm, we present an effective algorithm to construct pairing friendly elliptic curves with
low hamming weight 4 under embedding degree 1, which enables the computation of Tate
pairing only on the base field.

Table 2. Efficiency analysis.

The ordinary PBC PBC with parameter in the paper

Every bit (160 bits) Every bit with 1
(79 bits)

Every bit (160 bits) Every bit with 1
(3 bits)

Multiple Inverse Multiple Inverse Multiple Inverse Multiple Inverse

16 7 11 5 16 7 11 5

2560 1120 869 395 2560 1120 33 15

Total Multiple:3429 Inverse:1515 Multiple:2593 Inverse:1135

doi:10.1371/journal.pone.0161857.t002

Table 3. Comparative summary of Tate pairing computations.

Parameters The result from Bertoni et al. [39] The result from this paper

Platform PentiumIII @ 1GHz Pentium IV@ 3.06GHz

Length of prime 160 bits 160 bits

Low Hamming Weight 3 4

Time for a Tate pairing 41ms 12.93ms

doi:10.1371/journal.pone.0161857.t003
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6 Conclusion
Ensuring information confidentiality in critical infrastructures will be increasingly important
in our increasingly interconnected world. In this paper, we studied the generation method of
pairing-friendly elliptic curves for identity-based cryptography(IBC), with the aim to signifi-
cantly improve the computation efficiency of IBC. We demonstrated how pairing-friendly
elliptic curves can be efficiently conducted, both in theory and practice which can be deployed
in critical infrastructure systems, such as cyber-physical systems with limited resources [40]. In
our approach,pairings computing requires only the base field, rather than the extension field.

More specifically, in this paper, we described and conducted a preliminary analysis of the
new method to construct pairing-friendly elliptic curves under embedding degree 1. Unlike
the existed traditional CM methods,the parameters are not randomly generated in our
method. The parameters are computed under a given expression, which significantly
improves the efficiency of generating elliptic curve. Moreover, in our algorithm, the only
input parameter is the binary length of the large prime r, and then all parameters of the elliptic
curve can be rapidly generated. Our method consists of three algorithms, namely: an algo-
rithm to generate low hamming prime r according to the expected length of the large primer,
which is also used as the order of the subgroup; an algorithm to calculate the character p of
the finite field Fp and the order u of the elliptic curve according to the prime r; and an algo-
rithm to generate the pairing-friendly elliptic curves and the two different points P1 and P2 on
the elliptic curve with the same order r. It also ensures G1 \ G2 = ;, where G1 is the subgroup
generated by P1 and G2 is the subgroup generated by P2, G1 and G2 are two different sub-
groups of E with the same order r.

Fig 1. The result of computing Tate pairing on the first group curve. The first 9 lines gives the parameters of the first
group curves. Then the result of e(P,Q), e(2P,Q), e(P, 2Q), e(3P,Q), e(P, 3Q), e(P,Q)2 and e(P,Q)3 are given and the
bilinear property is verified.

doi:10.1371/journal.pone.0161857.g001
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The paper also provided 10 elliptic curves with low hamming, weight 4 under 160 bits gen-
erated using our algorithms, which demonstrated the utility of our method. Then, we demon-
strated the practicality of our method by implementing the method using Tate pairing.

Our curves can be applied in real word such as Internet of Things(IoT), Electronic Commerce
(EC) and Copyright Protection(CP). In fact, in all fields, which are involved in public key cryp-
tography, the proposed method can be applied to implement digital signature, key management
and authentication protocol [41–43]. The future work includes two aspects. The first aspect is to
optimize Miller’s algorithm to improve the computation efficiency of Tate pairing. The other
aspect is to apply the elliptic curves constructed by our method to the practical cryptosystem.

Supporting Information
S1 File. Pairing-friendly elliptic curves under embedding degree 1 with 160 bits. There are
10 group pairing-friendly elliptic curves under embedding degree 1 with 160 bits. In every
group, the parameters of p, r, #E, b, P, Q are given. The parameters of a is equal 0 in all groups.
(PDF)

S2 File. Pairing-friendly elliptic curves under embedding degree 1 with 190 bits. There are
10 group pairing-friendly elliptic curves under embedding degree 1 with 160 bits. In every
group, the parameters of p, r, #E, b, P, Q are given. The parameters a is equal 0 in all groups.
(PDF)
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