
A Secure Big Data Stream Analytics Framework for
Disaster Management on the Cloud

Deepak Puthal*, Surya Nepal†, Rajiv Ranjan‡† and Jinjun Chen*
*Faculty of Engineering and IT

University of Technology Sydney, NSW, Australia
†CSIRO Data61, Marsfield, NSW, Australia

‡School of Computing Science
Newcastle University, Newcastle upon Tyne, UK

Email: {deepak.puthal, rranjans, jinjun.chen}@gmail.com, Surya.Nepal@data61.csiro.au

Abstract— Cloud computing and big data analysis are gaining
lots of interest across a range of applications including disaster
management. These two technologies together provide the
capability of real-time data analysis not only to detect emergencies
in disaster areas, but also to rescue the affected people. This paper
presents a framework that supports emergency event detection
and alert generation by analyzing the data stream, which includes
efficient data collection, data aggregation and alert dissemination.
One of the goals for such a framework is to support an end-to-end
security architecture to protect the data stream from unauthorized
manipulation as well as leakage of sensitive information. The
proposed system provides support for both data security
punctuation and query security punctuation. This paper presents
the proposed architecture with a specific focus on data stream
security. It also briefly describes the implementation of security
aspects of the architecture.

Keywords—Cloud Computing; Big data analysis; data
security; disaster management.

I. INTRODUCTION
Natural disasters are mostly unpredictable events and arise

within very short spans of time. Therefore, technology has to be
developed to capture relevant data with a minimum delay, safely
deliver the data to a cloud data center for analysis and process
the data in real time to detect events and develop situation
awareness. There are several environmental disasters, e.g. flash
flood, earthquake, land slide, cyclone, tornado, tsunami, storms,
that need real-time data analysis to detect critical events and
protect human lives.

Data security plays an important role in such systems. In
disaster management systems, data can be originated from a
variety of sources. For example, wireless sensors can be a source
of data and can quickly respond to rapid changes of the
environment and send the sensed data to cloud data centers.
RFID sensors, surveillance cameras, social media (i.e. Twitter
and Facebook) all represent sources of data for natural disasters.
There is lots of work already being done on real-time data
collection [11][13], stream data processing [8][9], and end-to-
end security of big data streams [11][12][13]. In this paper, we
are proposing an integrated framework for disaster management.
We then propose a security architecture for data streams with the
aim of controlling access to the streaming data by providing end-
to-end security. Our solution aims to use efficient data

collection, and deploy appropriate data protection within the
end-to-end paradigm (source to user/query processor at the
cloud), as well as using efficient data analytics technology to
detect or predict the chances of any kind of disaster occurring.
Our architecture focuses on secure data stream analysis and
emergency alert generation. Furthermore, the proposed
architecture is able to detect the emergency event/natural
disaster in real time and generate alert messages to make people
as well as emergency service providers aware of the situation.
The main contributions of the paper can be summarized as
follows:

• Development and design of a novel architecture to
securely collect data and detect emergency events.

• Propose architecture maintain end-to-end security and
keep data freshness during the data analysis process.

• Consider data from a variety of sources such as sensors,
mobile devices and social networks to generate alerts if
there is any emergency in the source area.

• Finally proposed security verification model and followed
by information flow control of big data streams.

The remainder of the paper is organized as follows: Section
II describes requirements and challenges to design the
architecture for disaster management. Section III describes the
proposed architecture and descriptions. Section IV presents our
proposed security verification model followed by access control
architecture and experimental results. Finally we conclude the
paper in Section V.

II. REQUIREMENTS AND CHALLENGES
Big data has emerged as a new area with tremendous

potential in many domains, where data analytics techniques have
been applied to extract actionable information from the data. A
massive amount of data is collected continuously from a variety
of sources. Examples of data sources include sensor networks,
wireless networks, radio frequency identification (RFID),
customer click streams, telephone records, multimedia data,
scientific data, surveillance cameras, and social networks. In
addition to its pure volume, big data also exhibits other unique
characteristics in comparison with traditional data computation.
For example, big data is commonly unstructured and requires
real-time analysis. As a result, big data analytics in the cloud has
emerged as a new popular research topic, which also brings new

2016 IEEE 18th International Conference on High Performance Computing and Communications; IEEE 14th International

Conference on Smart City; IEEE 2nd International Conference on Data Science and Systems

978-1-5090-4297-5/16 $31.00 © 2016 IEEE

DOI 10.1109/HPCC-SmartCity-DSS.2016.48

1218

challenges in the data processing life cycle starting from data
collection, integration, and analytics to data privacy and
security. These challenges require a new system architecture for
data acquisition, transmission, storage, and large-scale data
processing with built in features of data security and privacy.

Many of the data sources emit data as a stream, which is an
ordered sequence of data instances that can be read in real time
using limited computing and storage capabilities. These sources
of data are characterized by being open-ended, flowing at high-
speed, and being generated by non-stationary distributions. With
the increasing bandwidth in electronic devices, data streams in
modern systems often transmit large amounts of data. In many
situations, the information in a data stream may be used to make
quick decisions in real-time that affect one or more other
operations of the device processing the stream or a related
business. Thus, it is often desirable for a device to process a
received data stream as quickly and efficiently as possible.

 There are two examples of big data stream processing as
described in the following subsection. These examples clearly
show that efficient data analysis constitutes an asset that can be
used to protect human lives and infrastructure from natural
hazards. One of the major concerns is to ensure that the data
collected for analysis is in its original form and from legitimate
sources. However, collecting data from different sources,
verifying the originality of data, and processing data to extract
actionable information in near real time is a challenging problem
that demands a secure big data analytics framework. In this
article, we present a comprehensive big data analytics
architecture for disaster management that takes care of data
throughout its life cycle, begins with generation of data streams
from a variety of sources and ends with generation of alerts after
processing. There are five key components in the architecture,
namely collection, evaluation, coalition, analysis, and
dissemination. These five components form a big data value
chain as shown in Figure 2. One of the key aspects of our
architecture is a security framework for collecting data. Though
the architecture and security protocol are described using a
disaster management scenario, they are equally applicable to
other applications that demand secure real time stream data
processing.

A. Motivating Examples
Supervisory Control and Data Acquisition (SCADA)

systems are used to monitor and control a power plant or
equipment in industries such as telecommunications, water and
waste control, energy, oil and gas refining and transportation. A
SCADA system gathers information, such as a leak on a
pipeline, and transfers the information back to the server in the
cloud, alerting the home station that the leak has occurred; it
carries out necessary analysis and control, such as determining
if the leak is critical, and displays the information in a logical
and organized fashion [16]. Davidson et al. [17] have
highlighted the need for online data analysis for alarm systems
and developed a robust multi-agent system for continuous online
usage within the power industry. They used multi-agent system
technology to automate the management and analysis of
SCADA and digital fault recorder (DFR) data.

Disaster management is another important application of
stream data processing. Real-time responses to crises and

disaster events, such as floods, fires, hurricanes, tsunamis, and
man-made disasters, are dependent on past knowledge as well as
knowledge obtained from effective real-time integration and
utilization of data streaming from multiple sources including
sensors, mobile device, and social media. Timely analysis of
data from these sources can help rescue teams, medics, and relief
workers in (i) sending early warning to people, (ii) saving lives,
(iii) coordinating rescue and medical operations, and (iv)
reducing the harm to infrastructures. Timely acquisition and
processing of data from sources and extraction of accurate
actionable information plays an important role in coordinating
disaster prevention and management. Castillo-Effen et al. [20]
have provided an architecture to manage flash floods by
collecting data from different sources including sensor nodes
deployed in the area, mobile phones (from local people?), and
social media. Such collected data need to be analyzed in real
time at the control center (deployed on the cloud) for timely
alerts. Ramesh [18] proposed an architecture for landslide event
detection using data collected from sensor networks. Tseng [19]
proposed an adaptive framework for earthquake detection.

III. ARCHITECTURE
The big data analytics architecture considers a number of

factors such as data life cycle, real-time processing, security and
privacy, and application scenarios. The application scenario of
big data not only provides the application requirements, but also
helps to describe the different components, protocols and
functionalities of the architecture. In this article, we have chosen
natural disaster management as the application. The proposed

Table I. Comparison between stream processing and batch
processing

 Stream processing Batch processing

Input Stream of new data
or updates

Data chunks

Data size Infinite or unknown
in advance

Finite and known

Hardware Typical single
limited amount of

memory

Multiple CPU
memories

Processing A single pass or
few passes over

data

Processed in
multiple rounds

Storage Not store or store
non-trivial portion

in memory

Store

Time A few seconds,
milliseconds or
microseconds

Much longer

Application Web mining,
sensor networks,
surveillance data.

Widely adopted in
almost every

domain

1219

cloud-based big data analytics system focuses on real-time
emergency event detection, followed by corresponding alert
message generation. We chose cloud as an infrastructure
because it provides a scalable computing platform and almost
infinite computation resources. The objective of the proposed
architecture is to analyze the sensing data in a real-time to detect
and handle emergency situations. The data are collected from
various sources in different formats and the collected data are
processed and evaluated in the cloud. The purpose of the data
analysis is to automatically generate alerts to authorities or end
users and the inhabitants at risk.

There are several common data sources of natural disasters
such as floods, fires, hurricanes, tsunamis, and man-made
disasters. Sensors, surveillance cameras, social networks etc. are
always the sources of the data in these incidents. By considering
all these sources, we broadly divide the sources into two types:
known source and unknown source. The known source belongs
to sensors, surveillance cameras, where the source’s identity is
known to us or the query processor; social media belongs to
unknown sources where a source’s identity is not always known
to us or the query processor.

There are two common approaches in evaluating or
processing the data: batch processing and stream processing.
Batch processing works in a store-and-process fashion [5], but
for real-time event detection it is important to process the data
on data streams. Therefore, batch processing is not capable to
detect events in real time. The comparison between batch
processing and stream processing features is shown in Table I.
Data stream processing is an emerging computing paradigm
where a huge amount of data (Big Data) must be processed in
real time (with minimal delay).

Alert message generation in the cloud depends on the data
set available for analysis. If the data is being modified in transit
or the data is from malicious sources, there is a possibility of
false alarms being generated or a failure to detect a real
emergency event. In such situations, maintaining originality of
the data is very important. It is of fundamental importance to
develop a system which is sensitive and able to effectively
recognize hazardous conditions. At the same time, a system
should be intelligent enough not to overreact and trigger false
alarms. So it is mandatory to deploy security verification
mechanisms to collect only original data at a cloud data center
for processing.

There are several solutions proposed for communication
between the source and the centralized station (cloud) and data
analysis on cloud for disaster management [5][18][20]. The
major challenge of disaster management is to analyze the
collected data in real time and protect the integrity and
confidentiality of data until event detection and decision making.

The block diagram of the proposed big data analytics for
disaster management on the cloud is shown in Figure 1. This
figure contains three major components: data collection,
communication, and data analysis/alerting. This figure shows
the complete architecture from source to alert message
generation with three major components and several
subcomponents. The monitoring subsystem, located in the event
area (source area), performs data acquisition of all relevant
variables and incorporates internal communication links that
allow the transmission of information from the spatially
distributed locations to the cloud. Security verification should be
processed in real time before data is submitted for analysis in the
cloud and generate alert messages. Figure 3 shows the complete
architecture of the block diagram from Figure 1. Based on the
processed data, an alerting subsystem is responsible for
generating alert messages which can be broadcasted by different
means. We understand these perceptions via the following
requirements:

• Effectiveness: The application should fulfil a user’s
needs by providing timely alert for emergencies.

• Efficiency: How much benefit do users get from this
system (false alarm/alerting)? The alert generation
should automatically be done on user’s behalf.

• Intelligibility: Users need to understand which location
information they get, time to accident, and the
evacuation process. The proposed system should
employ such information, and users need the above
specified information.

• Security: Data should not be modified before reaching
the cloud or end user.

• Satisfaction: Users should find the experience to be
overall satisfactory.

We considered the above specific points while describing the
proposed system model. We describe the complete architecture
with five different standard steps such as collection, evaluation,
collation, analysis, and dissemination as shown in Figure 2.

Figure 2: Five sequential steps to define the architecture

Figure 1: Block Diagram

1220

Figure 3 shows the complete architecture of big data stream
query processing with possible security attacks, and the DSM
(Data Stream Manager) structure for a security framework. Data
transfer to stream, clustering and Bayesian network are standard
data processing, but we did not address all these in our
architecture. The figure shows the complete architecture of the
system from source device to cloud for data analytics, security
framework and alert message generation and distribution. These
five steps are defined as follows.

1. Collection: Data collected from different sources such as
sensors, mobile devices, and social media for data analysis
and event detection.

2. Evaluation: Stream data verified for security evaluation to
maintain the originality of the data and go for online
stream query processing.

3. Collation: Evaluate data from different DSMs and
aggregate together for event detection and alert generation.
Data also move to the cloud for batch processing.

4. Analysis: Analyze the data to detect event and generate
alert messages. It includes two types of analysis: stream
processing and batch processing.

5. Dissemination: This step is the output of the data analysis
and distributes emergency alert messages if necessary.

We have described the complete architecture by considering
the above five steps as follows. The description starts with data
collection and ends with alert dissemination. The proposed
architecture may be applicable for different applications though
our description is based on a disaster management application.

A. Collection

Data are collected from various sources for analysis and
event detection. As stated above we divide data sources into two
types: known source and unknown source. Known sources are
those whose source ID or address is known such as weather
sensors, traffic sensors, and surveillance cameras. Unknown
sources include social networks such as Twitter and Facebook
where data sources are unknown to the data analyzer. Data are
transmitted towards a cloud data center through wired or
wireless connection, where sources are mobile phones, sensors,
etc. The social networks data are collected through the internet.
Collected data are in different formats such as video, sensor
data, websites, etc. These collected data streams move to the
STREAM collection system [23] before DSM for data
aggregation. The aggregated data move to individual DSMs for
originality of the data evaluation and the process is described in
the following subsection.

B. Evaluation

There are always two types of evaluation process in big data:
batch processing and stream processing. In this paper, we focus
on stream processing to detect emergency events in real-time. In
the evaluation step, we address the security evaluation before
data analysis. Generally sources use an untrusted medium to
transfer sensed data to the cloud for evaluation/analysis. So
security verification is one of the important features that need to
be addressed on big data streams to filter out unwanted and
modified data. According to the features of big data streams,
volume and velocity of data are very high, so we cannot put data
streams in halt to process. We consider four important features

of big data streams for security verification following the
conclusions in [11].

1. Security verification needs to be performed in real time
(on-the-fly).

2. The verification framework has to deal with a high volume
of data.

3. Data items can be read once in the prescribed sequence.
4. Original data is not available for comparisons like store-

and-process.

DSM processes data streams on-the-fly. The needs of on-the-
fly processing include the amount of input data that discourages
the use of persistent storage, the requirement of providing
prompt results, etc. DSM is designed to handle high-volume and
bursty data streams with a large number of complex continuous
queries. The way DSM handles streams of tuples is similar to
how a conventional database system handles relations. In
addition, DSM needs to do the security verification of the data
blocks on-the-fly. We implemented the real-time security
verification framework called Dynamic Prime-Number Based
Security Verification (DPBSV) [11]. The implementation with
some results is described in the next section. The security
verification is implemented before data stream query processing
or data analysis as shown in Figure 3. This assures that data
analytics are performed on the original data. This application is
quite sensitive to maintain the originality of the data for analysis
and alert generation.

Figure 3 shows an overall architecture for the big data stream
process from sensing devices to the cloud data centers, including
our proposed security framework. It starts with a three-step
process: collection, processing, and storing. All the query and
security related processes are handled at DSM. It is important to
note that the security verification of stream data has to be
performed before query processing and it has to be done in real
time (with minimal delay) with a fixed (small) buffer size. The
processed data is stored in the cloud storage for batch
processing. Queries used in DSM are defined as “continuous”
since they are continuously standing over the streaming data.
Results are pushed to the user each time the streaming data
satisfies the query predicate. The queries, including security
verification, are defined as a direct acyclic graph where each
node is an operator and edges define data flow.

C. Collation

Collation or correlation of the evaluated data from DSM is
further processed for event detection, which can be processed
in two ways: stream (real-time) processing and batch
processing, at SMS alert management system and Hadoop,
respectively. The evaluated data from different DSMs are
aggregated together and sent to SMS alert management system
and also to the cloud (NoSQL/Hadoop) for batch processing.
Here, we correlate the data from different sources and send for
analysis to generate alerts for different events. The current
architectural diagram shows that the online processing/alert
system and the batch processing happens in Hadoop.

Data aggregation is a process where information is gathered
and expressed in a summary form for purposes such as

1221

statistical analysis. One popular example of data aggregation is
online analytic processing (OLAP); this is a simple type of data
aggregation used for marketing where an online reporting
mechanism is used to process the information. The information
from such resources can then be used for early event detection
and alerting.

D. Analysis

Streaming data transmissions can be unreliable in many
environments. Nowadays data sources generate terabytes to
petabytes of data on a daily basis [14]. Given the volume of data
being generated, real-time computation has become a major
challenge. A scalable real-time computation system that we
have used effectively is the open-source Apache Storm tool,
which was developed at Twitter and is sometimes referred to as
“real-time Hadoop”. The example project, called “Speeding
Alert System”, analyzes real-time data and raises a trigger and
relevant data to a database when there is any emergency at the
source side.

We described the stream query processing to detect the
event. The data stream concept of continuous queries is graphs
of interconnected operators that allow for rich, real-time analysis
of data. A stream of data is a potentially infinite sequence of
tuples, denoted as (T1, T2, …, Tn); we refer to a generic attribute
Ti of tuple j as j:Ti. We assume that all tuples have a time stamp
attribute set at the data sources. The data sources have clocks
that are well synchronized with other system nodes as in [2].
Each query is modeled as a network of connected operators. A
connection represents a data flow. Typical query operators of
DSMs are filter, map, union, join, and aggregate [1]. These
operators correspond to relational algebra operators. Operators
can be classified as stateless (filter, map and union) or stateful
operators (join and aggregates) [3]. As the nature of the data
stream is infinite, stateful operators perform their computation
over sliding windows of tuples defined over a period of time
(e.g. tuples received in the last hour) or as a fixed number of
tuples (e.g. last 100 tuples). Figure 3 shows the high level
abstraction of stream data processing at DSM. The incoming

Figure 3: Architectural diagram for classification of streaming sources to alert generation with security verifications, access control
and stream data analysis

1222

streams (on the left) produce data indefinitely and drive query
processing. Processing of continuous queries typically requires
intermediate states, which are stored as Scratch Store in Figure
3. This state could be stored and accessed in memory or on disk.
Although we are concerned primarily with the online processing
of continuous queries, in many applications stream data may
also be copied to an archive, for preservation and possible offline
processing of expensive analysis or mining queries. Refer to [8]
for further information on stream data processing in datacenter
clouds.

Such large data masses termed Big Data is calling for new
approaches to storage and processing of data. Scaling using
hard disk parallelism is one of the design goals of scalable batch
processing in the cloud. MapReduce (Hadoop) is scalable batch
processing technology in the cloud. The MapReduce
framework takes care of all issues related to parallelization,
synchronization, load balancing, and fault tolerance. All these
details are hidden from the application developer. When
deciding whether MapReduce is the correct fit for an algorithm,
one has to remember the fixed data-flow pattern of MapReduce.
The algorithm has to be efficiently mapped to this data-flow
pattern in order to efficiently use the underlying computing
hardware. The data is available if at least one machine replica
is up and running.

E. Dissemination
In this step, proposed framework generate the emergency

alert after data analysis and send alerts to the mobile phone.
Alert dissemination is always followed by data analysis
(previous step). Alerts are generated from SMS Alert
Management System, by following alert DB from Figure 3.

The construction and display of operator messages
representative of alert conditions in a network is described as
follows. Code points, which are strings of bits, are generated in
response to an event in a device attached to the network [4]. The
code points are utilized to index predefined tables that contain
moderately short units of instant messages in administrator
selectable dialects to be utilized as a part of building an
administrator's data show. The messages are free of the
particular warning sending item insofar as an alarm collector is
concerned. The code points are progressively orchestrated so
that if the alert collector does not have the most forward set of
messages, the alert recipient will show a more generic message
which is still illustrative of the occasion.

IV. SECURITY FRAMEWORK FOR BIG DATA STREAMS
We are analyzing the data in two different modules i.e.

stream processing and batch processing, as described in the
previous architecture description. Table I indicated the basic
difference between batch processing and stream processing
features. Possible attacks and their classifications of the data
streams are described in [11]. The streaming data security can
be broadly divided into two types of security punctuations: (i)
the “data security punctuations” (dsps) describing the data-side
security, and (ii) the “query security punctuations” (qsps)
representing the query-side security [21]. We introduced a new
module called Data Stream Manager (DSM), where we perform
security verifications of data streams for dsps before data
analysis. We proposed Dynamic Prime Number Based Security

Verification (DPBSV) and Dynamic Key Length Based Security
Framework (DLSeF) methods for big data streams based on the
shared key derived from synchronized prime numbers in our
earlier works [11, 13]. The proposed DPBSV scheme for big
data stream processing is based on a common shared key that is
updated dynamically by generating synchronized pairs of prime
numbers [11]. Later, to make it more efficient by reducing the
computational overhead and buffer size, we proposed DLSeF
which is based on the shared key derived from synchronized
prime numbers [13]. These two techniques were proposed to
maintain end-to-end security (source to processing unit, i.e.
DSM) of big sensing data streams and perform security
verification at DSM. These models introduced a small buffer
before DSM, because we need to satisfy the four features of big
data streams (from Section III). A buffer can be used to halt the
data packets before processing. These methods focus on
reducing the buffer size as well as the halting time of data blocks
with a fast security verification model.

A. Security verification model

Here we proposed a security model by following the system
model of DPBSV and DLSeF. We follow [11][13] to design a
DSM which is capable of handling high volume, velocity and
variety data streams from multiple sources. In addition, the
DSM is responsible for performing the security verification of
the incoming data streams in near real time to synchronize with
the processing speed of Stream Processing Engines (SPE). In
this security model, source sensors are deployed with Intrusion
Detection Systems (IDS). Sensor-based IDS monitor a sensor’s
behavior and generate alerts on potentially malicious activities
onboard and network traffic [24]. IDS can be set inline, attached
to a spanning port of a sensor. The idea here is to allow access
to all packets we wish the IDS to monitor. LEoNIDS (low-
latency and energy efficient network IDS) is a system that
determines the energy expectancy trade off by giving both
lower power utilization and lower recognition expectancy in the
meantime [25].

In our architecture, the data streams are always in an
encrypted format when they arrive at the DSM. Our idea is that
while encrypting the data packets at the source sensors, we
attach a sensitivity level of data to each individual data packet.
We apply different keys to encrypt the data packets for different
data sensitivity levels to maintain data security based on data
sensitivity. This ensures data streams maintain authenticity and
integrity, whereas confidentiality is based on data sensitivity
level. In a very generic representation, if we need n levels of
data security then n-1 keys (�������	�
�	�
�) are required
for encryption/decryption. Here we are using longer keys for
strong encryption whereas a shorter key length can be used for
weak encryption (See Table II).

Here we consider three levels of security i.e. strong
confidentiality, partial confidentiality, and no confidentiality;
and two keys (i.e. k1, k2) for encryption methods. The strong
encryption method uses k1 and is used to provide strong
confidentiality, and the weak encryption method uses k2 to
support partial confidentiality. Note that we do not need to
encrypt the data packets for no confidentiality. Data packets can

1223

be transmitted to DSM by encrypting the data stream, where
deployed sensors are always associated with sensitivity level.
We are going to apply encryption methods (strong/weak
encryption) based on the data sensitivity or confidentiality
level. These two shared keys used for encryption and
decryption are always initialized and distributed by the DSM.
DSM always distributes the shared keys to source sensors
before it expires.

�������	�
�	�
� �
��
�
��
�������
������ � � ��
������������
������ � �������
������ � !

���
��� � !���
��� � ���������
������ � � �"���

Every encrypted data packet is always associated with a flag
value of 1 or 0 which represents the data sensitivity level and
shared key used for data encryption. Here we consider 1 is for
strong encryption i.e. high sensitivity data, 0 is for weak
encryption and no flag value represents no encryption. The
security verification needs to be done on-the-fly (i.e. near real-
time) with smaller buffer size. The queries, including security
verification, can be defined as a directed acyclic graph and each
node is an operator and edges defined as data flows between the
nodes.

B. Information flow control model

According to Sandhu’s definition on lattice based access
control, users are defined as humans, subjects are processes and
objects are files [22]. We follow the same way to define our
system, where users are humans and subjects are query
processors (QP) and objects are data blocks after security
verification at DSM. We use a standard five steps/stages
process for the information flow control model. The five stages
are Stage 0: structure module; Stage 1: information flow
between the levels; Stage 2: recursive lattice construction;
Stage 3: conflict of interest; Stage 4: decision over data access.
By following the above steps, information flow control policies
specify under which conditions information may be exchanged
or accessed by the users and query processor.

From the previous description of security verification,
sensors always generate the data packets with the format
{DATA; 1/0; Si, Si/DSM}. DATA means encrypted data
packets, 1/0 means the flag value (FV) to define the data
sensitivity level, Si means the source of the data and finally
Si/DSM shows who has the influence to modify the data
packets. After security verification at DSM, we check the flow
model to define the access control. We made the flow model
simple and defined the static lattices for lightweight processing

over big data streams. There are three different ways of flow
management, namely no management, centralized management
and distributed management. We follow centralized
management at DSM after security verifications. We defined
our flow model (FM) as follows

FM = <S, O, SC, �>
Where: S = Subjects

P = Processes
SC = Security Classes
→ = Can-flow relation on SC

Here we did not add an operations option in our FM,
because our focus is only to read or access the data stream
instead of writing. We define a static lattice for sensors, which
will label incoming data streams and a static lattice for users to
define the access class for both user and query processor. The
lattice structure with access policy is shown in Figure 4. The
lattice is a Directed Acyclic Graph (DAG) with a single source
and information is permitted to flow from a lower class to upper
class. We have divided our lattice into three classes i.e. {A, B,
C}, where 1 is for user lattice i.e. {A1, B1, C1} and 2 is for
sensor lattice i.e. {A2, B2, C2}. We defined A as the highest
class (i.e. for high sensitivity information), followed by B
defined as lower class (i.e. low sensitivity data) and finally C is
defined as lowest class for open access information.

Figure 4 shows the access policy, where a class of user
lattice has access to the same and lower level classes of sensor
lattice. We follow a modified Chinese Wall model for
information flow control by Snadhu [22] to define the conflict
of interest between the classes. This access policy always
satisfies the properties of reflexive, antisymmetric and
transitive (i.e. partial order). Partial ordering → on a set L is a
relation where: #�a ∈ L, a → a holds (reflexive) #�a,b∈ L, if a → b, b → a, then a = b (antisymmetric) #�a,b,c ∈ L, if a → b, b → c, then a → c (transitive)

We follow this partial order relation between the classes of
lattice to define access control of big data streams. This tends
to query security punctuations (qsps) of data streams.

V. CONCLUSIONS
Diversity of existing big data analytics frameworks in cloud

makes the process of emergency decision making for software
engineers, solution architects, or infrastructure administrators
challenging. To address such an issue, this study explores the
holistic system framework from data collection to security
framework, data analytics and alert message distribution. Here

Figure 4: Lattice model for data access

Table II. Notations Symmetric key (AES) algorithm takes
time to get all possible keys using most advanced Intel i7

Processor.
Key Length 32 64 128

Key domain size 4.295e
+09

1.845e
+19

3.4028e
+38

Time
(in nanoseconds)

7.301e
+09

3136e
+19

5.7848e
+35

1224

we also explored the security framework of big data streams at
DSM followed by access control of data stream by information
flow model.

VI. ACKNOWLEDGEMENT
This research is funded by the Australia India Strategic

Research Grant titled “Innovative Solutions for Big Data and
Disaster Management Applications on Clouds (AISRF –
08140)” from the Department of Industry, Australia.

REFERENCES
[1] Gulisano, Vincenzo, Ricardo Jimenez-Peris, Marta Patino-Martinez,

Claudio Soriente, and Patrick Valduriez."Streamcloud: An elastic and
scalable data streaming system.” IEEE Transactions on Parallel and
Distributed Systems, 23(12), pp. 2351-2365, 2012.

[2] N. Tatbul, U. C¸ etintemel, and S.B. Zdonik, "Staying Fit: Efficient Load
Shedding Techniques for Distributed Stream Processing." Proc. Int’l
Conf. Very Large Data Bases (VLDB), pp. 159-170, 2007.

[3] Gulisano, Vincenzo, Ricardo Jimenez-Peris, Marta Patino-Martinez, and
Patrick Valduriez. "Streamcloud: A large scale data streaming
system." IEEE 30th International Conference on Distributed Computing
Systems (ICDCS),pp. 126-137, 2010.

[4] Anderson, Catherine J., Arthur A. Daniel, Thomas J. Gelm, Raymond F.
Kiter, John P. Meeham, Robert E. Moore, John G. Stevenson, and
Lawrence E. Troan. "Method and apparatus for communication network
alert message construction." U.S. Patent 4,965,772, issued October 23,
1990.

[5] Puthal, Deepak, B. P. S. Sahoo, Sambit Mishra, and Satyabrata Swain.
"Cloud Computing Features, Issues and Challenges: A Big Picture." in
International Conference on Computational Intelligence & Networks
(CINE), pp. 116-123, 2015.

[6] TCG Trusted Platform Module (TPM) Specification,
https://www.trustedcomputinggroup.org/specs/tpm/

[7] Nepal, Surya, John Zic, Dongxi Liu, and Julian Jang. "A mobile and
portable trusted computing platform." EURASIP Journal on Wireless
Communications and Networking, 2011(1), pp. 1-19, 2011.

[8] Ranjan, Rajiv. "Streaming big data processing in datacenter clouds." IEEE
Cloud Computing 1, no. 1 (2014): 78-83.

[9] Ji, Changqing, Yu Li, Wenming Qiu, Uchechukwu Awada, and Keqiu Li.
"Big data processing in cloud computing environments." In 2012 12th
International Symposium on Pervasive Systems, Algorithms and
Networks, pp. 17-23. IEEE, 2012.

[10] Yu, Liyang, Neng Wang, and Xiaoqiao Meng. "Real-time forest fire
detection with wireless sensor networks." In Proceedings. 2005
International Conference on Wireless Communications, Networking and
Mobile Computing, 2005., vol. 2, pp. 1214-1217. IEEE, 2005.

[11] Puthal, Deepak, Surya Nepal, Rajiv Ranjan, and Jinjun Chen. "A dynamic
prime number based efficient security mechanism for big sensing data
streams." Journal of Computer and System Sciences (2016).

[12] Park, Taejoon, and Kang G. Shin. "LiSP: A lightweight security protocol
for wireless sensor networks." ACM Transactions on Embedded
Computing Systems (TECS) 3, no. 3 (2004): 634-660

[13] Deepak Puthal, Surya Nepal, Rajiv Ranjan, and Jinjun Chen. "DLSeF: A
Dynamic Key Length based Efficient Real-Time Security Verification
Model for Big Data Stream." ACM Transactions on Embedded
Computing Systems (TECS), 2016.

[14] Hu, Han, Y. O. N. G. G. A. N. G. Wen, T. Chua, and X. U. E. L. O. N. G.
Li. "Towards Scalable Systems for Big Data Analytics: A Technology
Tutorial." IEEE Access, Vol. 2, pp. 652 – 687, 2014.

[15] Kaddoura, Issam, and Samih Abdul-Nabi. "On formula to compute primes
and the nth prime." Applied Mathematical science, 6(76), pp.3751-3757,
2012.

[16] Stamp, Jason, Phil Campbell, Jennifer DePoy, John Dillinger, and
William Young. "Sustainable security for infrastructure SCADA." Sandia
National Laboratories, Albuquerque, New Mexico (www. sandia.
gov/scada/documents/SustainableSec urity. pdf) (2003).

[17] Davidson, Euan M., Stephen DJ McArthur, James R. McDonald, Tom
Cumming, and Ian Watt. "Applying multi-agent system technology in
practice: automated management and analysis of SCADA and digital fault
recorder data." Power Systems, IEEE Transactions on 21, no. 2 (2006):
559-567.

[18] Ramesh, Maneesha V. "Real-time wireless sensor network for landslide
detection." In Sensor Technologies and Applications, 2009.
SENSORCOMM'09. Third International Conference on, pp. 405-409.
IEEE, 2009.

[19] Tseng, Chun-Pin, and Cheng-Wu Chen. "Natural disaster management
mechanisms for probabilistic earthquake loss." Natural Hazards 60, no. 3
(2012): 1055-1063.

[20] Castillo-Effer, M., Daniel H. Quintela, W. Moreno, R. Jordan, and W.
Westhoff. "Wireless sensor networks for flash-flood alerting." In Devices,
Circuits and Systems, 2004. Proceedings of the Fifth IEEE International
Caracas Conference on, pp. 142-146. IEEE, 2004.

[21] Nehme, Rimma V., Hyo-Sang Lim, Elisa Bertino, and Elke A.
Rundensteiner. "StreamShield: a stream-centric approach towards
security and privacy in data stream environments." In Proceedings of the
2009 ACM SIGMOD International Conference on Management of data,
pp. 1027-1030. ACM, 2009.

[22] Sandhu, Ravi S. "Lattice-based enforcement of chinese
walls." Computers & Security 11, no. 8 (1992): 753-763.

[23] Arasu, Arvind, Brian Babcock, Shivnath Babu, Mayur Datar, Keith Ito,
Itaru Nishizawa, Justin Rosenstein, and Jennifer Widom. "STREAM: the
stanford stream data manager (demonstration description)."
In Proceedings of the 2003 ACM SIGMOD international conference on
Management of data, pp. 665-665. ACM, 2003.

[24] Roesch, Martin. "Snort: Lightweight Intrusion Detection for Networks."
InLISA, vol. 99, no. 1, pp. 229-238. 1999.

[25] Tsikoudis, Nikos, Antonis Papadogiannakis, and Evangelos P. Markatos.
"LEoNIDS: a Low-latency and Energy-efficient Network-level Intrusion
Detection System." IEEE Transactions on Emerging Topics in
Computing 4, no. 1 (2016): 142-155.

1225

