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Abstract— Cloud computing and big data analysis are gaining 
lots of interest across a range of applications including disaster 
management. These two technologies together provide the 
capability of real-time data analysis not only to detect emergencies 
in disaster areas, but also to rescue the affected people. This paper 
presents a framework that supports emergency event detection 
and alert generation by analyzing the data stream, which includes 
efficient data collection, data aggregation and alert dissemination. 
One of the goals for such a framework is to support an end-to-end 
security architecture to protect the data stream from unauthorized 
manipulation as well as leakage of sensitive information. The 
proposed system provides support for both data security 
punctuation and query security punctuation. This paper presents 
the proposed architecture with a specific focus on data stream 
security. It also briefly describes the implementation of security 
aspects of the architecture.   

Keywords—Cloud Computing; Big data analysis; data 
security; disaster management. 

I.  INTRODUCTION 
Natural disasters are mostly unpredictable events and arise 

within very short spans of time. Therefore, technology has to be 
developed to capture relevant data with a minimum delay, safely 
deliver the data to a cloud data center for analysis and process 
the data in real time to detect events and develop situation 
awareness. There are several environmental disasters, e.g. flash 
flood, earthquake, land slide, cyclone, tornado, tsunami, storms, 
that need real-time data analysis to detect critical events and 
protect human lives.  

Data security plays an important role in such systems. In 
disaster management systems, data can be originated from a 
variety of sources. For example, wireless sensors can be a source 
of data and can quickly respond to rapid changes of the 
environment and send the sensed data to cloud data centers. 
RFID sensors, surveillance cameras, social media (i.e. Twitter 
and Facebook) all represent sources of data for natural disasters. 
There is lots of work already being done on real-time data 
collection [11][13], stream data processing [8][9], and end-to-
end security of big data streams [11][12][13]. In this paper, we 
are proposing an integrated framework for disaster management. 
We then propose a security architecture for data streams with the 
aim of controlling access to the streaming data by providing end-
to-end security.  Our solution aims to use efficient data 

collection, and deploy appropriate data protection within the 
end-to-end paradigm (source to user/query processor at the 
cloud), as well as using efficient data analytics technology to 
detect or predict the chances of any kind of disaster occurring. 
Our architecture focuses on secure data stream analysis and 
emergency alert generation. Furthermore, the proposed 
architecture is able to detect the emergency event/natural 
disaster in real time and generate alert messages to make people 
as well as emergency service providers aware of the situation.  
The main contributions of the paper can be summarized as 
follows: 

• Development and design of a novel architecture to 
securely collect data and detect emergency events.  

• Propose architecture maintain end-to-end security and 
keep data freshness during the data analysis process.  

• Consider data from a variety of sources such as sensors, 
mobile devices and social networks to generate alerts if 
there is any emergency in the source area.  

• Finally proposed security verification model and followed 
by information flow control of big data streams. 

The remainder of the paper is organized as follows: Section 
II describes requirements and challenges to design the 
architecture for disaster management. Section III describes the 
proposed architecture and descriptions. Section IV presents our 
proposed security verification model followed by access control 
architecture and experimental results. Finally we conclude the 
paper in Section V. 

II. REQUIREMENTS AND CHALLENGES 
Big data has emerged as a new area with tremendous 

potential in many domains, where data analytics techniques have 
been applied to extract actionable information from the data. A 
massive amount of data is collected continuously from a variety 
of sources. Examples of data sources include sensor networks, 
wireless networks, radio frequency identification (RFID), 
customer click streams, telephone records, multimedia data, 
scientific data, surveillance cameras, and social networks. In 
addition to its pure volume, big data also exhibits other unique 
characteristics in comparison with traditional data computation. 
For example, big data is commonly unstructured and requires 
real-time analysis. As a result, big data analytics in the cloud has 
emerged as a new popular research topic, which also brings new 
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challenges in the data processing life cycle starting from data 
collection, integration, and analytics to data privacy and 
security. These challenges require a new system architecture for 
data acquisition, transmission, storage, and large-scale data 
processing with built in features of data security and privacy.  

Many of the data sources emit data as a stream, which is an 
ordered sequence of data instances that can be read in real time 
using limited computing and storage capabilities. These sources 
of data are characterized by being open-ended, flowing at high-
speed, and being generated by non-stationary distributions. With 
the increasing bandwidth in electronic devices, data streams in 
modern systems often transmit large amounts of data. In many 
situations, the information in a data stream may be used to make 
quick decisions in real-time that affect one or more other 
operations of the device processing the stream or a related 
business. Thus, it is often desirable for a device to process a 
received data stream as quickly and efficiently as possible. 

 There are two examples of big data stream processing as 
described in the following subsection. These examples clearly 
show that efficient data analysis constitutes an asset that can be 
used to protect human lives and infrastructure from natural 
hazards. One of the major concerns is to ensure that the data 
collected for analysis is in its original form and from legitimate 
sources. However, collecting data from different sources, 
verifying the originality of data, and processing data to extract 
actionable information in near real time is a challenging problem 
that demands a secure big data analytics framework. In this 
article, we present a comprehensive big data analytics 
architecture for disaster management that takes care of data 
throughout its life cycle, begins with generation of data streams 
from a variety of sources and ends with generation of alerts after 
processing. There are five key components in the architecture, 
namely collection, evaluation, coalition, analysis, and 
dissemination. These five components form a big data value 
chain as shown in Figure 2. One of the key aspects of our 
architecture is a security framework for collecting data. Though 
the architecture and security protocol are described using a 
disaster management scenario, they are equally applicable to 
other applications that demand secure real time stream data 
processing. 

A. Motivating Examples  
Supervisory Control and Data Acquisition (SCADA) 

systems are used to monitor and control a power plant or 
equipment in industries such as telecommunications, water and 
waste control, energy, oil and gas refining and transportation. A 
SCADA system gathers information, such as a leak on a 
pipeline, and transfers the information back to the server in the 
cloud, alerting the home station that the leak has occurred; it 
carries out necessary analysis and control, such as determining 
if the leak is critical, and displays the information in a logical 
and organized fashion [16]. Davidson et al. [17] have 
highlighted the need for online data analysis for alarm systems 
and developed a robust multi-agent system for continuous online 
usage within the power industry. They used multi-agent system 
technology to automate the management and analysis of 
SCADA and digital fault recorder (DFR) data. 

Disaster management is another important application of 
stream data processing. Real-time responses to crises and 

disaster events, such as floods, fires, hurricanes, tsunamis, and 
man-made disasters, are dependent on past knowledge as well as 
knowledge obtained from effective real-time integration and 
utilization of data streaming from multiple sources including 
sensors, mobile device, and social media. Timely analysis of 
data from these sources can help rescue teams, medics, and relief 
workers in (i) sending early warning to people, (ii) saving lives, 
(iii) coordinating rescue and medical operations, and (iv) 
reducing the harm to infrastructures. Timely acquisition and 
processing of data from sources and extraction of accurate 
actionable information plays an important role in coordinating 
disaster prevention and management. Castillo-Effen et al. [20] 
have provided an architecture to manage flash floods by 
collecting data from different sources including sensor nodes 
deployed in the area, mobile phones (from local people?), and 
social media. Such collected data need to be analyzed in real 
time at the control center (deployed on the cloud) for timely 
alerts.  Ramesh [18] proposed an architecture for landslide event 
detection using data collected from sensor networks. Tseng [19] 
proposed an adaptive framework for earthquake detection.  

III. ARCHITECTURE  
The big data analytics architecture considers a number of 

factors such as data life cycle, real-time processing, security and 
privacy, and application scenarios. The application scenario of 
big data not only provides the application requirements, but also 
helps to describe the different components, protocols and 
functionalities of the architecture. In this article, we have chosen 
natural disaster management as the application. The proposed 

Table I. Comparison between stream processing and batch 
processing 

 Stream processing Batch processing 

Input Stream of new data 
or updates 

Data chunks 

Data size Infinite or unknown 
in advance 

Finite and known  

Hardware Typical single 
limited amount of 

memory 

Multiple CPU 
memories 

Processing A single pass or 
few passes over 

data 

Processed in 
multiple rounds 

Storage Not store or store 
non-trivial portion 

in memory 

Store 

Time  A few seconds, 
milliseconds or 
microseconds 

Much longer 

Application Web mining, 
sensor networks, 
surveillance data. 

Widely adopted in 
almost every 

domain 
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cloud-based big data analytics system focuses on real-time 
emergency event detection, followed by corresponding alert 
message generation. We chose cloud as an infrastructure 
because it provides a scalable computing platform and almost 
infinite computation resources. The objective of the proposed 
architecture is to analyze the sensing data in a real-time to detect 
and handle emergency situations. The data are collected from 
various sources in different formats and the collected data are 
processed and evaluated in the cloud. The purpose of the data 
analysis is to automatically generate alerts to authorities or end 
users and the inhabitants at risk.  

There are several common data sources of natural disasters 
such as floods, fires, hurricanes, tsunamis, and man-made 
disasters. Sensors, surveillance cameras, social networks etc. are 
always the sources of the data in these incidents. By considering 
all these sources, we broadly divide the sources into two types: 
known source and unknown source. The known source belongs 
to sensors, surveillance cameras, where the source’s identity is 
known to us or the query processor; social media belongs to 
unknown sources where a source’s identity is not always known 
to us or the query processor.  

There are two common approaches in evaluating or 
processing the data: batch processing and stream processing. 
Batch processing works in a store-and-process fashion [5], but 
for real-time event detection it is important to process the data 
on data streams. Therefore, batch processing is not capable to 
detect events in real time. The comparison between batch 
processing and stream processing features is shown in Table I. 
Data stream processing is an emerging computing paradigm 
where a huge amount of data (Big Data) must be processed in 
real time (with minimal delay).  

Alert message generation in the cloud depends on the data 
set available for analysis. If the data is being modified in transit 
or the data is from malicious sources, there is a possibility of 
false alarms being generated or a failure to detect a real 
emergency event. In such situations, maintaining originality of 
the data is very important. It is of fundamental importance to 
develop a system which is sensitive and able to effectively 
recognize hazardous conditions. At the same time, a system 
should be intelligent enough not to overreact and trigger false 
alarms. So it is mandatory to deploy security verification 
mechanisms to collect only original data at a cloud data center 
for processing.  

There are several solutions proposed for communication 
between the source and the centralized station (cloud) and data 
analysis on cloud for disaster management [5][18][20]. The 
major challenge of disaster management is to analyze the 
collected data in real time and protect the integrity and 
confidentiality of data until event detection and decision making.  

The block diagram of the proposed big data analytics for 
disaster management on the cloud is shown in Figure 1. This 
figure contains three major components: data collection, 
communication, and data analysis/alerting. This figure shows 
the complete architecture from source to alert message 
generation with three major components and several 
subcomponents. The monitoring subsystem, located in the event 
area (source area), performs data acquisition of all relevant 
variables and incorporates internal communication links that 
allow the transmission of information from the spatially 
distributed locations to the cloud. Security verification should be 
processed in real time before data is submitted for analysis in the 
cloud and generate alert messages. Figure 3 shows the complete 
architecture of the block diagram from Figure 1. Based on the 
processed data, an alerting subsystem is responsible for 
generating alert messages which can be broadcasted by different 
means. We understand these perceptions via the following 
requirements: 

• Effectiveness: The application should fulfil a user’s 
needs by providing timely alert for emergencies. 

• Efficiency: How much benefit do users get from this 
system (false alarm/alerting)? The alert generation 
should automatically be done on user’s behalf. 

• Intelligibility: Users need to understand which location 
information they get, time to accident, and the 
evacuation process. The proposed system should 
employ such information, and users need the above 
specified information. 

• Security: Data should not be modified before reaching 
the cloud or end user. 

• Satisfaction: Users should find the experience to be 
overall satisfactory. 

We considered the above specific points while describing the 
proposed system model. We describe the complete architecture 
with five different standard steps such as collection, evaluation, 
collation, analysis, and dissemination as shown in Figure 2. 

Figure 2: Five sequential steps to define the architecture  

Figure 1: Block Diagram 
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Figure 3 shows the complete architecture of big data stream 
query processing with possible security attacks, and the DSM 
(Data Stream Manager) structure for a security framework. Data 
transfer to stream, clustering and Bayesian network are standard 
data processing, but we did not address all these in our 
architecture. The figure shows the complete architecture of the 
system from source device to cloud for data analytics, security 
framework and alert message generation and distribution. These 
five steps are defined as follows.   

1. Collection: Data collected from different sources such as 
sensors, mobile devices, and social media for data analysis 
and event detection. 

2. Evaluation: Stream data verified for security evaluation to 
maintain the originality of the data and go for online 
stream query processing. 

3. Collation: Evaluate data from different DSMs and 
aggregate together for event detection and alert generation. 
Data also move to the cloud for batch processing. 

4. Analysis: Analyze the data to detect event and generate 
alert messages. It includes two types of analysis: stream 
processing and batch processing. 

5. Dissemination: This step is the output of the data analysis 
and distributes emergency alert messages if necessary. 

We have described the complete architecture by considering 
the above five steps as follows. The description starts with data 
collection and ends with alert dissemination. The proposed 
architecture may be applicable for different applications though 
our description is based on a disaster management application. 

A. Collection 

Data are collected from various sources for analysis and 
event detection. As stated above we divide data sources into two 
types: known source and unknown source. Known sources are 
those whose source ID or address is known such as weather 
sensors, traffic sensors, and surveillance cameras. Unknown 
sources include social networks such as Twitter and Facebook 
where data sources are unknown to the data analyzer. Data are 
transmitted towards a cloud data center through wired or 
wireless connection, where sources are mobile phones, sensors, 
etc. The social networks data are collected through the internet. 
Collected data are in different formats such as video, sensor 
data, websites, etc. These collected data streams move to the 
STREAM collection system [23] before DSM for data 
aggregation. The aggregated data move to individual DSMs for 
originality of the data evaluation and the process is described in 
the following subsection.  

B. Evaluation 

There are always two types of evaluation process in big data: 
batch processing and stream processing. In this paper, we focus 
on stream processing to detect emergency events in real-time. In 
the evaluation step, we address the security evaluation before 
data analysis. Generally sources use an untrusted medium to 
transfer sensed data to the cloud for evaluation/analysis. So 
security verification is one of the important features that need to 
be addressed on big data streams to filter out unwanted and 
modified data. According to the features of big data streams, 
volume and velocity of data are very high, so we cannot put data 
streams in halt to process. We consider four important features 

of big data streams for security verification following the 
conclusions in [11]. 

1. Security verification needs to be performed in real time 
(on-the-fly). 

2. The verification framework has to deal with a high volume 
of data. 

3. Data items can be read once in the prescribed sequence.  
4. Original data is not available for comparisons like store-

and-process.  

DSM processes data streams on-the-fly. The needs of on-the-
fly processing include the amount of input data that discourages 
the use of persistent storage, the requirement of providing 
prompt results, etc. DSM is designed to handle high-volume and 
bursty data streams with a large number of complex continuous 
queries. The way DSM handles streams of tuples is similar to 
how a conventional database system handles relations. In 
addition, DSM needs to do the security verification of the data 
blocks on-the-fly. We implemented the real-time security 
verification framework called Dynamic Prime-Number Based 
Security Verification (DPBSV) [11]. The implementation with 
some results is described in the next section. The security 
verification is implemented before data stream query processing 
or data analysis as shown in Figure 3. This assures that data 
analytics are performed on the original data. This application is 
quite sensitive to maintain the originality of the data for analysis 
and alert generation.  

Figure 3 shows an overall architecture for the big data stream 
process from sensing devices to the cloud data centers, including 
our proposed security framework. It starts with a three-step 
process: collection, processing, and storing. All the query and 
security related processes are handled at DSM. It is important to 
note that the security verification of stream data has to be 
performed before query processing and it has to be done in real 
time (with minimal delay) with a fixed (small) buffer size. The 
processed data is stored in the cloud storage for batch 
processing. Queries used in DSM are defined as “continuous” 
since they are continuously standing over the streaming data. 
Results are pushed to the user each time the streaming data 
satisfies the query predicate. The queries, including security 
verification, are defined as a direct acyclic graph where each 
node is an operator and edges define data flow. 

C. Collation 

Collation or correlation of the evaluated data from DSM is 
further processed for event detection, which can be processed 
in two ways: stream (real-time) processing and batch 
processing, at SMS alert management system and Hadoop, 
respectively. The evaluated data from different DSMs are 
aggregated together and sent to SMS alert management system 
and also to the cloud (NoSQL/Hadoop) for batch processing. 
Here, we correlate the data from different sources and send for 
analysis to generate alerts for different events. The current 
architectural diagram shows that the online processing/alert 
system and the batch processing happens in Hadoop. 

Data aggregation is a process where information is gathered 
and expressed in a summary form for purposes such as 
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statistical analysis. One popular example of data aggregation is 
online analytic processing (OLAP); this is a simple type of data 
aggregation used for marketing where an online reporting 
mechanism is used to process the information. The information 
from such resources can then be used for early event detection 
and alerting. 

D. Analysis  

Streaming data transmissions can be unreliable in many 
environments. Nowadays data sources generate terabytes to 
petabytes of data on a daily basis [14]. Given the volume of data 
being generated, real-time computation has become a major 
challenge. A scalable real-time computation system that we 
have used effectively is the open-source Apache Storm tool, 
which was developed at Twitter and is sometimes referred to as 
“real-time Hadoop”. The example project, called “Speeding 
Alert System”, analyzes real-time data and raises a trigger and 
relevant data to a database when there is any emergency at the 
source side.  

We described the stream query processing to detect the 
event. The data stream concept of continuous queries is graphs 
of interconnected operators that allow for rich, real-time analysis 
of data. A stream of data is a potentially infinite sequence of 
tuples, denoted as (T1, T2, …, Tn); we refer to a generic attribute 
Ti of tuple j as j:Ti. We assume that all tuples have a time stamp 
attribute set at the data sources. The data sources have clocks 
that are well synchronized with other system nodes as in [2]. 
Each query is modeled as a network of connected operators. A 
connection represents a data flow. Typical query operators of 
DSMs are filter, map, union, join, and aggregate [1]. These 
operators correspond to relational algebra operators. Operators 
can be classified as stateless (filter, map and union) or stateful 
operators (join and aggregates) [3]. As the nature of the data 
stream is infinite, stateful operators perform their computation 
over sliding windows of tuples defined over a period of time 
(e.g. tuples received in the last hour) or as a fixed number of 
tuples (e.g. last 100 tuples). Figure 3 shows the high level 
abstraction of stream data processing at DSM. The incoming 

Figure 3: Architectural diagram for classification of streaming sources to alert generation with security verifications, access control 
and stream data analysis 
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streams (on the left) produce data indefinitely and drive query 
processing. Processing of continuous queries typically requires 
intermediate states, which are stored as Scratch Store in Figure 
3. This state could be stored and accessed in memory or on disk. 
Although we are concerned primarily with the online processing 
of continuous queries, in many applications stream data may 
also be copied to an archive, for preservation and possible offline 
processing of expensive analysis or mining queries. Refer to [8] 
for further information on stream data processing in datacenter 
clouds. 

Such large data masses termed Big Data is calling for new 
approaches to storage and processing of data. Scaling using 
hard disk parallelism is one of the design goals of scalable batch 
processing in the cloud. MapReduce (Hadoop) is scalable batch 
processing technology in the cloud. The MapReduce 
framework takes care of all issues related to parallelization, 
synchronization, load balancing, and fault tolerance. All these 
details are hidden from the application developer. When 
deciding whether MapReduce is the correct fit for an algorithm, 
one has to remember the fixed data-flow pattern of MapReduce. 
The algorithm has to be efficiently mapped to this data-flow 
pattern in order to efficiently use the underlying computing 
hardware. The data is available if at least one machine replica 
is up and running.  

E. Dissemination  
In this step, proposed framework generate the emergency 

alert after data analysis and send alerts to the mobile phone. 
Alert dissemination is always followed by data analysis 
(previous step). Alerts are generated from SMS Alert 
Management System, by following alert DB from Figure 3.  

The construction and display of operator messages 
representative of alert conditions in a network is described as 
follows. Code points, which are strings of bits, are generated in 
response to an event in a device attached to the network [4]. The 
code points are utilized to index predefined tables that contain 
moderately short units of instant messages in administrator 
selectable dialects to be utilized as a part of building an 
administrator's data show. The messages are free of the 
particular warning sending item insofar as an alarm collector is 
concerned. The code points are progressively orchestrated so 
that if the alert collector does not have the most forward set of 
messages, the alert recipient will show a more generic message 
which is still illustrative of the occasion.  

IV. SECURITY FRAMEWORK FOR BIG DATA STREAMS 
We are analyzing the data in two different modules i.e. 

stream processing and batch processing, as described in the 
previous architecture description. Table I indicated the basic 
difference between batch processing and stream processing 
features. Possible attacks and their classifications of the data 
streams are described in [11]. The streaming data security can 
be broadly divided into two types of security punctuations: (i) 
the “data security punctuations” (dsps) describing the data-side 
security, and (ii) the “query security punctuations” (qsps) 
representing the query-side security [21]. We introduced a new 
module called Data Stream Manager (DSM), where we perform 
security verifications of data streams for dsps before data 
analysis. We proposed Dynamic Prime Number Based Security 

Verification (DPBSV) and Dynamic Key Length Based Security 
Framework (DLSeF) methods for big data streams based on the 
shared key derived from synchronized prime numbers in our 
earlier works [11, 13]. The proposed DPBSV scheme for big 
data stream processing is based on a common shared key that is 
updated dynamically by generating synchronized pairs of prime 
numbers [11]. Later, to make it more efficient by reducing the 
computational overhead and buffer size, we proposed DLSeF 
which is based on the shared key derived from synchronized 
prime numbers [13]. These two techniques were proposed to 
maintain end-to-end security (source to processing unit, i.e. 
DSM) of big sensing data streams and perform security 
verification at DSM. These models introduced a small buffer 
before DSM, because we need to satisfy the four features of big 
data streams (from Section III). A buffer can be used to halt the 
data packets before processing. These methods focus on 
reducing the buffer size as well as the halting time of data blocks 
with a fast security verification model.   

A. Security verification model 

Here we proposed a security model by following the system 
model of DPBSV and DLSeF. We follow [11][13] to design a 
DSM which is capable of handling high volume, velocity and 
variety data streams from multiple sources. In addition, the 
DSM is responsible for performing the security verification of 
the incoming data streams in near real time to synchronize with 
the processing speed of Stream Processing Engines (SPE). In 
this security model, source sensors are deployed with Intrusion 
Detection Systems (IDS). Sensor-based IDS monitor a sensor’s 
behavior and generate alerts on potentially malicious activities 
onboard and network traffic [24]. IDS can be set inline, attached 
to a spanning port of a sensor. The idea here is to allow access 
to all packets we wish the IDS to monitor. LEoNIDS (low-
latency and energy efficient network IDS) is a system that 
determines the energy expectancy trade off by giving both 
lower power utilization and lower recognition expectancy in the 
meantime [25].  

In our architecture, the data streams are always in an 
encrypted format when they arrive at the DSM. Our idea is that 
while encrypting the data packets at the source sensors, we 
attach a sensitivity level of data to each individual data packet. 
We apply different keys to encrypt the data packets for different 
data sensitivity levels to maintain data security based on data 
sensitivity. This ensures data streams maintain authenticity and 
integrity, whereas confidentiality is based on data sensitivity 
level. In a very generic representation, if we need n levels of 
data security then n-1 keys (�������	�
�	��) are required 
for encryption/decryption. Here we are using longer keys for 
strong encryption whereas a shorter key length can be used for 
weak encryption (See Table II).  

Here we consider three levels of security i.e. strong 
confidentiality, partial confidentiality, and no confidentiality; 
and two keys (i.e. k1, k2) for encryption methods. The strong 
encryption method uses k1 and is used to provide strong 
confidentiality, and the weak encryption method uses k2 to 
support partial confidentiality. Note that we do not need to 
encrypt the data packets for no confidentiality. Data packets can 
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be transmitted to DSM by encrypting the data stream, where 
deployed sensors are always associated with sensitivity level. 
We are going to apply encryption methods (strong/weak 
encryption) based on the data sensitivity or confidentiality 
level. These two shared keys used for encryption and 
decryption are always initialized and distributed by the DSM. 
DSM always distributes the shared keys to source sensors 
before it expires.  

�������	�
�	�� �
��
�
��
�������
������ � � ��
������������
������ �  �������
������ � !

���
��� � !���
��� � ���������
������ � � �"���

 

Every encrypted data packet is always associated with a flag 
value of 1 or 0 which represents the data sensitivity level and 
shared key used for data encryption. Here we consider 1 is for 
strong encryption i.e. high sensitivity data, 0 is for weak 
encryption and no flag value represents no encryption. The 
security verification needs to be done on-the-fly (i.e. near real-
time) with smaller buffer size. The queries, including security 
verification, can be defined as a directed acyclic graph and each 
node is an operator and edges defined as data flows between the 
nodes. 

B. Information flow control model 

According to Sandhu’s definition on lattice based access 
control, users are defined as humans, subjects are processes and 
objects are files [22]. We follow the same way to define our 
system, where users are humans and subjects are query 
processors (QP) and objects are data blocks after security 
verification at DSM. We use a standard five steps/stages 
process for the information flow control model. The five stages 
are Stage 0: structure module; Stage 1: information flow 
between the levels; Stage 2: recursive lattice construction; 
Stage 3: conflict of interest; Stage 4: decision over data access. 
By following the above steps, information flow control policies 
specify under which conditions information may be exchanged 
or accessed by the users and query processor. 

From the previous description of security verification, 
sensors always generate the data packets with the format 
{DATA; 1/0; Si, Si/DSM}. DATA means encrypted data 
packets, 1/0 means the flag value (FV) to define the data 
sensitivity level, Si means the source of the data and finally 
Si/DSM shows who has the influence to modify the data 
packets. After security verification at DSM, we check the flow 
model to define the access control. We made the flow model 
simple and defined the static lattices for lightweight processing 

over big data streams. There are three different ways of flow 
management, namely no management, centralized management 
and distributed management. We follow centralized 
management at DSM after security verifications. We defined 
our flow model (FM) as follows 

FM = <S, O, SC, �> 
Where:  S = Subjects 

P = Processes 
SC = Security Classes 
→ = Can-flow relation on SC   

Here we did not add an operations option in our FM, 
because our focus is only to read or access the data stream 
instead of writing. We define a static lattice for sensors, which 
will label incoming data streams and a static lattice for users to 
define the access class for both user and query processor. The 
lattice structure with access policy is shown in Figure 4. The 
lattice is a Directed Acyclic Graph (DAG) with a single source 
and information is permitted to flow from a lower class to upper 
class. We have divided our lattice into three classes i.e. {A, B, 
C}, where 1 is for user lattice i.e. {A1, B1, C1} and 2 is for 
sensor lattice i.e. {A2, B2, C2}.  We defined A as the highest 
class (i.e. for high sensitivity information), followed by B 
defined as lower class (i.e. low sensitivity data) and finally C is 
defined as lowest class for open access information.  

Figure 4 shows the access policy, where a class of user 
lattice has access to the same and lower level classes of sensor 
lattice. We follow a modified Chinese Wall model for 
information flow control by Snadhu [22] to define the conflict 
of interest between the classes. This access policy always 
satisfies the properties of reflexive, antisymmetric and 
transitive (i.e. partial order).  Partial ordering → on a set L is a 
relation where: #�a ∈ L, a → a holds (reflexive) #�a,b∈ L, if a → b, b → a, then a = b (antisymmetric) #�a,b,c ∈ L, if a → b, b → c, then a → c (transitive) 

We follow this partial order relation between the classes of 
lattice to define access control of big data streams. This tends 
to query security punctuations (qsps) of data streams.  

V. CONCLUSIONS  
Diversity of existing big data analytics frameworks in cloud 

makes the process of emergency decision making for software 
engineers, solution architects, or infrastructure administrators 
challenging. To address such an issue, this study explores the 
holistic system framework from data collection to security 
framework, data analytics and alert message distribution. Here 

Figure 4: Lattice model for data access 

Table II. Notations Symmetric key (AES) algorithm takes 
time to get all possible keys using most advanced Intel i7 

Processor. 
Key Length 32 64 128 

Key domain size 4.295e 
+09 

1.845e 
+19 

3.4028e 
+38 

Time 
(in nanoseconds) 

7.301e 
+09 

3136e 
+19 

5.7848e 
+35 
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we also explored the security framework of big data streams at 
DSM followed by access control of data stream by information 
flow model. 
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