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Abstract—Cloud performance diagnosis and prediction is a
challenging problem due to the stochastic nature of the cloud
systems. Cloud performance is affected by a large set of factors
such as virtual machine types, regions, workloads, wide area
network delay and bandwidth. Therefore, necessitating the de-
termination of complex relationships between these factors. The
current research in this area does not address the challenge of
modeling the uncertain and complex relationships between these
factors. Further, the challenge of cloud performance prediction
under uncertainty has not garnered sufficient attention. This
paper proposes, develops and validates ALPINE, a Bayesian
system for cloud performance diagnosis and prediction. ALPINE
incorporates Bayesian networks to model uncertain and complex
relationships between several factors mentioned above. It handles
missing, scarce and sparse data to diagnose and predict stochastic
cloud performance efficiently. We validate our proposed system
using extensive real data and show that it predicts cloud perfor-
mance with high accuracy of 91.93%.
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I. INTRODUCTION

Cloud computing through virtualization provides elastic,

scalable, secure, on-demand and cheaper access to computing,

network, and storage resources as-as-service [6]. The cloud

system hides the complexity of managing these virtualized

resources to provide an easy way for the end users to deploy

their applications on the cloud. The rapid surge in demand for

cloud computing in the recent years has led to the emergence

of several cloud providers such as Amazon Elastic Compute

Cloud (aws) and Google Compute Engine (gce). CloudHar-

mony [2], a major cloud provider comparison website lists

ninety-six such cloud providers. Most cloud providers offer

relatively similar functionality, albeit at different prices and

with different service level agreements. Although each cloud

provider aims to maximize their revenue by providing a broad

range of applications and services to the end users, the quality

of service (QoS) offered by them can differ substantially.

The multi-tenant model inherent in cloud systems, and the

limitations posed by global Internet bandwidth may cause

differences in QoS provided by the cloud providers that can

hamper applications hosted on the clouds [9].

Cloud performance (regarding QoS) benchmarking , diag-

nosis and prediction is a highly challenging problem [9], [16].

Each cloud provider may provide a complex combination of

cloud service configurations at various geographically dis-

tributed regions all over the globe (in a cloud datacenter).

These service configurations include a plethora of virtual

machine instance types, and network and storage services.

Zhang et al. [17] note that Amazon Web Service alone offers
six hundred and seventy-four such combinations differentiated

by price, geographical region, and QoS. Each combination of

these services provided over the Internet may lead to QoS

variations. Therefore, it is imperative for the end users to

monitor the QoS offered by the cloud providers during and

after selection of a particular cloud provider for hosting their

applications.

Cloud performance monitoring and benchmarking is a

widely studied problem [16], [5]. Recent research in this

area (e.g., [10], [4], [13]) has developed tools and plat-

forms to monitor cloud resources across all cloud lay-

ers, i.e., Infrastrastrucure-as-a-Service (IaaS), Platform-as-a-

Service (PaaS), and Software-as-a-Service (SaaS). Further,

recent research (e.g., [9]) has also widely studied the perfor-

mance of several cloud providers based on various applica-

tions, constraints, and experimental setups [9]. However, the

challenge of performing root-cause diagnosis of cloud perfor-

mance by critically studying the effect of multiple influencing

factors taken together has not garnered sufficient attention.

Further, the current research does not deal with the challenge

of handling uncertainty caused due to the uncontrollable

(hidden) factors prevalent in the stochastic cloud environment.

Lastly, the current research does not aim to build a unifying

model for cloud performance diagnosis and prediction.

Our contribution: This paper proposes, develops and vali-
dates ALPINE 1, a systematic and a unifying system for cloud

performance diagnosis and prediction. ALPINE incorporates

Bayesian networks to model uncertain and complex relation-

ships between several factors such as CPU type, geographical

regions, time-of-the-day, day-of-the-week, cloud type, and the

benchmark-type. Using Bayesian networks and the Expecta-

tion Maximization algorithm, ALPINE handles missing, scarce

and sparse data to diagnose and predict stochastic cloud

performance efficiently. We validate ALPINE using extensive

real data and trace-driven analysis and show that it predicts

cloud performance with high accuracy of 91.93%.

The rest of the paper is organised as follows: Section

II presents the related work. Section III presents ALPINE.

Section IV presents the results analysis. Finally, section V

1The longer version of this paper is avaliable as a technical report at:
https://arxiv.org/abs/1612.05477
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presents the conclusion and future work.

II. RELATED WORK

The problem of cloud performance monitoring, benchmark-

ing and prediction has got significant interest from both in-

dustry and academia [1], [2], [16], [15], [5]. There are already

commercial and academic cloud monitoring and benchmarking

systems available in the cloud domain such as CloudHarmony

[2], Amazon CloudWatch [1] and CloudWorkbench [13]. The

research work presented in this paper is motivated by [9] where

the authors present an in-depth analysis of the results regarding

performance variability in major cloud providers such as

Amazon EC2 and Google AppEngine. Most importantly, the

authors studied performance variability and predictability of

cloud resources by performing experimentation for several

days and by collecting real data traces. We used these data

traces in this paper. The work presented by [9] was limited

based on several factors. For instance, the authors did not

critically determine the influence of multiple factors taken

together to ascertain the degree of change that occurs when the

values of these factors are varied. Further, the authors did not

develop a model that can be used to predict cloud performance

under uncertainty and missing data values. Compared to the

work presented in [9], this paper presents a systematic and

unifying model based on Bayesian networks (BNs) to model

complex relationships between several factors for efficient

cloud performance diagnosis and prediction.
Recently, BNs were applied in the area of cloud computing

(e.g., [8], [7], [14]). Bashar [7] use BNs for autoscaling of

cloud datacenter resources by balancing the desired QoS and

service level agreement targets. The author using preliminary

studies show the BNs can be utilised efficiently to model

workloads, and QoS factors like CPU usage and response

time. However, they did not discuss in detail how BNs can be

created and validated by the stakeholders. Further, their work

was limited to simpler simulation studies and did not consider

realistic user workloads. Compared to the work presented

by [7], in this paper, we consider the challenge of efficient

cloud performance diagnosis and prediction considering major

public Cloud providers such as Amazon EC2 and Google

AppEngine.
Compared to the state-of-the-art research in the area [8],

[7], [14], [9], [15], the main aim of this paper is to develop

a system for critical diagnosis and prediction of cloud per-

formance under uncertainty. Our system, ALPINE, considers

several factors such as time-of-the-day, day-of-the-week, vir-

tual machine-type, regions and different types of benchmarks

and efficiently models complex relationships between these

factors for cloud performance diagnosis and prediction. Using

realistic data provided by Leitner and Cito [9], in this paper,

we show how the stakeholders can develop BNs to perform

probabilistic cloud performance diagnosis and prediction, and

to determine the best combination of cloud resources for a

given QoS level.

III. ALPINE: BAYESIAN CLOUD PERFORMANCE

DIAGNOSIS AND PREDICTION

This section presents ALPINE - a Bayesian system for cloud

QoS diagnosis and prediction. Fig. 1. shows our high-level ap-

Figure 1: Approach for cloud QoS diagnosis and prediction.

proach. As can be observed from this figure, first, benchmark

data is collected by the stakeholders through experimentation

or via third-party services such as Cloud Workbench [13] and

CloudHarmony [2]. Second, this data is pre-processed and

is stored in a database. Third, a Bayesian Network (BN) is

learned using the pre-processed data or is manually created

by the domain expert. In the case of manual BN creation, the

model is created using domain expert’s knowledge/experience;

or it is learned using the pre-processed data which is then

carefully calibrated by the domain expert. Fourth, the modelled

BN is then used for probabilistic diagnosis by entering the ev-

idence in the form of probability assignment, i.e., a likelihood

of a random variable (or factor) taking a particular value is

determined by introducing evidence into the BN (discussed

later in detail). Fifth, if the diagnostic results are deemed to

be sufficient, this BN can be used by the stakeholders for both

diagnosis and prediction, and for actual usage; else, steps one

to three are repeated to develop the best BN.

A. Modelling Bayesian Networks for Cloud QoS Diagnosis
and Prediction

We consider Bayesian Networks (BNs) for cloud QoS

diagnosis and prediction. We selected BNs over fuzzy logic,

neural networks and decision trees as a method based on its

several advantages. These include: BNs learn efficiently from

scarce and sparse data. BNs deal effectively with uncertainty

in stochastic environments (such as clouds and networks).

BNs handle both numerical and categorical data. BNs can

incorporate domain knowledge. BNs do not require explicit

rules to reason about factors. BNs can be extended to dynamic

Bayesian networks to reason about several hypotheses over

time. Finally, they can be used with utility theory to make

decisions under uncertainty [12], [11]. We now show how BNs

can be used to model several factors for efficient for cloud

performance diagnosis and prediction. A BN can be defined

as follows:

Definition 1. A Bayesian network (BN) is a directed acyclic
graph (DAG) where, random variables form the nodes of a
network. The directed links between nodes form the causal
relationships. The direction of a link from X to Y means that
X is the parent of Y. Any entry in the Bayesian network can
be calculated using the joint probability distribution (JPD)
denoted as:

P (x1, ..., xm) =
m∏

i=1

P (xi|Parents(Xi)) � (1)

where, parents(Xi), denotes the specific values of
Parents(Xi). Each entry in the joint distribution is
represented by the product of the elements of the conditional
probability tables (CPTs) in a BN [12].
BNs provide a natural and a complete description of the

problem domain; it provides a rich description of the causal

relationships between several nodes (representing factors) in
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(a) Naive Bayes’ Network
(NBN)

(b) Tree-Augmented Naive Bayes’
Network (TAN)

(c) Noisy-Or Network (NOR) (d) Complex Bayesian Network
(CBN)

Figure 2: Bayesian Networks for cloud QoS diagnosis and

prediction.

the BN model [12]. Fig. 2 shows example BNs for cloud

QoS diagnosis and prediction. In these BNs, the oval nodes

represent the random variables that are modelled together to

determine their effect on each other probabilistically. In a BN,

the direction of an arc from one node(s) to another node(s)

denotes a parent-child relationship, where the parent node

directly affects the child node probabilistically. For example

in Fig. 2 (d), the arcs from the nodes “Regions” and “Virtual

Machine Size” towards “CPU” denote that these nodes are the

parents of the child node “CPU”; and will be used to determine

the effect of regions and virtual machine size on the types of

CPU used.

A BN can be created in a number of ways (see Fig. 2

(a) to Fig. 2 (d)) such as a Naive Bayes’ Network, Noisy-

Or Network, Tree-Augmented Naive Bayes’ Network, or a

more complex model (such as in Fig. 2 (d) where most of the

nodes are connected to each other) based on the principle of

causality. Manual BN creation can be challenging as the causal

relationships can be hard to define by the stakeholders/domain

experts. To test the causal relationship between two factors or

random variables, consider the nodes A and B. Assume that
the domain expert fixes (assign probabilities) one of the state

of node A (s ∈ S where S is a set of states), to infer the

states of node B. Upon inference, if the states of node B do

not change (degree of belief or probability of a state s ∈ S
where S is a set of states belonging to B), then the node A is
not a cause of node B; otherwise it is. For the sake of brevity,
in the paper, we do not discuss various methods for manual

BN creation. The interested readers may refer to [12].

Each node in a BN represents a random variable (RV or

factor in our case). This RV can be discretized into a number

of states s ∈ S. The S is then assigned probabilities that

are represented via the conditional probability Table (CPT).

In the case of a continuous RVs, conditional probability

distribution (CPD) is defined that can take any distribution;

for example, Gaussian distribution. The CPT for each RV

can be learned using a dataset or can be set by the domain

expert. As mentioned previously, setting the CPTs can be quite

challenging even if robust statistical methods are used [11]. In

such cases, the methods that consider maximum entropy can

be used. To create a BN automatically, stakeholders can also

consider BN structural learning algorithms such as structural

expectation maximization and Markov Chain Monte Carlo

[12]. For simplicity, let’s assume a BN shown in Fig. 2 (d).

In this paper, we show that even simpler BNs can be used

efficiently to model, diagnose and predict cloud QoS.

Cloud QoS is stochastic and can be influenced by N number

of factors. Further, each n ∈ N can have m ∈ M number

of states. In a BN, all the states can be inferred together by

entering the evidence e ∈ E in the network which is not

possible in other methods such as regression analysis, decision

trees, and neural networks. By entering the evidence in a BN,

we mean assigning a degree of belief (associating probability)

to a particular state s ∈ S belonging to an RV. For example,
consider a BN as shown in Fig. 2 (d). To determine the cloud

QoS or “QoS Value” using the RV “Cloud”, the stakeholder

can enter evidence into “Cloud” RV such as P (“Cloud =
aws′′ = 1) ∧ P (“Cloud = gce′′ = 0) to depict the degree of
belief that for a particular “QoS Value”,“aws” “Cloud” should

be considered. Similarly, the probability of occurrence of each

s ∈ S for all RVs can be entered as evidences e ∈ E to

determine the probability ∀S for “QoS Value” RV.
Once a BN is created via structural learning algorithms or

by the domain experts, they need to be validated. Usually,

cross-validation is performed to check the correctness and

accuracy of the BN [12]. In cross-validation, a part of the

training data is is to train/learn the BN. The rest of the

data or the test data is used to check model’s prediction

accuracy. For BN model parameter learning, we consider the

most widely used Expectation-Maximization algorithm [12].

Once the stakeholders or domain experts are satisfied by BNs

prediction accuracy, these BNs can be utilised in the real-world

use cases.

IV. RESULTS ANALYSIS

This section presents the results related to ALPINE. We

validate ALPINE using GeNie Bayesian Network development

environment [3] as well as a realistic cloud benchmark dataset

recently collected by Leitner and Cito [9]. We chose this

dataset based on the fact that it is recent, comprehensive and

covers a broad range of factors that may affect the performance

of clouds regarding communication, I/O and storage.

Dataset

The cloud benchmark dataset [9] contains 30,140 unique

records based on the data collected for one month regarding

Amazon EC2 (AWS) and Google Compute Engine (GCE)

in the United States and Europe regions. In particular, this

dataset contains records related to five benchmarks, namely,

CPU, MEM, Compile, I/O, and OLTP. The CPU benchmark

was used to benchmark the compute capacity of the instance

(running in Amazon of Google data centers) by computing the

total time taken (in seconds (secs)) to check 20,000 natural
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Table I: Statistics related to all values present in the dataset

(Θ).

Benchmark Min. Max. Mean Std. Dev. Count

CPU 8.41 132.08 46.89 38.90 6894

Compile 0 2654.5 230.07 171.50 7319

Memory 611.65 6316.1 4114.5 1692.7 4581

I/O 1 1009.6 17.96 51.11 7377

OLTP 15.38 1130.25 310.05 281.74 3969

Combined 0 6316.1 737.19 1584.2 30140

numbers for primeness. The MEM benchmark was used to

measure the read-write memory speed in MB/s by allocating

64 MB arrays in memory and copy one array to the other

fifty times. The Compile benchmark was used to measure total

cloning (from Github) and compilation time (in seconds) of

the jCloudScale Java program using the OpenJDK 7.0 toolkit.

The I/O benchmark was used measure (in Mb/s) the average

disk read/write speed, computed by reading and writing a

5 GB file for three minutes. Finally, OLTP benchmark was

used to measure the average number of queries per second

(queries/sec).

Table I shows the statistics related to all QoS values. We

note that this dataset does not contain MEM QoS values for

GCE. Further, nearly all QoS values are widely distributed. We

now show that even with variability in this dataset, ALPINE

can efficiently diagnose and predict cloud QoS.

For cloud QoS diagnosis, we considered several BNs, such

as a simple Naive Bayes Network (NBN), Tree-augmented

Naive Bayes Network (TAN), Noisy-Or network (NOR), and

a complex BN (CBN) as shown in Fig. 2. We created the first

two BNs automatically from the dataset. The latter two BNs

were created using expert’s knowledge (by the authors). These

BNs comprise eight random variables or BN nodes depicting

eight different factors present in the dataset. These include

CPU, VM size, regions, cloud providers, type of benchmark,
time-of-the-day, day-of-the-week, and QoS values. Except QoS
value factor, all other factors were categorical, ranging from

two to eleven states (s ∈ S).

A. CPU performance diagnosis

The CPU benchmark aims to study the performance of

hardware-dominated applications hosted on the clouds. In

particular, it seeks to examine the effect of instance processing

speed of cloud providers on the hosted applications (task

completion time in seconds). For this, we studied several

hypotheses using ALPINE. For instance, using a BN, we

studied the impact of several factors including the instance

type (VM type), time-of-the-day, day-of-the-week, region and

CPU type on the applications’ task completion time. Using
the same BN, we can not only determine the impact of these
factors on the QoS value, but also each other. For example,
we can easily answer the following question: “for a certain
QoS value, what is the most likely VM type, CPU type and
the region?” i.e., using a single factor (CPU_type), we can
infer the states of other factors (such as VM_size, and region).
Using a BN, we can infer the hidden truth (phenomena that
cannot easily be explained by statistical tests) that may be

masked by traditional statistical tests. Most importantly, using

probabilistic analysis, experts can also use their intuition (i.e.,

they can assign probabilities to particular states in a BN. For

example, a state for a factor region can be “us” and “eu”)
to reach several conclusions by studying several hypotheses.

Traditional statistical methods and the methods presented in

[10], [17], [15], [9] lack this capability.

The CPU dataset (θ(cpu)) contains 6894 data points for both
“aws” and “gce” clouds. We discretised the QoS values into

a ten states using hierarchical discretisation and by manual

fine tuning as shown in Table II. To study the impact of

several factors on the QoS value, we first selected “us” region,
“aws” as the cloud provider (cloud), and varied the VM_size
as “micro”, “small”, “large”. These selections were entered as

evidence (e ∈ E) in a BN. For probabilistic inference, this
can be written as: P (QoS value) = P (QoS Value | region =
“us”, “cloud” = “aws”, VM_size= “micro”). Through Bayesian
analysis, we found clear differences offered by different VM

sizes. For instance, we found that for VM_size= “small”, there
is 87% chance (probability) that the task will be completed

between 82 and 103 seconds (state 9, see table II). Further,

there is 86% chance that CPU_type = “Intel Xeon 2650v0 2.0
GHz” will be used. As expected, the “large” VM_size provided
the best performance.

We concluded that for the “large” VM_size, there is 100%
chance that the task will be completed between 11 and 20

seconds (state 2), offering up to five times better performance

than “small” VM_size. Further, we note that “aws” cloud
only uses the Intel Xeon 2760v2 2.50GHz CPU for providing

predictable performance. To our surprise, we found out that in

the case of “aws” the “micro” VM_size provided significantly
better CPU performance than the “small” VM_size. In that,
there is more than 84% chance that the task will be completed

between 39 to 54 seconds (state 5), leading us to believe that a

“micro” VM_size offers two times better compute performance
than the “small” VM_size.
Fig. 3 shows the screenshot of this case implemented in

the GeNIe platform [3]. It is worth noting that for both

“small” and “micro” VM_size mostly (84.5% chance) use an

“Intel Xeon 2650v0 2 GHz” CPU_type in the case of “aws”
cloud in the “us” region. We then tested this hypothesis for
the EU datacenter and found similar results. The θcpu also
contains values for “ioopt” and “cpuopt” specialised instances

for providing CPU and I/O optimised performance for “aws”

cloud, respectively. After BN diagnosis, we found out that

the “ioopt” VM_size provides the best performance regarding
QoS_value and with higher degree of certainty. In this case,
all the QoS_value lie below 11 seconds. On the other hand,

and to our surprise, the “cpuio” VM_size provides nearly the
same performance as the “large” VM_size.
Finally, we studied the impact of several parameters on the

QoS value for “gce”. We found that “gce” provides highly
predictable results compared to “aws”, and offers easily dis-

tinguishable performance with different VM_size. Considering
the “micro” VM_size, we found that there was greater than
94% chance that the task completion time was more than 103

seconds for both “eu” and “us” region. This result shows that
“aws” “micro” VM_size provides significantly better perfor-
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Table II: QoS value states representation using hierarchal

discretization for θcpu.

State Range (seconds) Counts

1 0 to 11 480

2 11 to 20 2400

3 20 to 32 1092

4 32 to 39 31

5 39 to 54 916

6 54 to 61 3

7 61 to 67 50

8 67 to 82 87

9 82 to 103 885

10 greater than 103 950

Figure 3: Screenshot of ALPINE implemented in GeNIe

platform.

mance than “gce” “micro” VM_size. On the other hand, we
found that GCE’s “small” VM_size performs at least three
times better than “aws” “small” VM_size with 100% chance

that the task completion time would be between 20 to 32

seconds, compared to “aws” task completion time of 82 to

103 seconds with approx. 87% chance. In the case of the

“large” VM_size, “gce” and “aws” performs similarly, offering
task completion times between 11 to 20 seconds. It’s also

worth noting that “gce” always selects the same processors for

similar VM_size in “eu” and “us” region leading to extremely
high predictable CPU performance compared to “aws”. For

example, “gce” always selects the “Intel Xeon 2.60 GHz”

processor for predicable performance in both “us” and “eu”

data centers or large VMs. We also studied the impact of

time and day_of_the_week on QoS_Value and found that these
parameters do not significantly affect the CPU performances.
B. Compile Diagnosis

The aim of the compile benchmark is to study application’s

performance on the clouds. Therefore, using Bayesian diagno-

sis, we studied the impact of several factors mentioned above

on the applications’ compile time. As can be observed from

Table I, the Compile dataset (θcompile) contains a total of 7319
data points, representing the QoS values for both “aws” and

“gce” clouds. We discretised the QoS values into fifteen states

using hierarchical discretisation and by manual fine tuning as

shown in Table III. We first analyzed the performance of the

“aws” cloud by varying the aforementioned parameters. For
example, by selecting the “micro” “VM_size” in both “eu” and

“us” region, we found the QoS values to the less predictable
in the “us” region. In that, we found that there is approx. 70%
chance that the QoS values will lie between 41 and 233 secs.;

around 6% chance that these values will lie between 233 and

405 secs; and 19% chance that these values will lie between

405 and 701 secs. However, the “micro” VM_size provides
more predictable performance in the “eu” region where there
is approx. 85% chance that the QoS values will lie in the range

of 4 and 233 secs., and there is 8% and 6% chance that these

values will lie in the range of 233 to 405 secs., and between

405 and 701 secs., respectively.

The variation in the performance predictability can be

attributed to the fact that in both regions, “aws” employs

several different CPU_type with varying probability. However,
in the “eu” region, “aws” selects only one of the CPU (“Intel
2650 2 Ghz” processor) in majority of the cases (with 84%

probability) compared to the “us” region where there is 72%
chance that the same CPU_type will be used. We also studied
the performance of other VM types. When we selected the

“small” “VM_size”, the performance decreased slightly but it

becomes highly predictable (compared to “micro” VM_size)

with a 92% chance that the QoS values will lie between 233

and 405 secs. We observed the similar behavior for both the

regions.

We then selected the “large” VM_size and found that it
performed better than both “micro” and “small” instances. In

particular, we found that there was 97% chance that the values

will lie between 41 and 233 secs. for both the regions. For a

thorough diagnosis, we also studied the impact of optimised

VM_size such as, “ioopt” and “cpuopt” on the applications’
performance. As mentioned previously, these VM instances

are optimised for I/O and CPU operations and should offer

better and more predicable performance than the “micro”,

“small” and “large” VM_size. For instance, we diagnosed that
the “ioopt” “VM_size” offers better QoS values (with compile

time lower than 112 seconds) with 92% probability. Further,

the “cpuopt” VM_size also provides high QoS values with
compile times in the range of 41 and 233 secs. with 97%

probability for the “eu” region. There were no QoS values
present in the θcompile dataset for the “us” region. We also
found similar performance for the “cpuopt” instance as well.

From our diagnosis we found it interesting to note that the

performance of the “cpuopt” and “ioopt” VM_size is similar
to the “large” VM_size. This leads us to believe that instead of
paying for “cpuopt” and “ioopt” VM_size, “large” instance can
be selected at lower costs. We also studied the performance

of all the VM_size by also varying factors “day-of-the-week”
and “time-of-the-day” and found no evidence that these factors

significantly affect the QoS values for this benchmark for

“aws” cloud.
Finally, we also diagnosed the performance offered by the

“gce” cloud present in both “us” and “eu” region. In the case
of “micro” VM_size, there is approx. 91% chance that the QoS

values will lie in the range of 405 and 701 secs. (state 4, see

table III) in both “eu” and “us” region. Further, there is approx.
99% chance that the QoS values will lie in the range of 41

to 233 secs (state 2) for “small” VM_size in both “us” and
“eu” regions. It is also interesting to note that “gce” always
selects the same CPU_type for similar VM_size compared to
“aws” cloud where different CPU_type can be selected by the
“aws” for same VM_size. In this dataset, there were no data
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Table III: QoS value states representation using hierarchal

discretization for θcompile.

State Range (seconds) Counts

1 0 to 41 124

2 41 to 233 4910

3 213 to 405 1230

4 405 to 701 1007

5 701 to 784 19

6 784 to 918 7

7 918 to 1046 1

8 1046 to 1194 1

9 1194 to 1424 4

10 1424 to 1529 1

11 1529 to 1620 3

12 1620 to 2028 9

13 2028 to 2512 2

15 2654.5 and up 1

points for “cpuopt” and “ioopt” VM_size therefore, we could
not study the optimised instances provided by “gce”. However

it is worth mentioning that the “gce” “large” VM_size performs
similarly to the “aws” “large”,”cpuopt” and “ioopt” VM_size.
Overall “gce” provides more predictable performance than the

“aws” cloud. Finally, as in the “aws” case, we could not find

any evidence that day-of-the-week and time-of-the-day affects
the QoS for “gce” and “aws” clouds.

C. Memory Performance Diagnosis

Hardware dominated applications not only depends on CPU

but also on memory. The memory dataset (θmemory) contains
values related to “aws” cloud and has 4581 rows in total.

We again used hierarchical discretisation method with manual

fine tuning to discretize the QoS values. In all, we created

thirteen states for this dataset as shown in Table IV. The aim

of the memory diagnosis was to determine the effect of various

factors on the memory dominated applications. Therefore, in

this case, we varied the states of all factors mentioned in

Table I. We started by selecting the “micro” VM_size in “us”
region. We found the performance of “micro” VM_size to be
reasonably predictable where there was 78% chance that the

values will lie in the range of 3612 and 3872 MB/sec. (state

8, see table IV). We then varied the region and selected “eu”
and found an increase in the performance not only in terms

of bandwidth but also regarding certainty. In particular, in this

case, we found that most of the QoS values lie in the range

between 4116 and 4539 MB/sec. (state 10) with the probability

of 87%. We also found out that in this case, “aws” mostly

employed the “Intel Xeon E5_2650 2GHz” CPU_type with the
probability of more than 80% in both “us” and “eu” region.
We then studied the performance of “small” VM_size and

its effects on the QoS value. As in the previous cases, this

instance provided lower performance compared to the “micro”

instance in both the regions. In the case of the “eu” region,
most of QoS values (93% probability) lie in the range of 1909

and 2318 MB/sec (state 4). In the “us” region, nearly 79%
of the QoS values lie in the range of 1425 to 1909 MB/sec

(state 3). The rest lie in lower ranges, i.e., between 1 and

1425 MB/sec (states 1 and 2). The lower performance of

“aws” VM_size in both the regions is attributed to the fact
that “aws” consistently deploys VMs on one of the better-

Table IV: QoS value states representation using hierarchal

discretization for θmemory.

State Range (MB/sec.) Counts

1 1 to 1039 135

2 1039 to 1425 61

3 1425 to 1909 549

4 1909 to 2318 569

5 2318 to 2577 1

6 2577 to 3205 20

7 3205 to 3612 35

8 3612 to 3872 490

9 3872 to 4116 127

10 4116 to 4539 551

11 4539 to 5101 84

12 5101 to 5651 969

13 greater than 5651 990

performing CPUs in “eu”; whereas, in the “us” region, other
CPU_type are also considered with a higher probability.
We also studied the performance of the “large” VM_size and

their effects on QoS value. We found out that even in this case

(as with CPU and OLTP), these instance provides better and

more predictable performance. For instance, “large” VM_size
in the “us” region can support QoS values in the range of 5101

to 5651 MB/sec. (state 12) with 93% probability. Further the

same VM_size, in the “eu” region supports even higher QoS
values that lie in the range of 5651 and 6316.1 MB/sec. It is

worth noting that “aws” employs the same CPU_type (“Intel
E5_2670 2.50 GHz) in both the region for “large” VM_size,
leading to higher performance.

The θmemory dataset also contains values for “ioopt” and

“cpuopt” specialized VM_size for the “eu” region. We diag-
nosed the performance for both the VM_size and found that
none of these VM_size outperform the “large” VM_size. For
example, for the “ioopt” case, there is greater than 74% chance

that the QoS values will lie above 5101 MB/sec (state 11), and

there is 21% chance that the QoS values will lie in the range

of 3872 and 4116 MB/sec (state 9). Similarly, for the “cpuopt”

case, there is appox. 81% probability that the QoS values will

lie above 5101 MB/sec (state 12), where there is approx. 79%

chance that these values will lie above 5651 MB/sec. (states

12); the rest of the QoS values mainly lie in the range of 4539

and 5101 MB/sec. Finally, as in the previous cases, we did not

find any evidence that day-of-the-week and time-of-the-day has
any impact on any other parameter in a BN.

D. OLTP Performance Diagnosis

The OLTP benchmark aims to study the performance related

to multi-tenancy in cloud systems. From Table I, we note that

in this dataset, there are 3969 entries for this dataset (θOLTP ).
The low number of values corresponds to the data regarding

“aws”. This data set does not contain values related to the

“gce”. As can be observed from Table I, for this benchmark,

the QoS values are widely distributed with 95% of the data

lying in the range of 0 queries/sec. to 1000 queries/sec.,

and with the standard deviation of 281.74 queries/sec. This

variation in the QoS values can be attributed to the fact

that multi-tenancy leads to low performance and leads to

unpredictable behaviour [9]. As in the CPU diagnosis case

mentioned above, for OLTP diagnosis, we created and tested
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several BNs. Our aim was to study the effect of several factors

on each other and most importantly, on the OLTP QoS values.

As QoS values were continuous, we discretized them into finite

states of different sizes. We used hierarchical discretization

method and discretized the OLTP QoS values into three states

with different counts as shown in Table V. As can be observed

from the Table, most of the QoS values lie in the range of 0

to 196 queries/sec. This followed by the range of 196 to 561

queries/sec., and lastly, the range of 561 to 1130 queries/sec.

where only 33 values exist.

To study the impact of several factors on the QoS Value,

we first selected the “us” region, “aws” as the cloud, and
varied the VM_size as “micro”, “small”, “large”. As discussed
previously, these selections were entered as evidence (e ∈ E)
in a BN. We studied several hypotheses such as “large VMs
provide better QoS values”. In this case, the larger VM should

increase the throughput in queries/sec. Firstly, we tested this

hypothesis with “micro” VM_size and “us” region to determine
the QoS value and CPU_type. After performing the inference,
we found out that nearly 98% of the QoS values lie in state 1,

i.e., between the range of 0 to 196 queries/sec. We also inferred

that the “micro” VM_size in the “aws” “us” cloud mainly (82%
probability) uses the “Intel Xeon 2650 cpu with 2 GHz” CPU.
We then tested the same hypothesis by only changing the

evidence as “small” for the factor VM_size. We noticed no
change in the QoS value compared to the “micro” VM_size,
leading us to believe that in the case of OLTP benchmark,

“micro” and “small” VM_size perform rather similarly; with

78% probability Intel Xeon 2650 CPU with 2 GHz processor

was used for the “small” VM_size as well. In this case, our
diagnosis is not absolute, rather based on the limited dataset

and the variability of data, we reached this conclusion. We

assert that this OLTP based benchmarking should be done

for a longer duration to build a larger dataset to retest this

hypothesis.

We again tested the same hypothesis but now by keeping

all the evidences fixed and by only varying the state of the

factor VM_size to “large”. From this test, we inferred that

QoS value increases and lies mostly in the range of 196

to 561 queries/sec. (state 2) validating the hypothesis that

larger VM_size provide better QoS performance. The VM_size
also contains two other states namely “cpuopt” and “ioopt”

representing CPU and IO optimised VMs in the dataset. To

verify whether I/O optimised VM_size leads to further QoS
performance improvement, we kept all the evidences fixed but

varied the state of the VM_size to “ioopt”. After inference, we
concluded that “ioopt” instance provided the best QoS values

with most of values (with 93% probability) lying in the range

of 561 queries to 1130 queries/sec. (state 3). We also found

out that the “ioopt” VM_size employs a more powerful “Intel
Xeon E5_2670 2.50 Ghz” CPU_type.
To study the impact of region on the OLTP QoS values,

we studied the same hypothesis by changing the state of

region from “us” to “eu”. We then performed inference one

by one by selecting the state of VM_size from “micro”, to

“ioopt”, our analyses led us to conclude that OLTP perfor-

mance remain rather stable across both regions for “micro”,

“small”, and “large” VM_size. We found that this dataset do

Table V: QoS value states representation using hierarchal

discretization for θoltp.

State Range (queries/sec.) Counts

1 0 to 196 2152

2 196 to 561 1327

3 561 to 1130 33

not contain values related to “ioopt” VM_size for “us” regions.
Interestingly, we also concluded that in the “eu” region, more
expensive “cpuopt” VM_size performs similarly to “large”

VM_size. Lastly, through Bayesian diagnosis, we inferred that
time-of-the-day and day-of-the-week do not affect any other
RV significantly.
E. I/O Performance Diagnosis
The I/O benchmark also aims to study the performance

related to multi-tenancy in cloud systems. From Table I, we

note that there were 7377 data points present in the dataset

(
θIO) representing the values for “aws” and “gce” clouds.
We did not find any significant variation in the QoS values.

As in the previous cases, we discretized the I/O QoS values

which were continuous, into finite states of different sizes (see

Table VI) We first analysed the performance of “aws” cloud

by varying parameters listed above. Initially, we selected the

“micro” VM_size’ in the “us” region and found that most of the
QoS values (77% chance) lie in the range of 0 and 2 Mb/sec.

(state 1). We then varied the region to “eu” and found similar
results albeit with less predictability, where there is with only

66% chance that the values will lie in this range. We then

varied the VM_size to “small” and found nearly no change in
the result. Rather the QoS values become less predictable in

the “us” region with close to half of the values lie in with states
1 and 2. In the “eu” region, the value were widely distributed
with 53% chance that QoS will lie in state 2, followed by 28%

chance in state 1 and 18% chance that they will lie in state 3,

respectively.
Again, in this case, we found that the “gce” cloud provides

significantly high predictable values compared to the “aws”

cloud. In that, we concluded that “gce” and “micro” VM_size
will lead to state 1 with 99.5% chance in both “us” and “eu”

regions. Similarly, in the case of “small” VM_size in the “eu”
region, there is 100% chance that the QoS values will lie in

state 2. The performance for “gce” cloud in the “us” region
was less predictable with only 71% chance that the QoS values

will lie in state 2 and rest in state 1, respectively. In the case of

the “large” VM_size, “aws” cloud provided more predictable
results in this case where there was an average 80.5% chance

that the QoS values will lie in state 3, and the rest of the

values will lie in state 2. In the case of “gce”, there was only

67% chance that the QoS values will lie in state 3 and rest of

the values will lie in state 2.
This dataset also contains QoS values for “ioopt” and

“cpuopt” VM_size for “aws” cloud. The “iopt” VM_size per-
forms very well with 100% chance that the values will lie in

state 3. The “cpuopt” VM_size performed rather poorly with
only 55% chance that the QoS values will lie in state 3 and

rest of the values will lie in state 2. Again even in this case,

we did not find any conclusive evidence that time-of-the-day
and day-of-the-week factors have any significant impact on the
QoS values for all the clouds.
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Table VI: QoS value states representation using hierarchal

discretization for θIO.

State Range (Mb/sec.) Counts

1 0 to 2 2461

2 2 to 17 2457

3 17 to 1009.6 2459

Table VII: Cloud QoS Prediction accuracy (%) for different

type of Bayesian Networks.

BN Type CPU Compile Memory OLTP I/O

NBN 97.12 95.93 89.54 97.40 76.21

TAN 99.24 96.08 92.20 97.40 76.17

NOR 99.24 95.65 91.42 97.40 76.08

CBN 99.24 96.09 92.70 97.40 76.04

F. Cloud QoS Prediction

The previous section validated ALPINE’s cloud perfor-

mance diagnosis capability under uncertainty. This section

presents the results related to cloud QoS prediction. As

referred to in section 2, a BN can be modelled in many

ways. It can be a simple Naive Bayes Model (NBN) (see

Fig 2(a) where all the factors are conditionally independent

given an outcome, i.e., QoS value. Alternatively, it can be a

more complex BN (CBN) (See Fig. 2 (d)) where more arcs

between the factors are connected to determine more complex

relationships between them. Fig. 2 (c) shows another simple

model; this is a Noisy-Or model (NOR) where all the factors

directly affect the QoS value.

Finally, Fig. 2 (b) presents a Tree-augmented Naive Bayes

Model (TAN); this model is similar to NBN. However, in this

model, more arcs are connected to determine more complex

relationships between the factors. All of these models were

learned after we performed discretization on the raw QoS

values. To validate BNs prediction accuracy, we used 10-

fold cross-validation which is a widely accepted method to

determine the accuracy and correctness of a model [12], [11].

For training the model, we again used the EM algorithm

[9]. Table VII shows the prediction accuracy of all BNs. We

conclude that BNs can predict QoS efficiently with an overall

prediction accuracy of approximately 91.93%, which is an

excellent result.

The low prediction accuracy in the case of I/O dataset

(θIO) was because of a very narrow distribution of I/O QoS

values. We assert that these results can be beneficial for the

stakeholders for not only the best cloud selection but also to

predict the QoS that their application might perceive by using

a combination of factors mentioned above.

V. CONCLUSION AND FUTURE WORK

This paper proposed, developed and validated ALPINE - a

Bayesian system for cloud performance diagnosis and predic-

tion. The results presented in the paper clearly demonstrate

that ALPINE can be used for efficient diagnosis of cloud

performance even in the case of limited data. The major

highlight of ALPINE is that it can consider several factors

simultaneously (CPU type, VM size, regions, cloud providers,

type of benchmark, time-of-the-day, day-of-the-week, and QoS

values) for the root-cause diagnosis of cloud performance.

In particular, a stakeholder can enter the evidence regarding

multiple factors to determine their impact on other factors.

The state-of-the-art methods lack this capability. ALPINE

can model complex and uncertain relationships between these

factors probabilistically to reason about several hypotheses

regarding cloud performance. We also validated ALIPNE’s

prediction performance and showed that it achieves an overall

prediction accuracy of 91.93%. Therefore, we assert that

stakeholders can use ALPINE for efficient cloud ranking,

selection, and orchestration. As a future work, we will collect

more data for several other cloud providers.
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