
Demonstration Abstract: A Toolkit for Specifying
Service Level Agreements for IoT applications

Awatif Alqahtani∗†�, Pankesh Patel‡, Ellis Solaiman∗�, Rajiv Ranjan∗
∗School of Computing Science, Newcastle University, Newcastle, UK

{a.alqahtani, ellis.solaiman, raj.ranjan}@ncl.ac.uk
†Natural and Engineering, College of Applied Studies and Community Service, King Saud University, Riyadh, SA

‡Fraunhofer CESE, College Park, Maryland, USA
ppatel@cese.fraunhofer.org

Demo - Extended Version

Today we see the use of the Internet of Things (IoT) in
various application domains such as healthcare, smart homes,
smart cars, and smart-x applications in smart cities. The
number of applications based on IoT and cloud computing
is projected to increase rapidly over the next few years. IoT-
based services must meet the guaranteed levels of quality of
service (QoS) to match users’ expectations. Ensuring QoS
through specifying the QoS constraints using Service Level
Agreements (SLAs) is crucial. Therefore, as a first step
toward SLA management, it is essential to provide an SLA
specification in a machine-readable format. In this paper, we
demonstrate a toolkit for creating SLA specifications for IoT
applications. The toolkit is used to simplify the process of
capturing the requirements of IoT applications. We present a
demonstration of the toolkit using a Remote Health Monitoring
Service (RHMS) usecase. The toolkit supports the following:
(1) specifying the Service-Level Objectives (SLO) of an
IoT application at the application level; (2) specifying the
workflow activities of the IoT application; (3) mapping each
activity to the required software and hardware resources and
specifying the constraints of SLOs and other configuration-
related metrics of the required hardware and software; and (4)
creating the composed SLA in JSON format.

I. INTRODUCTION

Service level agreement (SLA) in IoT involve many
providers within the same architectural layer or between
different architectural layers. For example, sensors that collect
a patient’s data are supplied by an actor that is different
from the actor that provides a networking service in order
to feed data to an IoT application, which in turn is provided
by another actor. An actor is any participant in delivering
an IoT application/service: it might be software, hardware
or a human being. Each actor has responsibilities, abilities
and requirements. To create an SLA, these different actors
need to be considered, ensuring that each actor involved is
delivering the required job within a certain level of Quality
of Service (QoS), as well as receiving its requests within its
QoS constraints. Therefore, this kind of dependability needs
to be reflected and captured, and currently available SLA

specification languages do not reflect this need [1] [2]. Several
key challenges need to be considered to enable a shift from
previous SLA specification languages to an SLA specification
language for IoT applications:

• Challenge 1: Multi-layer nature of IoT Applications. It is
challenging to achieve a high level of certainty regarding
the quality of a service, especially when the service is
composed of/depends on other services [3]. Cloud based
IoT applications are typically composed of a number
of services in order to be able to perform the required
functionality. These services can be deployed, or can
consist of other services which are deployed, on one of
the following computing resource layers:

– IoT device layer: Provides smart devices with the
ability to sense and generate a large amount of data
at different data speeds.

– Edge resource layer: Provides the intelligence (com-
putation) on the Edge devices to improve perfor-
mance by reducing unnecessary data transferring to
Cloud data-centers.

– Cloud computing Layer: Offers a pool of config-
urable resources (hardware/software) that are avail-
able on demand [4], allowing users to submit jobs
to service providers on the basis of pay-per-use.
Cloud computing also offers advanced technologies
for ingesting, analyzing and storing data [5].

• Challenge 2: Heterogeneity:
– Heterogeneity of workflow activity: Different models

of IoT applications have different stacks of essential
interdependent services. Therefore, there is a hetero-
geneity issue in both sides, hardware and software.
∗ Heterogeneity related to hardware components:

Turning the light off in an auto-building ap-
plication can be run on IoT and Edge layers,
while comparing patients’ old records with current
recorded data in RHMS requires performing some
tasks on IoT, Edge and Cloud layers.

∗ Heterogeneity related to software components:
Some applications require a certain type of data

ar
X

iv
:1

81
0.

02
74

9v
1 

 [
cs

.D
C

] 
 5

 O
ct

 2
01

8



analysis programming model, such as applying
data ingestion and stream processing to monitor
a patient’s health remotely. While other applica-
tions, for example, in computing statistics of a
particular vehicle for a month-long period, require
ingestion, stream processing and batch processing
data analysis programming models [6].

– Heterogeneity of the key QoS metrics across lay-
ers [7]: The QoS requirements will depend on the
required service. precision when collecting data;
for example, is a QoS requirement at IoT devices
layer, while response time is one of the key QoS
requirements for batch processing as programming
model run on Cloud layer.

– Heterogeneity of application requirements [7]: At
the application level, the QoS requirements vary
from one application to another; for example,
responsiveness is a key requirement for health
monitoring applications while energy efficiency is an
essential QoS requirement for building automation
applications.

In this paper, we introduce a toolkit for creating SLA
for IoT applications. The toolkit supports the following:
(1) specifying the Service-Level Objectives (SLO) of an
IoT application at the application level; (2) specifying the
workflow activities of the IoT application; (3) mapping each
activity to the required software and hardware resources and
specifying the constraints of SLOs and other configuration-
related metrics of the required hardware and software; and (4)
creating the composed SLA in JSON format. It is designed to
be used by people who are interested in requesting/offering
SLA of IoT applications with basic technical knowledge
of IoT, Edge and Cloud technologies (e.g., IoT administrators).

Outline: The remainder of this paper is organized as
follows: in Section II, we describe the state-of-the-art; in
Section III, we present an overview of the system (design goals
and system architecture); Section IV provides the demonstra-
tion plan by walking through a use-case. We conclude and
present future work in Section V.

II. STATE-OF-THE-ART

There are a number of different approaches to specifying an
SLA, from employing natural language or a formal language
for the purpose of analyzing SLA properties, to utilizing XML
documents in an effort to standardize SLAs to increase SLA
interoperability between the service consumer and the service
provider [8]. For example, Keller and Ludwig provided an
XML framework to express SLAs for Web Services (WSLA),
which is considered to be a starting point as others have ex-
tended their approach [9]. Some efforts in SLA specifications
have been made for the Cloud computing paradigm, such as in
CSLA [10], SLAC [11]. However, SLAC [11] has considered
only an IaaS layer, while CSLA [10] has considered all three
Cloud delivery models (IaaS, PaaS, SaaS). CSLA [10] allows

for specifying a PaaS layer as a whole layer, which means
it does not consider specifying the QoS requirements of each
data analysis programming model within that layer. Moreover,
service providers typically provide inflexible take-it-or-leave-
it SLAs, which disregard the fact that service consumers
have varying requirements depending on their needs, budget
and preferences (e.g., SLAs of AWS services and Microsoft
Azure). Therefore, we aimed in our specification to consider
the most common IoT application tiers/services, including data
sources (e.g., sensors and RFID tags), programming models
(e.g., stream processing and batch processing) and computing
resources (e.g., Edge resources and Cloud resources) to allow
users (e.g., IoT administrators) to specify their preferences.

III. SYSTEM OVERVIEW

In this section, we present the design goals and the archi-
tecture of the toolkit.

A. Design Goals
SLA creation is an important and critical step consider-

ing the fact that SLA-based service discovery, negotiation,
monitoring, management and resource allocation rely on what
has been specified within the SLA. As a result, we have
developed a toolkit that enables service consumers to specify
their QoS requirements and express them as service level
objectives (SLOs), as well as specifying some configuration-
related metrics for each software/hardware component of the
system. We have considered the following features as design
goals of the toolkit:

• Expressiveness: We aim to provide a rich list of domain
specific vocabularies to allow fine-grained SLA specifi-
cation.

• Generality: We aim to consider common components or
layers of IoT architecture (IoT, Edge and Cloud).

• Extendibility: The tool is to some extent extendable,
because it has been designed to allow anyone who is
interested in customising/enhancing the SLA according
to his/her application-specific need to add or delete ac-
tivity/metrics without changing the programming code.
It is possible to add/delete/change activity/metrics using
an attached Excel file, and these changes can be reflected
dynamically. The Excel file preserves the schema of SLA
components (e.g., workflow activities and their related
software and hardware requirements).

• Simplicity: Providing a GUI enables users to specify
their requirements without needing prior knowledge of
a machine-readable language such as JSON or XML.
Furthermore, the tool allows users to specify an SLA in
the same data-flow as their application, by allowing users
to specify the workflow activity of their application first
and then specify the requirements in the same flow of
occurrences as the selected activities.

B. System Architecture
The abstracted design and architecture of the toolkit is

depicted in Figure 1. The overall architecture comprises three
basic layers:



1) GUI Layer, which includes the user interface com-
ponents. It displays user interface components as a
sequence of forms that guide the user through well-
defined steps.

2) Programming Layer, which encapsulates the program-
ming modules in order to serve the GUI layer by
providing the required functionalities.

3) Data Layer, which encapsulates the required data as an
input to the tool or output of the tool. It includes:

• An Excel file as an input, which provides data
that describes the SLO and configuration metrics
related to the software and hardware requirements
of each activity. The Excel file has new vocabularies
which provide fine-grained details regarding the
associated software and hardware components of
each workflow activity.

• A JSON document as an output, which represents
the SLA document. The specification is related to
the SLOs at the application level followed by a spec-
ification related to each activity, which includes the
SLOs and configuration related metrics required for
the programming model (e.g., stream processing)
and deployment layer (e.g., Cloud layer).

For example, when the user starts the program, the AppSLOs
form is displayed to allow the user to specify the basic details
concerning: type of IoT application (e.g., Remote Health
Monitoring); preferable duration time to start the agreement
(e.g., start date and end date); and SLOs at application level
(e.g., end-to-end response time). After that, the user can
select the workflow activities of an IoT application using
the WorkflowActivitySelection form. The form works in con-
junction with the ExcelConverter module, which retrieves the
names of the Excel file sheets as workflow activities to allow
users to select which one is included in their application’s
workflow. Once the user has selected the workflow activities
of the application, the Mapper module maps each activity
to the corresponding deployment layer as well as to the
required programming model, if needed. For example, “Large
scale real-time analysis” is mapped to “Stream processing”
as the programming model and is deployed on Cloud layer.
The ExcelConverter displays the related-metrics of SLOs and
configuration for both the deployment layer and programming
model of each activity based on the predefined schema within
the Excel file. After users specify their constraints in both
SLOs and configuration requirements for all selected activities,
the Grammar module ensures that an SLA object is created
in such a way that it complies with the predefined grammar
structure (Figure 2). The JsonSerializer then comes into play,
which is a software component to serialise the SLA object to
be an SLA document in a JSON format. The Database module
stores the SLA object in MonogoDB database.

IV. DEMONSTRATION

The goal of our demonstration is to show how to create an
SLA for an IoT application using a GUI-based toolkit. The

tool considers domain-specific metrics for SLA specification
purposes. Requirement of the Demo:

• JRE (Java Runtime Environment): To run Java JAR file.
• Microsoft Excel: To view the content of the Excel file.
• Expected duration of the demo is 10 minutes as a demo

format.

A. Remote Health Monitoring Service (RHMS) Use-case

To illustrate the usefulness of the toolkit, consider a Remote
Healthcare Monitoring Service (RHMS) where patients wear
sensors and accelerometers to measure their heart rate and
sugar levels (capture data with high accuracy guarantees),
reminding them of the time to take medications and detecting
abnormal activity such as falling down (analyse incoming data
on fly under low latency constraints). Data transferring from
sensors to the Cloud layer requires 100% network connectivity.
Patients can register in RHMS and pay for the service to
monitor their health remotely and alert their carers and doctors
if their health is in a critical condition. Subscribed patients
are looking for a service that can satisfy the following high-
level requirement: detecting abnormal activity (such as falling
down) within x milliseconds; ambulance, carers and doctors
to be contacted within y minutes [12]. Adherence to SLA’s
constraints of RHMS is a critical process. For example, if
there was a delay in the network, it would lead to a late
response at the front-end which exceeds what the consumer
was expecting. From the above scenario, it can be seen that
to achieve the high-level requirement, many nested-dependent
QoSs should be considered. Therefore, the toolkit defines
a multilayer specification with new vocabulary to allow for
specifying the constraints for all back-end services, which
cooperate to deliver the front-end service. Therefore, it is
important that both service consumers and providers state
the QoS requirements for each required service within the
agreement clauses of the SLA.

B. Demonstration Scenario

Our demonstration would involve the following steps:
• Specify the SLOs of the Application at the application

level: The tool will display a predefined list of possible
SLOs as a check list. Users can check the SLOs that they
are interested in and specify the priority level (high, low,
or normal) as well as the threshold value of the QoS
metric of the SLO (Figure 3-a). In RHMS, users can
quantify the SLOs by specifying the acceptable threshold
value of the related Quality of Service metrics. For ex-
ample, the objective of minimizing response time can be
specified by selecting the preferred value for each of the
following attributes related to the minimizing response
time objective: priority (e.g., high); required level (e.g.,
less than); value (e.g., 60); unit (e.g., seconds).

• Select the workflow activity based on the application
scenario: There is a predefined list of activities which are
part of many IoT applications’ workflow (e.g., capture
event of interest; ingest data; analyze large-scale real-
time data activity). The tool displays the predefined



Fig. 1. Layered Architecture

Fig. 2. A snippet of the proposed SLA grammar which preserves the structure
of the SLA

Analyze	real-time	data

Examine	the	captured(EoI)

Capture	Event	of	Interest(EoI)

(a) (b)

(d)(c)

Specification	related	to	Examine	the	Captured	Event	on	Fly		activity

Please	select	the	workflow	activity	of	the	application

Fig. 3. SLA specification toolkit: (a) Specify the SLOs of the Application, (b)
Select the workflow activity based on the application scenario requirement,
(c) Specify SLOs and configuration metrics related to each of the selected
activities, and (d) Generate SLA document in JSON format.

activity and then the user can select the ones that are
included in their application workflow activities and
connect them in a way that reflects the data flow of
the application. Connecting the activity preserves the
dependencies between activities for future work related
to performance modelling. For example, the workflow
activity of RHMS can consist of the following activities
which can be connected, sequentially, in the same order
as listed below (Figure 3-b):1) Capture Event of Interest
(EoI). 2) Examine captured EoI. 3) Ingest data activity.
4) Real-time Analysis activity. 5) Store structured data

activity. The reason behind considering very standard and
common activities is to increase the generality of the tool.

• Specify SLO and configuration metrics related to each
of the selected activities: The tool reads the SLO and
configuration metrics schema from a predefined Excel
file, which has the schema content of what to display
for each activity.Then, users can specify the required
level/value of an SLO and the configuration metrics for
each software/hardware component required to deliver the
selected activities (Figure 3-c). In RHMS, for example,
when the user selects a “capturing event of interest”
activity, the user can then specify the requirements at the
IoT devices level, such as sampling rate, battery life and
communication mechanism.

• Generate SLA document: Based on what the user has
specified in steps 1 and 3, the SLA document will
be generated in a JSON format. The generated SLA
can be used later on for different purposes, such as
service provider discovery, SLA-based monitoring and
SLA-based resource allocation. In RHMS, when the user
presses finish, a JSON document is generated based on
what has been specified, which represents the SLA of the
RHMS (Figure 3-d). The JSON document’s specification
is related to the SLOs at the application level followed by
the specification related to each activity, which includes
the SLOs and configuration related metrics for the re-
quired programming model (such as stream processing)
and deployment layer.

• Store generated SLA using a NoSQL database: Since
users can choose which metrics to specify by check-
ing/unchecking the metrics, Therefore,generated SLA has
different schemas of JSON files being created, due to
the heterogeneity of requirements from different users.
Therefore, each generated SLA JSON file is stored in
a NoSQL database (MonogDB database). The reason be-
hind storing required SLA metrics is for SLA compliance
monitoring, which is one part of the SLA’s life cycle.



V. CONCLUSION AND FUTURE WORK

We have presented a tool that supports end to end specifi-
cation of QoS requirements within SLAs for IoT applications.
The tool is used to simplify the process of capturing the
requirements of IoT applications. We believe the tool effec-
tively tackles the aforementioned challenges: 1) Specifying the
requirements of an IoT application that has a multi-layered
nature. The tool has provided a rich set of vocabularies to
capture the requirements of each layer of the IoT architecture
(IoT device, Edge layer, Cloud layer). 2) IoT applications have
different SLO requirements, which vary from one application
to another. Also the priority level of one SLO differs from
one application to another. Therefore the tool allows the users
to specify SLOs at the application level. 3) Different IoT
applications have different workflow activities depending on
each application use case scenario. Therefore, to overcome
the varied requirements that arise from the heterogeneity
of workflow activity, the tool allows the users to specify
their workflow activity first and then use that to specify the
requirements related to the hardware and software components
of each selected activity. The output of the tool is an SLA
specification in a machine-readable format (JSON format).

For future work, the SLA document will be used as an
input to an SLA-based broker framework for discovering and
negotiating with providers of IoT-related services. This is in
order to find the best match of available providers who can
deliver the service within the users’ requirements. Additional
work will investigate the implementation of a framework
for monitoring that IoT applications meet the SLOs and
QoS metrics specified within the SLA. The monitoring
framework will be based on novel blockchain and smart
contract technology [13] [14].

Index Terms—Clouds and Edge Computing and Applications;
Service Level Agreement; SLA Specification; IoT.

BIOGRAPHIES

Awatif Alqahtani has a BS and MS in Computer Science from King Saud
University, Saudi Arabia. She is currently working toward a Ph.D. in the
School of Computing Science at Newcastle University, UK. Her research

interests includes Internet of Things, Big Data and service level. Contact her
at a.alqahtani@newcastle.ac.uk

Pankesh Patel is working at Fraunhofer USA Center for Experimental
Software Engineering (CESE) as a Senior Research Scientist. His current

focus is on implementation of Industry 4.0 techniques and methodologies in
commercial environments. Prior to joining Fraunhofer, he served as a
Research Scientist for the Industrial Software System group at ABB

Corporate Research-India. He is frequently invited to speak as a panelist and
keynote at both academic and commercial conferences. Pankesh obtained his
Ph.D. from the University of Paris VI and the French National Institute for
Research in Computer Science and Automation (INRIA) in Paris, France.

Ellis Solaiman is a Lecturer at the School of Computing, Newcastle
University. He previously received his Ph.D. in Computing Science also
from Newcastle University, where he subsequently worked as a Research
Associate and Teaching Fellow. His research interests are mainly in the

areas of Dependability and Trust in Distributed Systems such as the Cloud
and the Internet of Things. He is also interested in the automated

monitoring of these systems using technologies such as Smart Contracts. He
is a Fellow of the UK Higher Education Academy (FHEA) since 2016.

Rajiv Ranjan is an Associate Professor (Reader) in Computing Science at
Newcastle University, United Kingdom. Prior to that, he was a Senior

Research and Julius Fellow at CSIRO, Canberra, where he was working on
projects related to Cloud and big data computing. He has been conducting
leading research in the area of Cloud and big data computing developing
techniques. He has published about 110 papers that include 60+ journal

papers. He serves on the editorial board of IEEE Transactions on Computers,
IEEE Transactions on Cloud Computing, IEEE Cloud Computing, and

Future Generation Computer System Journals. He is one of the highly cited
authors (top 0.09%) in computer science and software engineering

worldwide (h-index=43, g-index=94,and 10,050+ google scholar citations).

REFERENCES
[1] E. Solaiman, R. Ranjan, P. Jayaraman, and K. Mitra, “Monitoring

internet of things application ecosystems for failure,” IT Professional,
IEEE, 2016.

[2] R. Ranjan, S. Garg, A. R. Khoskbar, E. Solaiman, P. James, and
D. Georgakopoulos, “Orchestrating bigdata analysis workflows,” IEEE
Cloud Computing, vol. 4, no. 3, pp. 20–28, 2017.

[3] C. Kotsokalis and U. Winkler, “Translation of service level agreements:
A generic problem definition,” in Service-Oriented Computing. IC-
SOC/ServiceWave 2009 Workshops, A. Dan, F. Gittler, and F. Toumani,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 248–
257.

[4] M. Daz, C. Martn, and B. Rubio, “State-of-the-art, challenges, and open
issues in the integration of internet of things and cloud computing,”
Journal of Network and Computer Applications, vol. 67, pp. 99 – 117,
2016. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S108480451600028X

[5] M. Chen, S. Mao, and Y. Liu, “Big data: A survey,” Mobile Networks
and Applications, vol. 19, no. 2, pp. 171–209, Apr 2014. [Online].
Available: https://doi.org/10.1007/s11036-013-0489-0

[6] M. Nardelli, S. Nastic, S. Dustdar, M. Villari, and R. Ranjan, “Osmotic
flow: Osmotic computing + iot workflow,” IEEE Cloud Computing,
vol. 4, no. 2, pp. 68–75, March 2017.

[7] A. Alqahtani, E. Solaiman, R. Buyya, and R. Ranjan, “End-to-end qos
specification and monitoring in the internet of things.”

[8] C. Mller, M. Resinas, and A. Ruiz-Corts, “Automated analysis of
conflicts in ws-agreement,” IEEE Transactions on Services Computing,
vol. 7, no. 4, pp. 530–544, Oct 2014.

[9] G. Gaillard, D. Barthel, F. Theoleyre, and F. Valois, “SLA
Specification for IoT Operation - The WSN-SLA Framework,”
INRIA, Research Report RR-8567, Jul. 2014. [Online]. Available:
https://hal.inria.fr/hal-01024259

[10] Y. Kouki, F. A. d. Oliveira, S. Dupont, and T. Ledoux, “A language
support for cloud elasticity management,” in 2014 14th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing, May
2014, pp. 206–215.

[11] R. B. Uriarte, “Supporting autonomic management of clouds: Service-
level-agreement, cloud monitoring and similarity learning,” 2015.

[12] P. P. Jayaraman, K. Mitra, S. Saguna, T. Shah, D. Georgakopoulos,
and R. Ranjan, “Orchestrating quality of service in the cloud of things
ecosystem,” in 2015 IEEE International Symposium on Nanoelectronic
and Information Systems, Dec 2015, pp. 185–190.

[13] C. Molina-Jimenez, E. Solaiman, I. Sfyrakis, I. Ng, and J. Crowcroft,
“On and off-blockchain enforcement of smart contracts,” CoRR, 2018.
[Online]. Available: eprintarXiv:1805.00626

[14] C. Molina-Jimenez, I. Sfyrakis, E. Solaiman, I. Ng, M. W. Wong,
A. Chun, and J. Crowcroft, “Implementation of smart contracts us-
ing hybrid architectures with on-and off-blockchain components,”
arXiv:1808.00093 [cs.SE], 2018.

http://www.sciencedirect.com/science/article/pii/S108480451600028X
http://www.sciencedirect.com/science/article/pii/S108480451600028X
https://doi.org/10.1007/s11036-013-0489-0
https://hal.inria.fr/hal-01024259
eprint arXiv:1805.00626

	I Introduction
	II State-Of-The-Art
	III System Overview
	III-A Design Goals
	III-B System Architecture

	IV Demonstration
	IV-A Remote Health Monitoring Service (RHMS) Use-case
	IV-B Demonstration Scenario

	V Conclusion and Future Work
	Biographies
	Awatif Alqahtani
	Pankesh Patel
	Ellis Solaiman 
	Rajiv Ranjan

	REFERENCES

