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Abstract—The Internet of Things (IoT) promises to help solve
a wide range of issues that relate to our wellbeing within applica-
tion domains that include smart cities, healthcare monitoring, and
environmental monitoring. IoT is bringing new wireless sensor
use cases by taking advantage of the computing power and
flexibility provided by Edge and Cloud Computing. However, the
software and hardware resources used within such applications
must perform correctly and optimally. Especially in applications
where a failure of resources can be critical. Service Level
Agreements (SLA) where the performance requirements of such
applications are defined, need to be specified in a standard way
that reflects the end-to-end nature of IoT application domains,
accounting for the Quality of Service (QoS) metrics within every
layer including the Edge, Network Gateways, and Cloud. In
this paper, we propose a conceptual model that captures the
key entities of an SLA and their relationships, as a prior step
for end-to-end SLA specification and composition. Service level
objective (SLO) terms are also considered to express the QoS
constraints. Moreover, we propose a new SLA grammar which
considers workflow activities and the multi-layered nature of IoT
applications. Accordingly, we develop a tool for SLA specification
and composition that can be used as a template to generate SLAs
in a machine-readable format. We demonstrate the effectiveness
of the proposed specification language through a literature survey
that includes an SLA language comparison analysis, and via
reflecting the user satisfaction results of a usability study.

Index Terms—Service Level Agreement; SLA Specification; IoT;
Internet of Things; Monitoring.

I. INTRODUCTION

In IoT environments, devices (e.g., sensors, actuators, and

cameras) sense, capture, and send behaviors of the physical

world as raw data over computer networks, to the Edge layer

and/or the Cloud layer for further processing. Edge and Cloud

layers perform computational and analytical operations (e.g.,

filtering, analyzing, detecting, etc.) on the received data in

order to make automatable actions on physical environments

and ultimately forward visualized results to end-users. The

Edge layer typically contains a small-scale datacenter to

perform lightweight tasks. In contrast, the Cloud layer consists

of large scalable distributed pools of configurable resources,

for performing intensive tasks on historical and real time data,

on demand [1]. It allows users to submit jobs for computing,
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storing, analyzing as well as handling the heterogeneity of data

and devices [1].

A. Motivation and research problem

Figure 1 illustrates a reference architecture that reflects

the multi-layer nature of an IoT application. As can be seen

from the figure, one of the main challenges of building IoT

applications is their potential complexity. Because of this

complexity, integrating distinct technologies and platforms in

a way that minimizes failures and guarantees application users

a high quality of service (QoS) is not an easy task.

Many IoT applications are also time sensitive. For example,

let us consider a Remote Health Monitoring Service (RHMS)

where patient data is collected from different resources (e.g.

heartbeat sensors, smart cameras and mobile accelerometers).

The filtered data is then transferred to a big data processing

platform within the cloud layer for further analysis. One of

the Service Level Objectives (SLO) of this RHMS could be to

detect urgent cases within Y time units and notify emergency
services within X time units of detection. Any unacceptable

delay in the transfer of the data for this application might

have serious consequences. In order to achieve this SLO,

the service provider/s should have in place mechanisms and

guarantees on the availability of the service, and on important

time constraints by which any critical data must be transferred.

At the very least, any hint of performance degradation or

failure within the application should be monitored, investigated

and tracked to its root cause [2]. Unfortunately, the current

generation of application monitoring tools are not capable of

this fine grained monitoring required by such IoT applications.

As a first step toward building IoT applications, one must be

able to specify the QoS metrics for an IoT application com-

prehensively within standardized Service Level Agreements

(SLA) that can be understood by all stakeholders involved.

To emphasize the importance of standardizing SLA for IoT

applications, consider a scenario where an IoT application

administrator would like to find the best set of providers for

the services that matches his/her requirements for developing

the desired IoT application. Because IoT applications have

a multi-layered architecture, IoT administrators need to con-

sider different categories of providers (e.g., Network provider,

Cloud provider, Edge provider) and find the best candidate
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Fig. 1. Reference IoT Architecture

for each category. In order to be able to communicate require-

ments with various potential providers, it would be extremely

useful to be able to make use of standardized terminology

that describes consumer requests as well as provider offers.

Such standardization would enable the process of selecting

the best candidate services to be automated. For example,

the most popular cloud providers (e.g., AWS, MS Azure,

Oracle), currently provide take-it-or-leave-it SLAs for their

services. When customers need to compare such SLAs from

different providers to select the most suitable, they need to

do it manually. IoT applications can potentially be much

more complex than cloud applications, and therefore such a

comparison becomes more difficult. Therefore, standardizing

the way SLAs are described for both service consumers

as well as service providers, would be an important step

towards automating service provider selection. In addition,

standardizing machine readable IoT SLAs is also an important

step towards automating the process of IoT application deploy-

ment, monitoring, and dynamic reconfiguration. Once an IoT

application has been deployed, it is important to continuously

monitor that the application is adhering to what has been

agreed upon and to be able to dynamically reconfigure the

application on the fly as needed to ensure that those QoS

requirements are met [3].

Standardizing the SLA specification for IoT applications is

challenging due to a number of factors [4]: (1) the multi-

layered nature of end to end IoT (edge device layer, edge

computing layer, cloud layer), (2) several metrics are required

to capture the performance of software and hardware com-

ponents of IoT applications (e.g., data freshness at the edge

devices and latency of stream processing at the Cloud layer),

and (3) dependencies within each of the metrics across IoT

layers (e.g., data rate of stream processing at the Cloud layer is

affected by sampling rate of the edge devices). It is well known

that SLA specification languages for various application do-

mains do indeed exist [5] [6] [7] [8] [9] [10]. However, in their

current format, to our knowledge, none of these languages are

capable of accommodating the unique characteristics of the

IoT domain with its multi-layered nature. In other words, there

is an absence of consideration for requirements of all layers

(end-to-end) that form an IoT application.
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B. Contributions
The main aim of this research is to propose a new end-

to-end SLA specification language for IoT whilst taking into

consideration the challenges presented above. We summarize

our contributions as follows:

• a new conceptual model that captures the knowledge base

of IoT specific Service Level Agreements, by expressing

the key entities of the IoT ecosystem and the relationships

between those entities within SLA context.

• a new multi-layered grammar to reason about SLA for

IoT applications.

• a tool for specifying and composing standardized end-to-

end SLA constraints with a comprehensive vocabulary,

which provides a fine-grained level of specification of

user requirements.

The remainder of this paper is organized as follows: Section

II introduces our IoT based SLA conceptual model. The SLA

grammar is presented in III. We demonstrate the tool for spec-

ifying and composing end-to-end SLAs for IoT applications

and generating machine readable SLAs in section IV. Section

V reviews related work, and provides a comparison of similar

approaches with respect to a number of important criteria. We

evaluate our work via a user study in section VI. Conclusions

and future research directions are presented in section VII.

II. END-TO-END SLA CONCEPTUAL MODEL FOR IOT

APPLICATIONS

An End-to-end IoT ecosystem, considers all components

through which application data is flowing. Components can be

hardware, software and/or humans. From a Quality of Service

(QoS) specification perspective, end-to-end IoT SLAs should

consider requirements of entire resources (hardware and soft-

ware) that are cooperating to deliver the IoT application. This

starts from capturing the data, and ends with querying and/or

storing the results of any performed analysis, in addition to

any other activities, which vary depending on the use case

scenario. For example, as depicted in the conceptual model of

Figure 2, the SLA considers the requirements for all activities

that are involved in the use case scenario. To specify the

requirements on an end-to-end basis, the conceptual model

has considered what services (sometimes referred to within

the text as software resources), are required for each activity,

and where the services can be deployed. Therefore, the model

considers the infrastructure resources (e.g., IoT devices, Edge

resources, and Cloud resource), as well as the services (e.g.,

sensing service, and real-time analysis service), which can

be deployed on the infrastructure resources. In the following

section we describe the concepts covered in the conceptual

model, and then the relationship between those concepts.
Our SLA conceptual model for IoT applications is presented

in Figure 2. In the proposed conceptual model, we refer to

the reference architecture (Figure 1). The conceptual model is

composed of the following entities:

1) SLA: includes the basic data such as the title of the SLA,

ID of the SLA, type of the application (i.e smart home,

smart health, etc.) as well as start and end dates.

2) Party: describes an individual or groups involved in the

SLA. It usually contains companies or judicial entities

that are named in the SLA [11]. For example, in an

RHMS, the parties could be the hospital management,

patient, network provider and cloud resource providers.

3) SLO: provides quantitative means to define the level

of service a customer can expect from a provider. It

expresses the intention(s) of an agreement for both the

application, and any involved services and infrastructure

resources. It quantifies the required value of a QoS

metric. For example, an SLO (at the application level)

of the RHMS scenario, could be the response to urgent

cases within Y unit time. The QoS metric in this example

is response time and the constraint is less than Y
unit time. Furthermore, SLO parameter can be used to

specify an SLO for lower level services, for example at

the data ingestion service, an SLO can be: ”ingest data
with latency less than Z unit time”. For an infrastructure

resource such as CPU of a VM, an SLO can be: ”CPU
utilization is greater than 80%”.

4) Workflow Activity: IoT applications have certain ac-

tivities that are required to be considered as part of

the application requirements to function correctly. For

example, in the RHMS, one of the possible workflow

activities is capturing interesting data, analyzing real-

time data, and storing interesting results in a database

(e.g., SQL or NoSQL).

5) Service: To achieve SLOs at the application level, it

is important to establish adequate cooperation between

particular services under the SLO constraints. For ex-

ample, in the RHMS, to detect urgent cases within Y

time unit, it is necessary to transfer data from sensors

to the ingestion service and to process data on the fly

using stream processing services. Here we list the most

common services that can cooperate in order to deliver

SLOs of an IoT application.

a) Sensing service: collects data from IoT devices and

sends the collected data through a communication

protocol to a layer above. It specifies the number

of sensors, type of sensors and when to collect

the data. For example, in a RHMS, a heartbeat

sensor attached to the chest and an accelerometer

as a hand-wrist device, reflect the patients health

state continuously or periodically based on what

has been specified within the SLA for this service.

b) Networking service: communicates the collected

data from one layer to another. For example, in the

RHMS, home gateway uses the network to deliver

collected data to the Cloud for further analysis

under certain bandwidth requirements.

c) Ingestion service: ingests data from many

data producers, and then forwards it to

subscribed/interested destinations such as storage

and analysis services under certain requirements

such as throughput limit.
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Fig. 2. SLA conceptual model for IoT application which captures the key entities of an SLA and their relationships

d) Batch processing service: receives data from re-

sources such as ingestion layers, appends them

to the master data set and then computes batch

views. For example, in the RHMS, to predict

urgent cases it is important to run machine learning

algorithms on historical patient records in order to

recognize patterns regarding certain health issues

and establish a predictive model. The predictive

model can be used later with real-time data of

current patients in order to detect patients with

particular health issues. Batch views can be com-

puted/queried within response time constraints as

specified by consumers/subscribers.

e) Stream Processing Service: processes incoming

data from data resources such as an ingestion

service to compute real-time views. For exam-

ple, collected data is processed on the fly, and

if the analysis shows an abnormality such as a

high heartbeat rate, then appropriate action is re-

quired, such as sending an ambulance. However,

to observe the greatest value of real-time data,

consumers/subscribers can specify certain require-

ments such as the acceptable delay limit for com-

puting/querying real-time views.

f) Database service (SQL and NoSQL databases): is

used by ingestion, batch and stream processing

services to persist or retrieve data. It stores data,

batch views and real-time views as intermediate or

final data sets. Consumers can specify their require-

ments on the service such as query response time

and specify whether data encryption is required.

6) Infrastructure resource: provides the required hardware

for computation, storage and networking, which are

essential to deploy/run the above-mentioned services.

The infrastructure resource can be IoT device, Edge

resource, Cloud resource.

a) IoT device: includes device/object with intelligence

ability to actuate on/reflect the physical worlds.

b) Edge resource: allows for data processing at

the edge network. Border routers, set-top boxes,

bridges, base stations, wireless access points, edge

servers, etc. These are examples of edge resources

and these components can be equipped, to support

edge computation, within certain capabilities [12].

c) Cloud resource: provides Infrastructure as a Ser-

vice (IaaS) and, mostly, is located geographically

far from the end devices/users [12].

The relationships between the above-mentioned entities,

which are depicted in the conceptual model (Figure 2) are as

follows: there is one-to-many relationship between the SLO

and the SLA entities to express one or more of the QoS

requirements at the application level. Therefore, each SLA

entity has a composition relationship with the SLO entity. An

example of SLO at application level could be ”end-to-end
response time of the application should be less than Y time
unit”. Additionally, an IoT application has a set of workflow

activities (e.g., capture an Event Of Interest (EoI), analyze

real-time data), which cooperate to deliver the application.

Therefore, there is a composition relationship between the SLA
and WorkflowActivity entities. Furthermore, an SLA has

parties who are responsible for providing, consuming and/or

playing third party roles. Figure 3 depicts the relationship be-

tween SLA, SLO, WorkflowActivity and Party entities.

Each workflow activity requires a service (e.g., sensing

service, networking service, stream processing service). Each

service is deployed on one of the infrastructure resources (for

example; edge devices, edge resource, cloud resource). Each
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Fig. 3. The relationship between SLA, SLO, WorkflowActivity and Party
entities

one of the services and infrastructure resources has one or

more SLOs (e.g., high level of data freshness objective of

sensing service and high CPU utilization of VM). Furthermore,

each one of the services and infrastructure resources has

one or more configuration metrics (e.g., the sample rate of

the sensing service and number of CPUs per VM of the

cloud resource). Therefore, there is an association relationship

between InfrastructurResource, Service, and com-

position relationship between InfrastructurResource,

Service, SLO and ConfigurationMetric entities (Fig-

ure 4).

Fig. 4. The relationship between WorkflowActivity, InfrastructurResource,
Service, SLO and ConfigurationMetric entities

Achieving the SLOs of both services and infrastructure

resources has an impact on achieving SLOs at the application

level. For example, in the RHMS, an SLO ( SLOapp1) for

urgent cases that require a response within less than Y unit

time, is an SLO at the application level which involves many

activities such as analyzing real-time data. Analyzing real-

time data requires a stream processing service that has an

acceptable level of latency, and if the stream processing service

exceeds the acceptable level of latency, then SLOapp1 might

be violated.

III. SLA GRAMMAR OF IOT APPLICATIONS

One of our main objectives is providing a machine-readable

SLA specification that can be used by an application or-

chestrator for automatically deploying IoT applications, and

monitoring adherence to the QoS requirements. Table I shows

the syntax of our proposed language, which is formally defined

in the Extended Backus Naur Form (EBNF):

The SLA has the following elements: < id >, <
description >,< type >, < party >, < startDate >, and

< endDate >, are elements to describe basic information

related to the SLA. Each SLA consists of at least one service

level objective < slo > to express the required QoS level at

the application level (e.g., in the RHMS, response Time
less than 2 minutes). It also contains the priority level (e.g.

high, medium, low) of each < slo >. For example, in RHMS,

response time has higher priority than power consumption,

which is not the case with the auto-light building where

power consumption has a high priority. The concept of a

< workflowactivity > is used to express the data flow

activities of an IoT application (e.g. capture the event of

interest, large-scale real-time data analysis, and large-scale

historical data analysis). Each workflow activity is mapped

to its required < Service > (such as sensing service, batch

processing service) and to < InfrastructureResource >
(e.g., IoT devices, Edge resources, Cloud resources). Each

service and infrastructure resource has its own < slo >
and < configurationMetrics >. The SLO as mentioned

before can express the required level of QoS for each one of

the services. The differentiation between configuration metrics

such as < booleanMetrics >, < typeMetrics > and/or

< numericalMetrics >, is based on their values: some

metrics have Boolean values, others determine the type of

the metric and some have a numerical value. For example,

number of required CPUs, type of clusters are examples

of < numericalMetrics >, < booleanMetrics > and

< typeMetrics >, respectively.

IV. SLA SPECIFICATION TOOL OF IOT APPLICATION

We have developed a graphical user interface

(GUI)/standalone wizard that can be used by both service

consumers and service providers for SLA request and offer

creation, respectively. Users of our tool are able to perform

the following steps, in sequence (see Figure 5):

1) Specify the service level objectives constraints at the ap-

plication level such as the required/desired level of availability,

the time constraints on the response time of the application.

For example, to specify the application response time, the user

can set the priority (e.g., “high” ), and specify the required

level by choosing from a drop-down menu (e.g., “greater

than”) and select the threshold value such as (5) and then

select the unit such as “milliseconds”.

2) Select the workflow activities and connect them to

preserve the dependency between the selected activities: user

can select the workflow activities based on his/her application

scenario. For example if the application is concerned with

turning the heater on when the temperature is less than a

specific threshold value, then the user can select activities

“Capture EoI”, “Examine the captured EoI” and “Actuate

based on the captured events value” and then connect them

to show the sequence of the activities.
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TABLE I
SLA GRAMMAR FOR IOT APPLICATIONS

<service>::=

 
<service> <infrastructureResource>

 

<infrastructureResource>::=

|.....;

|.....;

|.....;

|....;            

|....;            

3) Map each selected workflow activity to its required ser-

vice and infrastructure resource: after selecting and connecting

the workflow activities, the user can then specify, for each

selected activity, the service and the infrastructure resource

requirements which host the service. For example, “Capture

EoI” activity requires a sensing service which can be deployed

on an IoT device.

4) Specify SLO and configuration requirements for each

service and infrastructure resource: After mapping each ac-

tivity to its required service and infrastructure resource, the

user can start specifying the SLO and configuration metrics

for both services and infrastructure resources. For example,

the user can specify the constraints on “data freshness” as an

SLO requirement of the sensing service as well as specifying

“measurement collection interval” as a configuration metric of

the sensing service for “Capture EoI”.

5) Create SLA document in a JSON format: when users

press the “Finish” button, after specifying their requirements

related-to each one of the selected activities, an SLA document

will be generated, in JSON format, based on what has been

specified.

The tool simplifies and guides the user through the process

of generating an end-to-end SLA. It can be used to specify

the requirement of different IoT applications. For example,

IoT administrator of the RHMS can specify the SLOs of the

application such as response time, to urgent cases, should be

less than 5 minutes. He/she also will be able to specify the

involved activities such as capture EoI (e.g., patients data);

examine the captured events (for filtering purpose); analyze

real-time data on the fly and store the interesting results.

Figure 6 shows the mapping process for each one of involved

activities to the required service as well as the infrastructure

resource. It also depicts an example of SLOs related to each

one of the required services and the infrastructure resources

which are cooperating to deliver the RHMS. Figure 7 shows

the abstract structure of the main concepts that are considered

within the resulting SLA document with an example of each

concept for clarification purposes.
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Fig. 5. A graphical tool for workflow and SLA specification in IoT applications

Fig. 6. Mapping activities to the required service as well as the infrastructure resource

V. RELATED WORK

Studies that are related to our work can be divided into: (a)

studies that attempt to identify the most important QoS metrics

for one or more of the main layers that are part of the IoT

architecture. These are relevant because we aim to consider

the key QoS metrics within our SLA language for each of

the involved layers within the reference architecture; and (b)

Studies that propose SLA languages for various applications,

which we compare our own IoT SLA specification language.

A. QoS metrics through the layers
Within the first Class of studies, QoS metrics for the

IoT device layer include the optimum number of active

sensors, sensor quality, energy consumption, data volume,

trustworthiness, coverage, and mobility [13] [14] [15] [16].

Some of these identified metrics may be inconsiderable for

a single edge device [15], but this is not as trivial as it

seems when considering the number of deployed devices that

cooperate to deliver a service. For example, a sensor with

power consumption equal to 0.9 watts/second seems fine but

when a network of hundreds of sensors is deployed then

the cumulative value of the power consumption makes a

real difference. Network layer QoS metrics such as network

availability, network capacity and throughput, mean time to

respond, mean time to repair, delay and delay variation, are
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IoT-SLA

SLA-ID; Title,
SLAType; Start/End Dates

Party (e.g., IoT administrator,
Cloud provider, ... )

SLO (at application level) (e.g.,
Response time less  than 5

minutes)

Workflow activity (e.g.,
Capture event of interest(

patient data ))

Service (e.g., stream
processing service)

Infrastructure
resource (e.g.,
Cloud resource)

SLO (e.g., Latency
less than 1 second)

Configuration
Metrics (e.g.,
window size)

SLO (e.g., CPU
utilisation is greater

than 90% )

Configuration
Metrics (e.g., Number

of vCPU per VM)

For each selected activity

Fig. 7. The abstract structure of the main concepts that are considered within the resulted SLA document

discussed in [16] [17] [18] [19] [20]. Within the Cloud layer,

Throughput and response time are QoS requirements of the

data analysis programming models, while CPU utilization,

memory utilization, network latency and network bandwidth

are examples of QoSs of the infrastructure layer [15]. Research

work in [10] identifies a list of metrics related to Cloud

computing infrastructures such as CPU, storage size, type of

storage (e.g. local storage space), the number of input/output

operations on the storage specified for the service, storage

bandwidth and operating system. Research in [21], presents an

end-to-end performance analysis that identifies key metrics im-

pacting cloud based topic detection and tracking applications.

The analysis highlights the complexity of such applications

as it captures dependencies between metrics across the cloud

layers. At the IoT Application layer, the key requirements

vary according to the type/sector that the IoT application

is developed for. For example, key requirements for health

monitoring applications are robustness, durability, accuracy,

precision, reliability, security, privacy, availability and respon-

siveness [22] [23] [13]. Low-latency is a key requirement

in critical and real-time applications [13] [1], while network

utilization and energy efficiency have a high priority in less

critical applications such as building automation [13] [24]. In

our work, we considered the most common QoS metrics for

all layers of the IoT reference architecture.

B. Comparison with proposed SLA languages

In the second class of studies, several projects focus on the

development of SLA specification languages [5] [6] [7] [8]

[9] [10]. SLA* [5], CSLA [25], and SLAC [10] are languages

that have been developed for the cloud computing paradigm.

The SLA* language is [5] is an abstract syntax for machine-

readable SLAs and SLA templates (SLA(T)s). It is a language

which is independent of underlying technologies and can be

represented by any syntactic format, such as XML or OWL. It

provides a specification of SLA(T)s at a fine-grained level of

detail. SLA(T) consists of the following sections: an attribute

template SLA, the parties to the agreement, service descrip-

tions, variable declarations and the terms of the agreement [5].

Furthermore, the language supports any kind of service and it

has been tested on different domains such as enterprise IT and

live-media streaming. Nevertheless, specific vocabulary must

be defined for each domain [6]. Moreover, the model does not

support multi-party agreements [7]. Authors in [25] provide

a Cloud Service Level Agreement (CSLA) to define an SLA

for the cloud domain. The CSLA language consists of three

sections: the validation period of the agreement; the parties of

the agreement; and a reference to the template used to create

the agreement. The template defines the service, constraints,

the related guarantees, the billing plan and the termination

conditions [6]. The concept of fuzziness and confidence is one

of the language novelties that considers the dynamic nature

of cloud computing. However, there is no formalism for the

SLA specification in CSLA [6]. In [10] the authors propose

SLAC, which is a language to define a tailored SLA for the

cloud domain. The authors specify the syntax of the language

as well as the semantics to check the conformance of SLAs.

However, SLAC only supports IaaS. Authors in [9] presented

a framework that enables application developers to specify

the SLA metric, how it can be calculated, the evaluation

period, and constraints to avoid SLA violations using their

SLA grammar, named XCLang. However, their main focus

is the cloud database. Due to the limited research efforts

that are related to SLA specification language specifically

for IoT, we compare our proposed language against the most

commonly available service contract languages of Cloud and

web services, mentioned above. We use the following main

criteria, and present our results in Table 4:

• IoT Domain: This criterion defines whether a language

has been developed for the IoT domain.

• Ease of use: This criterion can be viewed from the

perspective of developers and service consumers. From

the service consumer perspective, ease of use is achieved

if the user is not required to have much knowledge

about how to create the specification in a machine-

readable format. From the developers perspective, ease

of use is determined by whether or not it is written in

a machine-readable format. The ease of use criterion is
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only partially met if just one of these perspectives

has been considered.

• Support different type of computational resources: Fully

supported when a language considers specification re-

quirements of a range of resources such as IoT devices,

Edge resources, and cloud resources, and partially
supported when it allows for specifying one category of

required resources such as only VMs.

• Expressiveness: This criterion can be said to be met when

the language contains domain-specific vocabulary If it

does not provide domain-specific vocabulary, then the

expressiveness criterion is partially supported.

• Syntax: This is supported when there is a formal defini-

tion of the syntax e.g. using BNF.

Although many SLA specification languages for various appli-

cation domains do exist, we believe that in their current format

they are unable to accommodate the unique characteristics of

the cloud-based IoT domain. As can be seen in our comparison

Table 4, none of the compared SLA languages provide support

for IoT applications. We have aimed in our specification to

consider the most common/typical cloud-based IoT application

layers, including data sources, the most common data analysis

programming models and computational resources (e.g. IoT,

edge resources, cloud datacenters). Furthermore, there are

different application models that have different stacks of essen-

tial interdependent services. For example, some applications

require a certain type of data analysis programming models

such as applying data ingestion and stream processing to

monitor a patients health remotely. On the other hand, other

applications that are interested, for example, in computing

statistics of a particular vehicle for a month-long period,

require ingestion, stream processing, and batch processing

data analysis programming models. Therefore, our SLA logic

follows the workflow of IoT- based applications, to simplify

the process for users (e.g. IoT administrators) to specify

their requirements. It enables users to select the workflow of

activities for their IoT-based applications as well as to specify

their requirements for each service and computational/storage

resources (e.g. specify the latency limit of the stream process-

ing service and number of VMs). We have developed a GUI-

based tool to enable consumers to specify their requirements.

The tool then creates the SLA in a JSON format. By providing

a GUI, we ensure the correctness of the SLA specification

syntax. Most previous works provide the SLA template in

XML format without the support of a GUI, which makes the

process of creating a detailed and accurate SLA difficult.

VI. EVALUATION

We have developed a context-aware rule-based recom-

mender system; IoT-CANE (Context-Aware recommendatioN

systEm). IoT-CANE has been integrated with our specifica-

tion tool described in section IV, and it facilitates incre-

mental knowledge acquisition and declarative context driven

knowledge recommendation. This rule-based recommendation

system is intended to automatically suggest configuration

knowledge artifacts to multiple layers required for users dur-

ing the IoT resource configuration management processes.

Recommended suggestions are generated based on a user-

specified context. In the processing layer of IoT-CANE, the

admin specifies each resource configuration artifact using the

SLA specification tool of section IV based on user context

information, then stores them into a configuration knowledge

database. In order to evaluate user satisfaction of using the

recommender from different perspectives, we conducted a user

study with domain experts. The entires results of the user study

will be released in a future publication. Importantly, one of

the perspectives for the research work in this paper is whether

the recommender fully captures user requirements. Figure 8

shows the user satisfaction for ten participants whose research

interest lies on IoT, Networking, Cloud and big data. 80%

of the participants classified their requirements as mostly
covered, 10% of them considered their requirements as

fully covered, and 10% of them considered them as

rarely covered.

Fig. 8. Users’ responses regarding to what extent the recommender system
covers their requirements.

VII. CONCLUSION AND FUTURE WORK

The development of an automated end-to-end IoT SLA

authoring mechanism, which considers the system require-

ments of software and hardware components, their related con-

straints, their interdependencies, and that is machine readable,

plays a significant role in automating the deployment, moni-

toring, and dynamic reconfiguration of IoT applications. The

probability of SLA compliance with no need for human inter-

vention is increased by providing an SLA-aware monitoring

system. We believe that a machine-readable SLA can be used

as a roadmap for system architects and developers. Defining

“SLA offers” and “SLA requests” using standard vocabularies

eases the process of comparing available options and selecting

the most suitable SLA offer based on consumer requirements.

To this end, we have proposed an SLA specification that

reflects the workflow activities of an IoT application and their

related requirements in an unambiguous way. Our approach

to specifying and composing the end-to-end SLA for IoT

applications consists of three main phases. First, a conceptual
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TABLE II
COMPARISON OF THE SLA LANGUAGES. BLACK SQUARE() REPRESENTS A FEATURE SUPPORTED IN THE LANGUAGE, EMPTY SQUARE REPRESENTS A

PARTIALLY SUPPORTED FEATURE AND - MEANS NOT COVERED.

Comparison Features WASLA WS-
Agreement

SLA* SLAng XCLang CSLA SLAC SLA-IoT

IoT Domain - - - - - - -
Syntax
Expressiveness
Ease of use
Support different type
of computational re-
sources

model represents a knowledge base of SLA specification and

composition by capturing the key entities of an SLA and their

relationships. Second, a syntax grammar for end-to-end SLAs

is derived from the proposed conceptual model. Third, a tool

provides a GUI that allows the user to specify SLAs based on

the workflow activity of an IoT application, which produces

the SLA in a JSON format.

As part of our future work, we are aiming to represent

the knowledge-base of our conceptual model as an ontology.

Furthermore, we will develop an SLA-based broker system for

IoT applications. The aim of the SLA-based broker system is

to receive the generated machine-readable SLA (SLA offers

and SLA requests), and find the best candidate that matches

user requirements as a step for automating service provider

selection. We are also in the initial stages of investigating the

development of an IoT monitoring platform that makes use of

novel Blockchain and Smart Contract technology [26].
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