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Abstract—Osmotic computing is a new IoT application pro-
gramming paradigm thats driven by the significant increase in
resource capacity/capability at the network edge, along with
support for data transfer protocols that enable such resources
to interact more seamlessly with Cloud-based services. Much
of the difficulty in QoS and performance monitoring of IoT
applications in an Osmotic computing environment is due to
the massive scale and heterogeneity (IoT + Edge + Cloud) of
computing environments. To, this end, this work presents an
integrated monitoring system for monitoring IoT applications
decomposed as microservices and executed in an Osmotic com-
puting environment. A real-world smart parking IoT application
is used for an experimental evaluation and for demonstrating
the effectiveness of the proposed approach. Through rigorous
experimental evaluation, we validate the Osmotic monitoring
system ability to holistically identify variation in CPU, memory,
and network latency of microservices deployed across Cloud and
Edge layers.

Index Terms—cross-layer monitoring; QoS; Edge.

I. INTRODUCTION

The advent of Internet of Things (IoT) [1]–[3] and Smart

City applications created a scenario where billions of users or

devices get connected to applications on the Internet, which

results in trillions of gigabytes of data being generated and

processed in cloud datacenters [4], [5]. The increasing need

for supporting interaction between IoT and cloud computing

systems has led to the creation of the Edge, Fog [6] and Os-
motic Computing [4]. Osmotic computing is a new paradigm

to support the efficient execution of Internet of Things (IoT)

services (microservices) and applications at the network edge

[4] by providing increased resource and management capabil-

ities at the edge of the network. One challenge that underpins

such emerging approaches is the dynamic management of

microservices across cloud and edge datacenters. For instance,

defining when and how microservices can be migrated from

edge resources to cloud-based resources (and vice versa),

and characteristics which influence such migration, remains

a challenge [4].

Monitoring [7] plays a central role in identifying ”when” a

certain microservice should be migrated. For migration to be

effective, it is necessary to properly monitor the performance

of the microservices. The monitoring of microservices in IoT

environment is a recent topic and therefore few works have

been carried out in this regard. The work presented in the paper

seeks to explore this topic in the construction of a solution that

meets the requirements of monitoring microservices as well as

IoT and cloud applications.

A. Motivation: Smart Parking IoT Application

Within the scenario of vehicular traffic management in

urban centers, the provision and efficient occupation of parking

spaces is a common problem to be solved. The intelligent park-

ing application is a multi-layer application widely deployed

for such problem [8]. The main purpose of this application

is to alert the driver regarding available parking spaces near

his/her location. This work leverages the intelligent parking

application as a motivation example. Figure I-A depicts a con-

ceptual implementation of this application using a microser-

vice architecture. The smart parking application comprises

there microservices: (i) parking management, (ii) user data
management and the (iii) selection of vacancies according

to user’s preferences. The parking management deals with

the monitoring of the available spaces in the urban space

dedicated to parking lot. User management stores the data of

locations already used by drivers, as well as their preferences.

Finally, the selection of vacancies microservice schedules and

recommends the possible vacancies available to users.

Fig. 1. Osmotic Movement of Microservices across Cloud and Edge (1);
Parking Management Application (2)
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Parking management is responsible for sensory interfacing

and monitoring (with sensors instrumented to indicate the

presence of vehicle). Such a microservice is self-contained

and deployed at the edge (i.e. at each parking lot). User

management is deployed to the cloud, so user preference data

is accessible to all city parking lots. The vacancy selection

microservice is the most important one. It continuously runs

an algorithm for selecting vacancies from the available parking

lots according to user preferences. However, this microservice

may need to run on the edge or cloud depending on several

factors (typical of osmotic computing). For example, during

periods of heavy vehicle traffic, and large numbers of vehicles

searching for parking spaces (e.g. during weekends), the

vacancy selection microservice would run in the cloud where

greater processing power and high computing capacity would

allow an easy horizontal scalability. However, in periods of low

traffic and low demand this microservice could be running on

the edge.

B. Research Contributions

Existing Quality of Service (QoS) monitoring tools and

techniques suffers from serious technical limitations when sub-

jected to Osmotic Computing. For example, there is an urgent

need to find answers to the following research questions:

• how to ubiquitously monitoring QoS of microservices

mapped to an Osmotic Computing (Edge+Cloud) envi-

ronment?

• how to aggregate QoS measures of microservices running

in Osmotic Computing environment to give a holistic

view of IoT application’s (e.g., smart parking) run-time

performance?

To address the aforementioned challenges, in this paper we

make following concrete research contributions:

• We develop a unified monitoring model for Osmotic

Computing that provides an IoT application administrator

with detailed QoS information related to microservices

deployed across Cloud and Edge.

• We propose Osmotic Monitoring, a monitoring system for

Osmotic computing that implements the proposed unified

monitoring model.

• We conduct extensive experimental evaluation of Osmotic

Monitoring system in order to study the scalability of the

proposed solution.

The rest of this paper is organized as follows: Section II

analyses the state of the art, while Section III presents the

details on Osmotic monitoring model and its implementation

respectively. On the other hand, Seciton IV discusses the

experimental evaluation results. The paper ends with a brief

conclusion and future work in Section V.

II. RELATED WORK

Several works already published have explored topics re-

lated to service monitoring, as well as models and metrics for

QoS assurance. Whether in the cloud [9], using microservices

[10] or even in monitoring services at the edge [11], varied

solutions and results have been presented.

In [9], the authors present CLAMBS, a framework for

monitoring and benchmarking applications in a multi-cloud

environment. In addition, a model for multi-layer monitoring

in the cloud is presented. In this way, QoS parameters relevant

for each cloud service layer are listed. Finally, an experimental

evaluation is performed in the IaaS level. The work presented

here follows a similar approach for defining and experimenting

with QoS parameters, although it is different from the use

of the cloud and the edge, besides focusing more on the

application level. The microservice monitoring in the edge

environment is reported in the paper presented at [5]. In [5] a

state-of-the-art review of self-adaptive applications using edge

microservices and services in the cloud are performed. The

results observed shows that the main parameters of QoS for

virtual machines in the cloud are the usage of: CPU, memory

and network.

Finally, the monitoring of services deployed in containers is

present in the works [11] and [12]. In the work published in

[11] the authors present a framework called PyMon that uses

the Docker management API to obtain statistics of resources

used by containers. Unlike [11], the present study uses libraries

to monitor processes inside the containers, thus allowing the

effective monitoring of a container that performs a multi-

service or multi-process environment. The work presented in

[12] brings an assessment of the use of Docker containers

versus the use of Virtual Machines. To verify the QoS param-

eters to be compared for evaluation, the authors monitored the

CPU usage by the installed Docker process, not verifying the

parameters of the containers that are being executed or even of

the processes internal to the containers. Moreover, applications

built using the microservices architecture obey a set of rules

with the purpose of making the microservice self-sufficient

and easily scalable.The implementation of microservices can

be done in several ways, however, the use of containers in the

construction of microservices has attracted significant attention

recently. The use of containers is becoming so popular that it

is currently possible to run containers on IoT devices, such

as IoT Gateways (e.g. RaspberryPi). Thus, the challenge of

monitoring containers as well as microservices running within

these containers is highly relevant in the context of osmotic

environment.

In summary, works such as CLAMBS model [9] enables

efficient monitoring of services in a multicloud environment

but lacks capability to monitor microservices at the edge.

Current works on microservice monitoring [5] usually focus

on single layer monitoring, i.e., microservices in the cloud

[12] or microservices at the edge [11]. Our proposed work

differs from the current approaches by presenting an advanced

monitoring solution that can be used to monitor microservices

deployed in Osmotic Computing environment i.e. the cloud

and/or deployed at the edge.

III. MONITORING MICROSERVICES IN OSMOTIC

COMPUTING (EDGE TO CLOUD)

The proposed monitoring model is an extension of the

CLAMBS [9]. In order to support Osmotic computing environ-
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ment, several extensions to CLAMBS has been proposed and

incorporated. First, the PUSH communication model between

the agent and the manager was adopted. The choice for this

type of communication seeks to meet the restrictions of the

IoT devices, as well as the security barriers imposed by IoT

device networks for external access. Second, it was necessary

to define a generic model of monitoring agents that can be

extended to include support for new devices, for this was

modeled a SmarAgent that would be extended by the specific

agents, namely: ProcessAgent, SystemAgent, NetworkAgent

and DeviceAgent. Third, we incorporate the concept of Smart
Agent for devices that have a permissive computational power.

Generally IoT devices have limited computing power and

focus on the resolution of the sensing or actuation for which

they are intended. However, some devices (sensors/actuators)

have a more robust and computationally capable hardware

such as they have connectivity through WIFI. In order to allow

improved monitoring of these devices, the smart agents have

two main abstractions: Gateway Agents and Sensor Agents.

A. Monitoring Model

Monitoring systems are commonly composed of monitoring
agents and management services. Normally, monitoring agents

are components that only read data from monitored services or

machines. The management services store the data collected

by the agents and expose this data via API or through graphical

interfaces for system administrators.

1) Monitoring Agents: Usually the deployment and con-

figuration of the monitoring agents are performed manually,

each agent being specific to the target monitoring architec-

ture. Monitoring agents (OMA) on the other hand are multi-

platform monitors agents based on a Multi-cloud monitoring

model. OMA supports monitoring of microservices implanted

in osmotic environment comprising of heterogeneous cloud

and / or edge resources. All monitor agents extend a common

agent, called SmartAgent as described earlier. SmartAgent

represents a service consisting of three operations: 1 - register,

2 - sendData, 3 - setConfiguration. The register operation must

make an HTTP PUT request that sends the agent registra-

tion information to the management system. The sendData
operation must periodically perform an HTTP POST request

to the management system to send the metrics obtained.

SetConfiguration must send an HTTP GET request to the

manager system to obtain the agent configuration parameters.

Figure 2 shows the communication model used by the Osmotic

monitoring agents. The first action performed by these is the

agent registration with the Manager. After this, the manager

can receive the data sent by the agent (action 2), as well as

(action 3) can modify some agent configuration parameter.

The SystemAgent and NetworkAgent agents are the most

commonly found in the monitoring tools. SystemAgent
monitors the system as a whole, for example, a virtual machine

or a container. NetworkAgent is responsible for network mon-

itoring. Although network metrics can be related to a single

system, which would lead to the inclusion of these metrics

in the SystemAgent, the possibility of multiple network inter-

faces in one system justifies the need for the NetworkAgent.
ProcessAgent is responsible for collecting metrics related to

a specific process running on a system. This type of agent

is already present in most virtual machine monitoring tools

in a cloud environment. As for the monitoring of processes

executed in containers, the current tools focus on the mon-

itoring of the container itself. The execution of only one

process per container is the most common scenario in the

construction of applications in microservices, however, in an

osmotic environment the use of several containers can make

it difficult to migrate from the cloud to the edge or vice

versa in a way that is monitoring of multiple processes in the

same container. Therefore, this work has built a ProcessAgent
that can run internally to the container. Finally, DeviceAgent
handles the collection of metrics or data from IoT devices.

IoT devices increasingly see improving processing power, so

some of these devices need to be monitored. The monitoring

of the IOT devices can serve for simple gauging of acquired

data, availability, as well as, to prevent failures of misuse of

the device.

Fig. 2. Agents to Manager Communication Model

2) Manager Agent: The Osmotic monitoring data man-

agement agent is called SmartManager. SmartManager ba-

sically performs various services that receive the data from

the monitoring agents. The data obtained is persisted in a

database or data storage services. SmartManager must also

provide an API for accessing data saved by other services

or other applications. The sending of data by the monitoring

agents to the management system occurs according to a well

defined sequence of steps (figure 2). Initially, SmarAgent on

startup sends a registration request to SmartManager. The

SmartManager receives the request (1-Register) and registers

the SmartAgent, returning to the SmartAgent an access key and

an endpoint to send the data. From there, the SmarManagerEx-
ecutor (2-Push) is enabled to receive the data sent by the

SmartAgent. SmartAgent periodically queries SmartManager
for its configuration parameters (3 - Change Configuration).

Dynamic configuration enables real-time agent management. It

is expected that applications deployed in an osmotic environ-

ment will have a degree of self-management. Mainly, in cases

of self-managed microservice migration between the cloud and

the edge. In this way, the real-time management of the monitor

agent is highly relevant, since it allows the application that

makes use of the monitored metrics to change the agent at

runtime.
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TABLE I
MONITORING METRICS PROVIDED BY SMART MANAGER

Scope Metric API Path
Process % CPU [app]/process/
Process Memory Usage [app]/process/
System Memory Usage [app]/system/
System Memory Free [app]/system/
System Avaliability [app]/system/
Network Rx Bytes [app]/network/
Network Tx Bytes [app]/network/
Device Avaliability [app]/device/
Agents - [app]/agents/

B. Osmotic Monitoring: System Implementation

In order to validate the monitoring model presented pre-

viously that underpinned the development of the Osmotic

Monitoring system, was implemented a proof-of-concept so-

lution for monitoring microservices in the osmotic computing

environment. The implementation was performed in the Java

language, making use of the RESTLet framework and the Hy-

peric SIGAR library(https://github.com/hyperic/sigar). The use

of the Java language allows the construction of a multiplatform

solution, easily transferable in Multicloud environments, being

still compatible with some equipment of edge computing. The

RESTLet(https://restlet.com/) is a framework that facilitates

the construction of WEB API in Java. RESTLet provides a

set of abstractions for the development of REST architectural

style APIs. Rest API is a standard between several container

monitoring tools [5] and encourages the integration of appli-

cations, as well as composite microservices.

The metrics adopted for the monitoring of osmotic mi-

croservices followed the same metrics for the SAAS level

of microservices in Clouds defined in [5], [9]. Although

there may be a discussion as to what level, whether SaaS

or PaaS, the osmotic microservices are better related, the

metrics defined in PaaS level [9], namely: SystemUpTime,

SystemServices, SystemDesc, Utilization are already easily

obtained by the current monitoring tools containers [5]. The

choice of parameters of the level of SaaS is corroborated

by the premise that each microservice is directly related

to an application that is deployed on a Container platform

such as Docker or Linux Container (LXC). Thus, the metrics

used for the monitoring model were: CPU usage, memory
usage, amount of free memory, the amount of bytes being
downloaded, amount of bytes being uploaded, and availability.

The availability metrics were applied to two different scopes,

the system (microservice or container) and device scopes.

Table I presents the API specification of the smart manager to

support monitoring data provided by the monitoring agents.

The metrics have been grouped by Application, that is,

any data sent to the Manager API must indicate to which

application (parameter [app] the URL) that element (process,

system, network or device) is bound. In this way, it is possible

to provide an overview of the monitoring of the elements

used in the execution of a specific application, even though

this application has several microservices deployed in various

cloud and/or edge environments. All data-sending calls to the

Manager API are made up of HTTP POST requests to the

specific Path, for example to send process data the request

would be in the Path [app]/process. The metrics monitored

for the processes were the percentage use of the CPU and the

amount of memory used. The first metric captures the CPU

usage percentage of a process for a specific application and

the second the amount of memory used by the process in

MegaBytes. Within the monitoring model presented in section

III, the SystemAgent element represents a complete system,

that is, it can represent a Virtual Machine(VM), a Container

or Microservice within an Osmotic Computing environment.

This work treated a System as a Microservice or a Container,

when the microservice is fully contained in a container (see

Selection Microservice on figure I-A).

However, when the microservice is distributed in more

than one container (see User Microservice on figure I-A),

it consists of two systems, one for each container. The data

monitored for the System elements were: amount of memory

used, amount of free memory and availability. The amount

of memory used registers the use of memory in MegaBytes
for all the processes that are running on that System. The

amount of free memory registers the available memory for

use by the System. And, finally, availability assesses whether

the System is accessible and available. Network usage metrics

captured include the amount of bytes in KiloBytes downloaded

(RX Bytes) or uploaded (TX Bytes) by a system or a network

interface in an instant of time. The last monitored data was the

availability of a device used by the application. This metric

only shows the true or false value and its implementation is

very specific for each device. For example, in our evaluation

it was necessary to use a specific XloBorg1 sensor library to

check device availability.

The agent running in the container, VM and or any system

that hosts the microservice captures the metrics explained

above and sends it to the Smart Manager for further pro-

cessing. The received data is stored in a MongoDB (https:

//www.mongodb.com/) database in the JSON format. The data

stored on MongoDB are grouped by application and identified

by the type of agent and the unique key of the agent. For

example, for any metric (Process, System, Network, etc.)

stored in database the recorded data is composed by the

identifier of the document, application, agent-key, agent-type,

and timestamp. The application identifies the application. The

key-agent represents the agent’s unique key. The type-agent
represents the type of agent. At last, the timestamp stores the

instant the metric was saved. Added to these attributes follows

the attributes specific to each type of agent. In other words, if

the metric is referring to Proccess beyond the aforementioned

attributes, the attributes are added: the process-id and process-
name attributes identify the monitored process, while the

process-CPU and memory-used attributes represent the metrics

values.

Each monitoring agent must make an initial registration

for sending monitoring data. The agent registration is done

through an HTTP PUT request to the Path [app]/agents. The

configuration attributes required for the registration of an agent

1https://www.piborg.org/sensors-1136/xloborg
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are: agent-type, access-key, access-password, and application.

The application is informed directly in the URL. The agent-
type, access-key and access-password are informed in the

request body. The agent-type tells the agent type so that the

manager selects the correlated endpoint. The access-key and

access-password attributes are used for agent authentication.

Every time that the Manager processes an agent registration

request, an endpoint, an agent-key, and a read-frequency are

returned to the agent. The endpoint identifies the Manager

Service that will handle POST sending requests for the agent.

The agent-key uniquely identifies the agent and ensures that

the agent has been correctly registered. The read-frequency
indicates the time interval the agent should wait for each

request to send data. If the Manager deems its necessary to

modify any of the returned parameters, it only sends new

values when the agent sends an HTTP GET request to the

Path [app]/agents to verify that the attributes have not been

changed.

The specific implementation of agents: ProcessAgent, Sys-
temAgent and NetworkAgent basically made use of the Hyperic

SIGAR library. SIGAR is a multiplatform library (Unix,

Win, Solaris, FREEBSD, MAC OS, etc) written in Java that

provides an functionalities for accessing operating system

information. Although the use of the SIGAR library has been

presented in the work [5], the present work explores the

same library in the monitoring containers as well as virtual

machines. The use of SIGAR in the construction of the

aforementioned agents is relatively simple, being composed of

the instantiation of an object of class org.Hyperic.sigar.sigar
and the invocation of methods present in this abstraction. For

example, for access to CPU usage of a process it is enough

to invoke the getProcCPU method, informing the process id

(pid). To access information about the system memory it is

necessary to invoke the getMem method.

It is important to note that for the measurement of the

network traffic rate, it was necessary to deploy timed coun-

ters since SIGAR only returns the amount of RX Bytes and

TX Bytes of a network interface at a given instant of time.

Another change was the addition of all network data of

all interfaces to constitute the traffic of a system. Agent-

specific settings such as which processes to monitor, which

network interfaces to monitor, which the initial endpoint

of the manager, and access attributes were informed in an

initial agent configuration file. Thus, an agent developed to

capture and process metrics can be easily reusable in another

system. Agents developed for ProcessAgent, SystemAgent and

NetworkAgent can be used on any system that supports JAVA

language version 7 or higher. However, the agents developed

for the DevicesAgent were totally specific to the devices used

in the experimental evaluation.

IV. EXPERIMENTAL EVALUATION

An experimental evaluation of the monitoring system de-

scribed in section III was carried out in order to prove the

efficiency and efficacy of the monitoring of micro-services in

cloud and the edge. Thus, an initial version of a microservice-

based Smart Parking application (as discussed in section

I-A) was developed and deployed in an osmotic computing

environment (edge and cloud). Subsequently, variable load

tests were performed in order to verify if the data monitored

reflected the variations introduced by the corresponding load

tests. The tests were not intended to measure performance,

although they may have presented some data relevant to that

scope.

A. Monitored Application

The Smart Parking application (as depicted in Figure I-A)

searches for real-time mapping of parking spaces available in a

city. The citizen as a driver accesses the Smart Parking to know

the best places available according to his personal preferences.

The main use case follows the flow: 1 - the driver travels by

a road, 2 - The Smart Parking application is notified of the

position of the driver, 3 - the job selection service searches

possible available positions, Smart Parking alerts the driver

to the vacancies available. With this scenario in mind, basic

versions of the three micro-services specified in the section

have been implemented, namely: User Management, Selection
Vacancies and Parking Management.

User Management (UM) is the service that is deployed to

the cloud. It is responsible for storing user data as well as for

providing system communication as the user. User interaction

can occur via an application deployed on your phone. Selection
Vacancies (SV) continuously receives UM job requisition

notifications. The incoming requisitions are processed through

a selection algorithm that continuously consults with Parking

Management to check the status of the vacancies. Once

the vacancies are defined the SV notifies the UM. Parking
Management (PM) continuously monitors vacancy status. To

do this, it is implanted on the edge and communicates with

the IoT sensors that identify the occupation or the release of

a vacancy. Theoretically, the PM must be replicated between

the various parking lots as many times as necessary.

UM, SV and PM are services deployed on the microser-

vices architecture and were responsible for a very specific

functionality as described earlier. Inter-service communication

occurs through a REST API to access its functionality. For

experimental evaluation, specific API call were implemented

for each service, namely: for the UM a call to query the

user data; for the PM, a call to consult the vacancies and

their states; and, for the SV a call that returns a vacancy

available to a user when it accesses a parking lot. All

services were developed in Java, running on an Apache

Tomcat server(http://tomcat.apache.org/). For the services UM

and PM that require persistence of contextual data of the

entities MySQL(https://www.mysql.com/) database was em-

ployed. The smart parking application with the three microser-

vices were deployed in containers. The containers were built

for execution on the Docker platform2. As well, it tried to

make the environment of execution of the SV a little more

2https://www.docker.com/what-docker
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equal, since the same microservice was executed on a virtual

machine in the cloud and in a RaspberryPi on Edge. Although

the deployment of microservices through Docker Containers

is not an unpublished topic, this work explores for the first

time the use of Docker Containers for deployment of the same

service that runs in the Cloud or the Edge.

The use of Containers Docker allows the use of two possible

deployment cases, namely: a container for each microservice

or several containers for each microservice. In the first case

(F1) in a same image of the container are installed all the

components used by the microservice. In the second, each

component is installed in its own container, that is, the Tomcat

server will compose one container and the MySQL database

will be in another. The second case (F2) most commonly used

by users of the Docker platform since it does not require the

construction of specific images, instead using standard images

already available in the Docker HUB catalog of images.

Considering the above two cases, as well as, trying to cover

most possible scenarios of execution of microservices in an

osmotic environment, an explicit plan for experimentation is

in Table II. In the Cloud environment, the UM micro service

can be instantiated by only one container (F1), scenario C1, or

for two containers (F2), scenario C2. Similarly, the PM service

can also be instantiated in scenarios E1 for F1 and E2 for F2.

Finally, the SV service that only requires the use of Tomcat

used only the F1 case, although it presents two scenarios: S1

for the Cloud environment and S2 for the Edge environment.

B. Experimental Design

We used Apache JMeter (https://jmeter.apache.org/) to gen-

erate HTTP requests to test and validate the Osmotic Moni-

toring system’s capability. The JMeter test cases are presented

in table II. The tests consisted of performing 10, 100, and

500 simultaneous requests to the Osmotic Monitoring system

at a fixed interval of 5 minutes. Initially, the idea was to

increase the load of the tests by 10 times with each new test

battery, however 1000 test requests for the services deployed

in RaspberryPi caused a stack overflow and made the service

unavailable. Due to this, the last test was performed with 500

requests and even with this number of concurrent requests,

some faulty responses were observed in the Edge environment,

a fact not observed in the tests of 10 and 100 requests.

The containers with the microservices of the Smart Park-

ing Application, were deployed in an Openstack (https://

www.openstack.org/) cloud of the Metrópole Digital Insti-

tute (https://www.imd.ufrn.br/portal/), and in a RaspberryPI

(https://www.raspberrypi.org/) 1 Model B, in the Edge. The

cloud used a virtual machine that runs a Linux system with

Ubuntu (https://www.ubuntu.com/), version 14.03, on a virtual

hardware with configuration of 2 vCPU, 4 GB of memory

and 20 GB of disk. On the virtual machine was installed

the platform Docker in its version 1.10. The UM service in

scenario C1 (as described in table III) deployment was based

on the MySQL 5.7 image https://hub.docker.com/ /mysql/

obtained via Docker HUB. This image included a version of

the Java virtual machine, version 8 and the Tomcat server

TABLE II
MICROSERVICE SCENARIOS DEPLOYED AT DOCKER

Environment Scenario Microservice Containers
Cloud C1 User Management 1 - Tomcat + MySQL
Cloud C2 User Management 1 - Tomcat, 2 - MySQL
Cloud S1 Selection Vacancies 1 - Tomcat
RaspberryPi S2 Selection Vacancies 1 - Tomcat
RaspberryPi E1 Parking Management 1 - Tomcat + Mysql
RaspberryPi E2 Parking Management 1 - Tomcat, 2 - MySQL

version 7. The scenario C2 made use of the same image for

the container of MySQL whereas for the container of Tomcat

used the image (https://hub.docker.com/ /tomcat/) for Java 8

and with Tomcat 7. The same Tomcat image was used in

scenario S1 of the SV service. For the Edge environment

scenarios (S2, E1, and E2), here simulated by the RaspberryPI

1 Model B that runs a Raspbian system in a configuration from

a CPU core to a 700 Mhz clock with 512 MB of RAM and

a 4GB SD memory. We used a specific image (https://hub.

docker.com/r/hypriot/rpi-mysql/) for MySQL 5.7 and another

one (https://hub.docker.com/r/dordoka/rpi-tomcat/) to Tomcat

7. The P1 scenario that used an integrated image made use of

RPI-MYSQL image on which a Java 8 version and a Tomcat

version 7 were installed.

The main objective of the experimental design was to

produce a computational load and a network traffic load for

the microservices that could be measured by the Osmotic

monitoring system in order to prove the effectiveness of the

monitoring model. A raffle was not carried out in the order

of testing or in the choice of scenarios to be prioritized. The

tests were repeated 10 times each to obtain the mean results

of the measured metrics.

C. Latency Time Results

The average latency time results, in milliseconds, obtained

for the requests made in each scenarios are shown in table III,

as well as the number of Bytes, in KB, sent by the requests.

The values obtained for the latency time clearly reveal the

computational power difference of the Cloud and the Edge,

as well as a slightly better performance of the C2 scenario

in relation to the C1. The best result of scenario C2 indicates

that the use of multi container architecture per service exploits

the hardware of the virtual machine more efficiently. Another

important note, and that the behavior presented in the Cloud

environment did not recur in the Edge environment. In fact, in

the Edge the behavior was inverse i.e., scenario E1 presented

better performance than the E2. Probably, the workload re-

quired to execute more than one container on hardware with

little computational capacity influenced the performance of the

microservices. Although the actual performance observations

highlighted here are not the main objective of this work,

the proposed Osmotic monitoring system presents a novel

way to monitor the performance of such microservices in

osmotic computing environments. This provides IoT system

administrators who are generally challenged with managing

multiple of such microservices deployed across cloud and
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TABLE III
REQUEST RESULTS FOR ANALYZED SCENARIOS

Number of
Requests Scenario Latency

Avarage (ms)
Bytes
(KB)

10 C1 29,93 0,7
100 C1 36,2 7
500 C1 29,3 35
10 C2 30,83 0,7
100 C2 29,89 7
500 C2 29,26 35
10 S1 35,5 0,7
100 S1 36,89 7
500 S1 73,17 35
10 S2 290,3 0,7
100 S2 6966,97 7
500 S2 10535,53 35
10 E1 97,32 0,7
100 E1 575,29 7
500 E1 4623,52 35
10 E2 118,6 0,7
100 E2 843,67 7
500 E2 6075,03 35

edge the ability to clearly understand the performance of such

microservices.

D. CPU Results

The CPU usage values for all evaluated scenarios are pre-

sented in figures 3, 4 ,5, 6, 7, 8. For an analysis of the results

obtained for different scenarios in the same environment, for

example, for the Cloud environment, figures 3 and 4 show

the percentage of CPU usage for the UM service deployed in

scenarios C1 and C2 respectively. Evaluating only the result

for scenario C1, for the tests of 10 and 100 requisitions the

presented variation was relatively little from 10% to 30%,

whereas for the one with 500 requisitions it reached 70% of

use. For scenario C2, the results of the variance were similar

in behavior, that is, for 10 and 100 the variation was little 2%

to 4% compared to the 500 that presented 15% to 25% of

use. However, it is important to point out that comparing the

results obtained for C1 and C2, the multi container microser-

vice architecture had a lower CPU consumption, that is, it

presented a better performance. This performance observation

had already been indicated by the analysis of the latency times

of the requests (see table III).

Fig. 3. % CPU Usage for User Microservice on One Container (C1)

For the scenarios similar to C1 and C2 in the Edge envi-

ronment, that is, scenarios E1 and E2 (see figures 5, 6), the

observed behavior was quite different. Again, the monitoring

of the metrics was effective and reflected the increase in CPU

usage with the increase in the number of requests. Specifically

for the scenario with a container running two processes, E1,

there was an expressive increase in CPU usage in relation

Fig. 4. % CPU Usage for User Microservice on Two Containers (C2)

to the tests with 10 requests, 10% of use, while by 100 the

use was 60%. The test use with 500 requisitions ranged from

60% to 80%. For the E2 scenario that explores a single process

running per container, a greater variation in CPU consumption

was observed in relation to the metrics obtained for scenario

E1, as well as a considerable increase of the test of 10, use

of 18% for the test of 100, use of 70% to 80%. Still referring

to the E2 scenario, the results of the 100 and 500 requisitions

tests showed little increase in the variation, 70% to 80% of

use for 100 and 80% to 90% of use for 500.

Fig. 5. % CPU Usage for Parking Microservice on One Container (E1)

Fig. 6. % CPU Usage for Parking Microservice on Two Containers (E2)

Fig. 7. % CPU Usage for Selection Microservice on Cloud (S1)

The variation in observed CPU usage for the S1 and S2

scenarios reveals a significant increase in the CPU utilization
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Fig. 8. % CPU Usage for Selection Microservice on Edge (S2)

rate that corresponds directly to the execution period of our

tests. For example, as depicted in figure 7 the percentage of

CPU usage by the SV service deployed under scenario S1 in

the Cloud, shows maximum peaks precisely in the periods that

the tests were performed. This same behavior is seen in figure

8 that presents the SV results implanted in scenario S2 in the

Edge environment. Although the increase in usage behavior is

not as prominent as in figure 7, the variation of CPU usage

was again measured by the Osmotic monitoring system.

E. Discussion

The above results validates the capability of the proposed

Osmotic monitoring system in its ability to capture fine-

grained performance of microservice-based IoT Application

deployed in osmotic computing environment (cloud and edge),

including each individual microservice of the IoT application,

each underlying infrastructure e.g. databases and the perfor-

mance of container/VM hosting the microservice. Moreover,

the Osmotic monitoring system accurately captured several

variations introduced to impact the performance of the mi-

croservices highlighting the effectiveness of our monitoring

system. For example, the system was holistically able to

identify variation in CPU, memory and network latency across

cloud and edge at the application level, microservice level and

infrastructure level (e.g. databases, containers, VM) which as

identified in Section II is currently a significantly limitation

with other cloud monitoring solutions. The results obtained

for memory consumption and network traffic corroborate the

observations obtained by the use of the CPU and therefore

are not exhaustively explored in this work. However, some

relevant observations are made. For example, memory con-

sumption in the cloud was almost unchanged (only by 500

req.), while at the edge it was most successful mainly in the E2

scenario. Already the network traffic only had a big increase

in the test of 500 requisitions, although the behavior of the

cloud and the edge has been very similar.

V. CONCLUSION AND FUTURE WORK

This work presents an integrated system for monitoring

applications decomposed in microservices and executed in

an osmotic environment. In its core there is a model for

monitoring the QoS parameters of an application by analyzing

microservices executed in containers in a cloud environment

and/or on the edge. The paper introduces an smart parking

application that runs in an osmotic environment in the con-

text of smart cities. This osmotic application is used for an

experimental evaluation of the monitoring system in order to

demonstrate the effectiveness of the proposed approach. This

case study shows that it is possible to apply our approach for

microservices deployed in osmotic computing environments.

Through experimental evaluations we validates the effec-

tiveness and capability of the proposed monitoring system’s

ability to monitor the performance of microservice deployment

using containers and/or VM’s through an exhaustive list of

scenarios. The Osmotic monitoring system was holistically

able to identify variation in CPU, memory and network latency

across cloud and edge at the application level, microservice

level and infrastructure level (e.g. databases, containers, VM).

Our future work will expand the model, especially for device

monitoring, and ensure an extended evaluation through the

execution of new load tests.
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