
SmartDBO: Smart Docker Benchmarking Orchestrator for
Web-application

Devki Nandan Jha
Newcastle University

Newcastle Upon Tyne, UK
d.n.jha2@newcastle.ac.uk

Michael Nee
Newcastle University

Newcastle Upon Tyne, UK
info@michael-nee.co.uk

Zhenyu Wen
Newcastle University

Newcastle Upon Tyne, UK
zhenyu.wen@newcastle.ac.uk

Albert Zomaya
Sydney University
Sydney, Australia

albert.zomaya@sydney.edu.au

Rajiv Ranjan
Newcastle University

Newcastle Upon Tyne, UK
raj.ranjan@newcastle.ac.uk

ABSTRACT

Containerized web-applications have gained popularity recently
due to the advantages provided by the containers including light-
weight, packaged, fast start up and shut down and easy scalability.
As there are more than 267 cloud providers, finding a flexible de-
ployment option for containerized web-applications is very difficult
as each cloud offers numerous deployment infrastructure. Bench-
marking is one of the eminent options to evaluate the provisioned
resources before product-level deployment. However, benchmark-
ing the massive infrastructure resources provisioned by various
cloud providers is a time consuming, tedious and costly process
and is not practical to accomplish manually.

In this demonstration, we present Smart Docker Benchmarking
Orchestrator (SmartDBO), a general orchestration framework
that automatically benchmarks (deploys and executes) users’ con-
tainerized web-applications across different cloud providers while
meeting the constraints of budget and deployment configurations.
SmartDBO aims to answer two questions: (i) how to automate the
benchmarking of containerized web-application across multi-cloud
environments?, (ii) how to maximize the diversity in a benchmark-
ing solution which covers maximum numbers of cloud providers
and types of provisioned infrastructures without exceeding users’
budgets? We evaluate all the features of SmartDBO using Sim-
plCommerce and TPC-W executing across Amazon AWS and Mi-
crosoft Azure.

CCS CONCEPTS

• Information systems→Web applications; • Computer sys-

tems organization → Cloud computing; • Software and its

engineering→ Cloud computing; Organizing principles for web
applications.

KEYWORDS

Web-application; Docker Container; Benchmark; Orchestrator; Cloud

This paper is published under the Creative Commons Attribution 4.0 International
(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution.
WWW ’19, May 13–17, 2019, San Francisco, CA, USA
© 2019 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC-BY 4.0 License.
ACM ISBN 978-1-4503-6674-8/19/05.
https://doi.org/10.1145/3308558.3314137

ACM Reference Format:

Devki Nandan Jha, Michael Nee, Zhenyu Wen, Albert Zomaya, and Rajiv
Ranjan. 2019. SmartDBO: Smart Docker Benchmarking Orchestrator for
Web-application. In Proceedings of the 2019 World Wide Web Conference
(WWW ’19), May 13–17, 2019, San Francisco, CA, USA. ACM, New York, NY,
USA, 5 pages. https://doi.org/10.1145/3308558.3314137

1 INTRODUCTION

Web-application have become an integral part of our life providing
various functions including social networking, banking, e-commerce,
etc. With the growing demand, these applications are becoming
complex and follow multi-tier architecture, which makes it hard to
develop, debug, deploy and upgrade [4]. However, microservices
architecture brings a new approach to overcome the difficulty of
developing this large software by breaking it into a suite of small,
independent and versionedmodular services [2, 9]. Evolution of con-
tainer technology with different features including self-contained,
light weight, fast start up and shut down, easy scalability, etc. pro-
vides great support for developing microserviced web-applications
[8]. It allows each modular service of the complex web-application
to be deployed as an independent containerized web-application.
The containerized web-applications can interact with each other
through Restful APIs and be easily deployed, upgraded and scaled.

Additionally, cloud has become the main infrastructure for the
deployment of containerized web-applications. There are about 267
cloud providers which provide various computing resources for the
containerized application using 3 main Deployment Infrastructures
(DI): Bare Metal (BM), Virtual Machine (VM) and Container Service
(CS) [5]. Each type of DI has the variety of hosts either predefined
by cloud providers or user customized. For example, Amazon EC2
provides different types of pre-customized hosts (VMs) for their
customers along with the self customized hosts. In the rest of the
paper, we use host to represent an instance of the DI. The container-
ized web-application can be deployed and executed on any type of
host.

Various cloud providers provision heterogeneous hosts that may
significantly affect the performance of web-applications, which has
a strong impact on user satisfaction [3]. Thus, we need to bench-
mark the hosts before deploying the real applications [6]. Most of
the research in benchmarking is focused on developing a better
benchmark application in terms of reality of emulation, efficiency
and scalability [1, 10]. The challenge of deploying a benchmark

3555

https://doi.org/10.1145/3308558.3314137
https://doi.org/10.1145/3308558.3314137

for containerized applications across multiple clouds has not been
well explored. If a user manually performs the deployment, it will
be tedious, error-prone and requires a lot of time and expertise.
Due to the fact that different cloud environments have different
accessing schemes and different ways to interact, an orchestrator
is desired that can automatically run the benchmark applications
across multiple clouds, and collect the required system parameters
while providing the flexibility for users to customize their experi-
ment settings.

Previous benchmark frameworks from both academia [1, 7, 10]
and industry1, 2 mainly focus on VM based applications, which is
not applicable for containerized web-applications. Also, the variety
of cloud providers offer a massive configuration choices of host.
For instance, Amazon EC2 provides 43 types of hosts for their cus-
tomers3 excluding self customized hosts. Thus, this poses another
challenge for the proposed orchestrator, i.e., how to provide an op-
timized recommendation to help users in selecting the hosts from
the provided clouds?

The aforementioned challenges discussed above can be resolved
by answering the following research questions:

• How to automatically orchestrate the benchmark applications
across multi-cloud environments based on the user’s specifica-
tion?
• How to find an optimal set of hosts for benchmarking in a fixed
budget that covers the diversity both within a cloud provider
and among the cloud providers?

To answer these questions, we developed SmartDBO that makes
the following contributions:

• We developed a noble orchestrator, SmartDBO that auto-
mates the definition and execution of benchmarks for con-
tainerized web-applications. In particular, the orchestrator
allows the user to choose the benchmark applications and
hosts of DI across different cloud providers.
• SmartDBO also has a native feature of optimization that
can maximize the utility of a user’s budget by maximizing
the number of cloud providers and the hosts of the DI.

To demonstrate the effectiveness of SmartDBO, we chose AWS
and Azure as the cloud providers. TPC-W4, a traditional web-
application benchmark is used for testing and the workload for
testing the benchmark application is generated by the Apache JMe-
ter5. Moreover, our SmartDBO captures the live performance of
the examined experiments and stores the results in the Database
for further analysis and reporting.

2 SYSTEM OVERVIEW

This section discusses the architecture and the implementation
details of SmartDBO.

1https://www.cloudorado.com/cloud_server_comparison.jsp
2https://cloudharmony.com/status
3https://aws.amazon.com/ec2/instance-types/
4https://cs.nyu.edu/ totok/professional/software/tpcw/tpcw.html
5https://jmeter.apache.org/

Image
Configurations

Test Plan
Results

Database

Jmax files

Benchmark
Configurations

Host
Configurations

Be
nc

hm
ar

k
Ex

ec
ut

io
n

Download Image

Docker Hub Private Repo

Pr
ov

id
er

 S
pe

ci
fic

 A
PI

/S
DK

Store Results

ProvisionerOptimizer

U
se

r I
nt

er
fa

ce

SmartDBO

User

Figure 1: System Architecture of SmartDBO

2.1 SmartDBO Architecture

Figure 1 illustrates the architecture of SmartDBO and the depen-
dencies of each component. SmartDBO is implemented as a web-
application that provides a User Interface for users to interact, ex-
plore and manage their benchmarking experiments. The User Inter-
face allows the user to choose an existing benchmark application or
customize a new application. Moreover, users can select the avail-
able hosts from different cloud providers, define the benchmarking
time for each selected host, and specify the total budget for run-
ning the experiments via the User Interface. Next, this configuration
information is stored in a relational Database.

The Optimizer is designed to create an optimized host list based
on the information provided by the user. It retrieves the necessary
information (host configurations, time of benchmark and budget)
from the Database and applies a heuristic algorithm to generate
an optimized host list for running the benchmarking experiments.
More details about the Optimizer are given in § 2.2. The gener-
ated host list is automatically stored in the Database. If the user
chooses to execute the benchmark experiments, the Provisioner
will be triggered to provision the resources, deploy the benchmark
applications and execute the applications based on the user entered
information and optimized host list. The benchmark is executed for
the specified interval of time and the completion is notified to the
Provisioner. The results are stored in the Database in real-time for
further evaluation and analysis. Finally, the user is notified after
completion of the experiment while releasing the cloud resources.

2.2 SmartDBO Implementation

The SmartDBO is mainly implemented by usingMicrosoft ASP.NET
Core 2.1 C#6 programming language. The User Interface is built
using CSS, JavaScript and HTML5 to ensure a good user experience.
We aim to provide a unified interface for users to deploy their
benchmark applications over multiple clouds, therefore hiding the
difficulties of interacting with heterogeneous cloud APIs. Moreover,
the SmartDBO also provides an optimized solution for users based
on their budgets. These two main features are implemented in
the modules of Optimizer and Provisioner and will be detailed as
follows.

6https://docs.microsoft.com/en-us/aspnet/core/?view=aspnetcore-2.1

3556

Optimizer. SmartDBObenchmarks containerizedweb-application
in a multi-cloud environment. Let N represent the cloud providers
Ci |i ∈ {1,N } where each provider Ci has T type of hosts vi,t |t ∈
{1,T }. In our evaluation, we assume a one-to-one mapping between
host and container. Consider C (vi,t) to be the unit cost of using
vi,t , τi,t is the time units for which vi,t is chosen to run and B
is the user budget for the benchmark, finding an optimal set of
hosts for the benchmarking is modeled as a Binary Integer Linear
Programming problem (BILP). The defined objective function is
shown below,

maximize:

∑
i,t

xi,t + λ{
∑
i
{
∑
t
xi,t − T}}

wherexi,t |xi,t ∈ {0, 1} is a binary variablewhich representswhether
vi,t is selected or not. The first factor of the optimization problem
is to comprehend maximum selection of hosts and the second con-
siders a penalizing factor to boost the spanning of the maximum
number of cloud providers. λ is a tunable parameter which is in-
corporated to maintain a balance. There are certain constraints
associated with the objective function as given below.∑

i,t
C (vi,t) × τi,t ≤ B (1)

∀i∀t xi,t ∈ {0, 1},xi,t =



1, when VM, Vi,t is selected
0, otherwise

(2)

∀i∀t τi,t ≥ 0 (3)

∀i
∑
t
xi,t ≥ 1, ∀t

∑
i
xi,t ≥ 1 (4)

Constraint (1) states that the total cost of benchmarking different
containers running inside the host must be less than the defined
budget. Also, the cost is calculated only if a host is selected as
specified by the constraint (2). Constraint (3) represents variable
stability constraints while constraint (4) enforces the selection of
at least one cloud provider and at least one host configuration.

We developed and implemented a heuristic algorithm for Opti-
mizer to solve the problem formalized above. The algorithm selects
an optimized list of hosts while satisfying all the defined constraints.
The source code and the implementation details of Optimizer is
available as an open-source project on github7. The advantage of
Optimizer for selecting hosts in both multi-cloud and single cloud is
illustrated in Figure 2. The results show that the solution generated
from the Optimizer covers more types of host in both single cloud
and multi-cloud scenarios, compared to the case of random host
selection with a given budget.
Provisioner. Once the Optimizer generates a benchmark plan,
the user can decide whether he/she wants to submit the plan for
execution via the user friendly web interface. If the user agrees to
perform the experiment, the functions implemented in Provisioner
will be triggered. First, the Provisioner will check the connection
and the requirement of the resources on different clouds. Next, it

7https://github.com/smartdockerbenchmarkingorchestrator/Smart-Docker-
Benchmarking-Orchestrator

Figure 2: Showing advantage of Optimizer

uses a background process application, Hangfire8, to create and
launch the hosts on the selected cloud providers.

3 DEMONSTRATION

In this section, we will walk through the execution workflow of
SmartDBO by showing the benchmarking of a sample e-commerce
web-application, SimplCommerce9. The SimplCommerce applica-
tion is configured with 50 test products to replicate a small real-life
e-commerce store.

3.1 Experiment setup

SmartDBO. The proposed orchestrator is implemented in C# lan-
guage which can be executed in a variety of environments e.g.
Linux, Windows, MacOS. In this demonstration, we run our or-
chestrator on a Lenovo PC with Intel(R) Core(TM) i5-6200U CPU
@2.3GHz - 2.4GHz with a memory 16 GB and storage of 512 GB
SSD. The system is installed with 64 bit Windows 10 operating
system. We execute SmartDBO using Visual Studio 201710 IDE. It
is open-sourced and the current version of code along with samples
and installation details are available on github7.
Required open-source tools. In this demonstration, we utilized
a popular benchmark application called TPC-W11 to emulate the
activities of a sample e-commerce web application. The load on the
web-application is created by Apache JMeter12 according to the
test plan defined by the user. To emulate real traffic, JMeter is not
configured on the same cloud where the benchmark applications
are running. PostgreSQL Database13 is associated with SmartDBO,
and stores different host, benchmark and image configurations for
setting up the experiments in real-time.
Cloud providers.We deployed our containerized benchmark ap-
plication on AWS and Azure with different host configurations. In
this demonstration, we use VM as the default host configuration.
SmartDBO can provision any types of VMs which are available on
the subscribed cloud providers.

8https://www.hangfire.io/
9https://www.simplcommerce.com/
10https://visualstudio.microsoft.com/vs/
11https://cs.nyu.edu/ totok/professional/software/tpcw/tpcw.html
12https://jmeter.apache.org/
13https://www.postgresql.org/

3557

Experimenter OptimizerUser
Interface Provisioner Provider

APIs/SDKs
Cloud
Host

Enter the
information

(Step 1)

Create an
optimized
host list

Database

Store
information

Retrieve
host

information

Store
information

Retrieve optimized
information Establish

communication

Run the
benchmark

Release resources

Provision resources
(start the benchmark)

(for
each
host)

(Step 3)
(Step 4)

(Step 13)

(Step 6)

(Step 5)

(Step 8)

(Step 10)

(Step 9)

Notify Completion
(Step 11)

(Step 12)
Store results

(Step 7)

Validate
information

(Step 2)

Figure 3: SmartDBO Execution Workflow

3.2 The execution workflow

In this subsection, we use an example to demonstrate the process
of orchestrating a benchmark application as shown in Figure 3.

Define the benchmark application. At the beginning, Smart-
DBO is designed for benchmarking different types ofweb-application.
The application is defined in terms of a web-application image
and a JMeter workload image using the interactive User Interface
as depicted in Step 1 of Figure 3. The images are referred from
Docker hub or other private repository or created using the pro-
vided template. For the demonstration, we create an application
using SimplCommerce and a JMeter docker image.

Define the host configuration. When we decide the benchmark
application, our SmartDBO allows us to define the host configura-
tion to run the benchmark application. The User Interface allows us
to choose a name, description, host type (application/benchmark)
and cloud-specific (e.g. credentials, template) information as shown
in Step 1. It also provides the HTTP and TLS authentication to
guarantee secured communication.

Define the test plan. SmartDBO allows us to define the workload
using a test plan where we can provide the JMX file for continuous
workload generation. New test plans can be easily added by filling
the template provided by the framework (Step 1). The plan includes
all the parameters for JMeter to generate a continuous load for
benchmarking the web-application.

Define the benchmark experiment. Once we have the bench-
mark application and hosts configured, we can set the whole exper-
iment for performing the benchmarks. Then, we define the bench-
mark experiment which maps the load generator to the benchmark-
ing host. To this end, we pair a load generator with the host running
the benchmark web-application. Along with this, we can specify
the execution time and the budget for executing the experiment.
The entered data is validated (Step 2) after which it is stored in the
Database (Step 3).

02/01/2019

02/01/2019

Figure 4: SmartDBO Execution Interface

Perform optimization. The Optimizer retrieves the input host
information from the Database (Step 4) to generate an optimized
host list for the execution (Step 5). At the same time the optimized
host list is stored in the Database (Step 6).

Execute the benchmark. Provisioner retrieves the optimized host
list from the Database (Step 7), we can then start to execute the
experiment. First the communication with the cloud host is es-
tablished using the provider specific APIs/SDKs (Step 8) and then
resources are provisioned for benchmarking (Step 9). The Provi-
sioner is notified of the completion (Step 11) and the result is stored
in the Database (Step 12) for visualization and further analysis.
The experiment result provides different performance metrics in-
cluding benchmark statistics (e.g. started at, benchmark length),
benchmark container metrics (e.g. CPU percentage mean, CPU
percentage range, memory percentage mean, network input total,
network output total), benchmark web-server metrics (e.g. through-
put, average response time, number of requests, number of errors,
average latency) and Apdex rating (Apdex count, Apdex rating,
Apdex satisfied count,). Finally, the resources are released (Step 13).

Figure 4 shows the overview of a successful execution of TPC-W
benchmark using SimplCommerce web-application executing on
AWS and Azure, with the obtained result.

Report the result. The benchmark execution results can be easily
visualized using the User Interface. There are multiple options to
report the results in different formats including on-screen, csv file,
excel sheet, pdf for further analytics.

The complete demonstration explained here is available as a
screencast video on YouTube 14.

ACKNOWLEDGEMENTS

This research was partly supported by Engineering and Physical
Sciences Research Council, UK under grant EPSRC - EP/R033293/1.

14https://www.youtube.com/watch?v=c44FSCR3C-w&feature=youtu.be

3558

https://www.youtube.com/watch?v=c44FSCR3C-w&feature=youtu.be

REFERENCES

[1] Emmanuel Cecchet, Veena Udayabhanu, Timothy Wood, and Prashant Shenoy.
2011. Benchlab: an open testbed for realistic benchmarking of web applications.
In Proceedings of the 2nd USENIX conference on Web application development.
USENIX Association, 4–4.

[2] Tomas Cerny, Michael J. Donahoo, and Michal Trnka. 2018. Contextual Under-
standing of Microservice Architecture: Current and Future Directions. SIGAPP
Appl. Comput. Rev. 17, 4 (Jan. 2018), 29–45. https://doi.org/10.1145/3183628.
3183631

[3] Justin Cheng, Caroline Lo, and Jure Leskovec. 2017. Predicting intent using
activity logs: How goal specificity and temporal range affect user behavior. In
Proceedings of the 26th International Conference on World Wide Web Companion.
International World Wide Web Conferences Steering Committee, 593–601.

[4] Mariela Curiel and Ana Pont. 2018. Workload Generators for Web-Based Systems:
Characteristics, Current Status, and Challenges. IEEE Communications Surveys &
Tutorials 20, 2 (2018), 1526–1546.

[5] Maria Fazio, Antonio Celesti, Rajiv Ranjan, Chang Liu, Lydia Chen, and Massimo
Villari. 2016. Open issues in scheduling microservices in the cloud. IEEE Cloud
Computing 3, 5 (2016), 81–88.

[6] Devki Nandan Jha, Saurabh Garg, Prem Prakash Jayaraman, Rajkumar Buyya,
Zheng Li, and Rajiv Ranjan. 2018. A Holistic Evaluation of Docker Containers
for Interfering Microservices. In 2018 IEEE International Conference on Services
Computing (SCC). IEEE, 33–40.

[7] Diego Lugones, Jordi Arjona Aroca, Yue Jin, Alessandra Sala, and Volker Hilt.
2017. AidOps: A Data-driven Provisioning of High-availability Services in Cloud.
In Proceedings of the 2017 Symposium on Cloud Computing (SoCC ’17). ACM, New
York, NY, USA, 466–478. https://doi.org/10.1145/3127479.3129250

[8] Dirk Merkel. 2014. Docker: lightweight linux containers for consistent develop-
ment and deployment. Linux Journal 2014, 239 (2014), 2.

[9] Zhongshan Ren, Wei Wang, Guoquan Wu, Chushu Gao, Wei Chen, Jun Wei, and
Tao Huang. 2018. Migrating Web Applications from Monolithic Structure to
Microservices Architecture. In Proceedings of the Tenth Asia-Pacific Symposium
on Internetware (Internetware ’18). ACM, New York, NY, USA, Article 7, 10 pages.
https://doi.org/10.1145/3275219.3275230

[10] Joel Scheuner, Jürgen Cito, Philipp Leitner, and Harald Gall. 2015. Cloud work-
bench: Benchmarking iaas providers based on infrastructure-as-code. In Proceed-
ings of the 24th International Conference on World Wide Web. ACM, 239–242.

3559

https://doi.org/10.1145/3183628.3183631
https://doi.org/10.1145/3183628.3183631
https://doi.org/10.1145/3127479.3129250
https://doi.org/10.1145/3275219.3275230

	Abstract
	1 Introduction
	2 System Overview
	2.1 SmartDBO Architecture
	2.2 SmartDBO Implementation

	3 Demonstration
	3.1 Experiment setup
	3.2 The execution workflow

	References

