
Future Generation Computer Systems 95 (2019) 601–614

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

GoSharing: An intelligent incentive framework based on users’
association for cooperative content sharing in mobile edge networks
Shuyun Luo a, Zhenyu Wen b, Xiaomei Zhang c, Weiqiang Xu a,∗, Albert Y. Zomaya d,
Rajiv Ranjan b,e

a School of Information Science and Technology, Zhejiang Sci-tech University, PR China
b School of Computing, Newcastle University, United Kingdom
c Department of Mathematics and Computational Science, University of South Carolina, Beaufort, USA
d School of Information Technologies, University of Sydney, Australia
e School of Computer Science, China University of Geosciences, Wuhan, PR China

h i g h l i g h t s

• We present a multi-host communication model to share resource collaboratively.
• Wemeasure factors impacting the transmission quality & formalize a network QoS model.
• We design an intelligent framework with four desirable properties & good performance.

a r t i c l e i n f o

Article history:
Received 20 August 2018
Received in revised form 19November 2018
Accepted 9 January 2019
Available online 22 January 2019

Keywords:
GoSharing
Cooperative system
Users’ association
Intelligent incentive mechanism
Mobile edge networks

a b s t r a c t

In most metropolises, commuters spend a considerable amount of time on public transport, and many
of them entertain themselves with the content (like music or videos) on their mobile devices to alleviate
boredom. Currently, the content, usually shared in co-located wireless networks to avoid huge monetary
cost of using cellular data, is delivered from single host (resource owner) to single request user, which
brings low transmission quality, due to the uncertainty of mobile edge networks in public transport
environments.

In this paper, we present an intelligent incentive framework called GoSharing which encourages
multiple hosts to share content collaboratively to improve delivery quality, by taking advantage of
users’ association and consideration of network Quality of Service(QoS) requirements. The highlight of
GoSharing is the novel Association-based Intelligent incentive mechanism that consists of three key
components. First, a Fast Candidate Generation algorithm discovers users’ association according to their
stored content and QoS requirements and filters the candidate groups from large host groups. Second, a
Host Selection algorithm finds a near-optimal solution among candidate groups within an approximate
factor of F (d), where d denotes the maximum size of completed tasks when any candidate group is
selected. Last but not least, a Payment Determination algorithm determines the payment of resource
contributors while guaranteeing the truthfulness of their bids based on the procurement auction. Both
theoretical analysis and extensive simulations demonstrate that GoSharing not only effectivelymotivates
hosts’ collaborative sharing, but also achieves the properties of truthfulness, individual rationality, high
computational efficiency, low overpayment ratio, and high download ratio.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

In many dense crowded metropolises in Asia and Europe, as
well as some US cities like New York city and San Francisco,
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driving fails to be a good option for daily commuting because of
traffic jams and the unavailability of parking. Public transport such
as buses, subways and trains becomes the best choice for urban
citizens. As a result, a considerable proportion of the people in
these metropolises tend to choose public transport for their daily
commute. A study from the Singapore Management University
reported that the average one-way commute time in Singapore
is about 26 min [1], and other surveys show that the average
commuting time of the urban citizens is very long, e.g. 40 min for
New York City [2], 66 min for Tokyo [3], and 97 min for Beijing [4].
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Entertainment, such as watching videos, becomes the first choice
for the commuters to kill the long commute time. Although the
recent popularization of cellular networks (e.g. 3G/LTE) provides
mobile users with ubiquitous Internet access, high cellular data
cost and network latency prevent the cellular networks from being
a good way for video downloading. To address this problem, a
promising solution is to utilize short-rangewireless network inter-
faces, such as WiFi and Bluetooth, to exchange the media content
in neighboring devices.

The current research on short range communications usually
focuses on data transmission from single host (resource owner)
to single request user, called single-host model [5–8]. However,
based the single-host communication model, thus reliability of
communications cannot be guaranteed because users randomly
pop-in and pop-out. For example, mobile users usually have un-
predictable mobility, if one of the communication nodes moves
beyond the transferring range, the content will not be delivered
successfully. To address this problem, we envision that multiple
co-located devices can share content cooperatively to enhance the
reliability of content sharing among commuters.

In addition, sharing media content requires hosts to contribute
not only their content but also hardware, especially battery. To
stimulate hosts to share their resources, incentives like monetary
rewards should be provided to the hosts. In the literature, various
incentivemechanisms have been proposed inmobile networks [9–
16].

Some mechanisms, e.g.[9–13], are designed for tasks that only
require a single user (host) to perform, referred to as simple tasks.
In our content sharing scenario, every downloading task needs the
cooperation of multiple users (hosts), referred to as cooperative
tasks. There is no existing incentivemechanism that is designed for
rewarding the participates with multiple cooperative tasks, which
comes up with new challenges, especially how to combine users’
association for efficient cooperation in such complex scenario.

In this paper, we propose GoSharing, an intelligent incentive
framework which motivates resource owners to share their stored
videos cooperatively inmobile edge networks. GoSharing is able to
achieve the goals of encouraging commuters to share their content
cooperatively with the minimum incentive cost based on users’
association and guaranteeing the Quality of Service(QoS) of the
task sharing. The main intellectual contributions of this work are
summarized as follows.

1. In order to improve the reliability of content sharing in
mobile edge networks,we present amulti-host communica-
tion model to allow multiple resource owners to share their
content collaboratively.

2. We measure the factors that impact the quality of data
delivery from hosts to the request users on public transport.
Based on the experimental results, we formalize a network
QoS model to describe the tradeoff between reliability and
download time.

3. To motivate hosts to share their content collaboratively,
we design an intelligent incentive framework, GoSharing,
whose highlight, Association-based Intelligent (AI) incentive
mechanism composed of candidate generation, host selec-
tion and payment determination, which has four desirable
properties: (a) truthfulness, (b) individual rationality, (c)
computational efficiency, (d) low overpayment ratio, as well
as high download ratio.

The rest of this paper is organized as follows. Section 2 provides
the experimental observations and results to verify the efficiency
of the multi-host model. Section 3 presents the overview of Go-
Sharing framework and systemmodel. In Section 4, we present the
design of AI incentive framework and prove its desirable proper-
ties. Section 5 evaluates the performance of our proposed mech-
anism. Finally, Section 6 reviews related work and Section 7 con-
cludes this paper as well as outlining future work.

2. Motivation and preliminary results

In this section, we first illustrate the unreliability problem of
the single-host model in mobile edge networks, then demonstrate
the motivation of the GoSharing system model, i.e. the multi-host
model. Finally, we have the measurements and experiments in
real scenarios to verify the motivation and analyze the factors that
influence the QoS communications.

2.1. Motivation

Most content sharing applications are based on the single-
host model, as shown in Fig. 1(a). In this model, once the sender
or receiver move out of communication range during the video
sharing period, the downloading task will fail. Thus, the task has
to be re-started from the beginning. In order to mitigate this unre-
liability problem of the single-host model, we propose the multi-
host model, shown in Fig. 1(b) in which multiple hosts are sharing
the downloading file simultaneously. Furthermore, if any provider
(host) moves out of communication range, the rest of the hosts can
continuously provide the required sources until the completion of
the task. To confirm the above assumption, we made some real
world measurements for both single-host model and multi-host
model in Section 2.2 and Section 2.3.

2.2. The unreliability of the single-host model

In this section, a number of real world experiments are con-
ducted for detecting the download ratio in mobile opportunistic
networks and capturing the factors which influence transmission
rates.

Taking wifi-P2P (wifi-direct) as an example, the IEEE standard
claims its theoretic maximum transmission rate is 250 Mbps, and
the maximum transmission range is 200 m [17]. However, in
practical environments, such an upper bound cannot be reached.
Hence, we conduct the experiments to detect the real transmission
rates of wifi-direct in a real environment. Two Samsung Note3
smartphones with 3G RAM are used on buses and subways to
measure the transmission rate of wifi-direct with various peer
distances (the distance from single host to single requester) in
three different conditions, i.e., crowded, normal and almost empty.

On the subway, we monitor the transmission rates under three
statuses: empty, normal and crowded. Fig. 2 shows the status of
the circumstances throughout conducting the experiments. From
Fig. 3, the transmission rate changes dramatically at different peer
distances when the subway is almost empty. This illustrates that
the transmission rate is relatively stable at the range of 4 to 6.5
MBpswhen the peer distance is less than the length of one carriage,
about 17 m. However, when the peer distance increases to 30 m,
the transmission rate is vastly reduced, whereas the connection
is broken when the peer distance extends to the length of two
carriages, about 40 m.

Fig. 4 shows that the transmission rate fluctuates dramatically
with the same peer distance when the carriage status is normal.
This implies that the maximum transmission range is limited to
one carriage when the status is crowded. The experimental results
indicate that the transmission rate depends on not only the peer
distance and crowdedness of the carriage, but also some unex-
pected factors, such as users’ behaviors and wireless interference.
Hence, the single-host model is not applicable for sharing video
among devices on pubic transport.



S. Luo, Z. Wen, X. Zhang et al. / Future Generation Computer Systems 95 (2019) 601–614 603

Fig. 1. A motivating scenario of GoSharing.

Fig. 2. Three statuses on the subway.

Fig. 3. The transmission rate on the subway when the carriage is almost empty.

Fig. 4. The transmission rates on the subway when the carriage is normal or crowded.

2.3. The performance of the multi-host model

Since the single-hostmodel fails to provide a reliable network to
share video among the commuters an alternativemulti-hostmodel
can reduce the chance of the failures caused by the unavailability
of hosts. This subsection shows the performance of the multi-host
model. BitTorrent Sync,1 a BT protocol based file sharing tool is
used to create a multi-host network.

Wehave conducted the experiments onAndroid testbedswhich
contain one Galaxy Note3, two Sony and two HuaWei running
Android 5.0. We evaluate the relationship between the number of

1 https://www.getsync.com/.

hosts and download time in the multi-host mode. The Sony smart-
phone is a receiver, and we record the download time of a media
file with 350M under different numbers of hosts with the tool of
BitTorrent Sync, as shown in Fig. 5. The observations show that the
download time reaches the lowest point when there are two hosts,
and then ascends with the increase of hosts’ size. This is because
in the BT protocol each pair of receiver and sender has to create a
channel, and a new channel will cost some bandwidth. Therefore,
when the total transmission rate (sum of the transmission rate
of created channels) is higher than the throughput of the device
(receiver), the transmission rate of each channel will reduce. As
shown Fig. 5, when there are three hosts, the throughput of the
receiver is lower than the counterpart in the case of one host.

https://www.getsync.com/
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Fig. 5. Impact on download time.

As the measurement results show the multi-host model can
efficiently improve the communication reliability in mobile edge
networks. However, the multi-host model requires hosts for co-
operative sharing and needs to select host groups for multiple
tasks completion. In order to encourage hosts to share content
with efficient cooperation, it is vital to find hosts’ association based
on their stored content and condition of link quality, such that
we can obtain the filtered host groups for further host selection
within the design of the new incentive mechanism. In this paper,
we propose the intelligent incentive framework, GoSharing which
can be adapted to the multi-host model with the benefit of hosts’
association for efficient cooperation, the goal of minimizing incen-
tive cost, as well as ensuring the QoS.

3. Systemmodel and problem formulation

In this section, we give an overview of the GoSharing frame-
work, QoS model, system model and problem formulation.

3.1. Framework

The GoSharing framework supports cooperative systems with
multiple tasks, and can be applied to scenarios wheremany people
gather for a transient period, such as public transport, confer-
ence, supermarket checkout and hospital queuing, etc. GoSharing
consists of a set of hosts and request users, also a local-based
server, such as the near base station. To solve the time-consuming
problem of neighbor discovery in co-located networks [1], a local-
based server uses cellular networks to collect hosts’ information in
the covered area, such as content list, host’s location and behavior
histories, which generates little or even negligible data traffic and
cellular cost. Fig. 6 illustrates one of the realistic scenarios of
using our GoSharing framework, i.e. the commuters want to share
contentwith neighbors on the subway. The server acts as the buyer
who offers the monetary payment to the hosts who are willing
to share their content. The host plays the role of seller who is
encouraged to submit a list, listing the content that s/he is willing
to share; and make a bid for the cost of sharing their content.

3.2. Network qos model under hosts’ mobility

From themeasured results in Section 2, the dynamic connection
between two mobile devices significantly influences data trans-
mission in terms of download time and download ratios, defined
as follows.

• Download time: The download time is recorded as the aver-
age time starting from the local network being established to
the media files being downloaded.

• Download ratio: The download ratio of media files is com-
puted as the number of downloaded tasks to allocated tasks.

Firstly, we develop a link quality (LQ)model that represents the
probability of a request user i successfully downloading files from
a single host, defined as

LQ (i) = α(disi) ∗ β(timi) ∗ γ , (0 ≤ α, β, γ ≤ 1) (1)

where α is a parameter linked to the peer distance from host
i to the request user, denoted as disi, and β is determined by
the host’s mobile behavior, which can be predicted by historical
information, such as his commute behavior (the simple way is to
record a host’s entry time timi which can be known from collected
historical information and we can predict the probability of users’
departure), and γ is a factor to depict the unexpected wireless
interference. Note that the functions of α, β and γ can be defined
specifically under various scenarios, which is beyond the scope of
this paper.

Since the reliability of media download depends on how many
links work, the download ratio can be calculated by

ρdownload = 1−
∏
i∈Gtj

(1− LQ (i)), (2)

where Gtj is the candidate groups (Definition 1) for task tj.
Next, we record the download time under both models, in

which LQs are assumed to obey the Poisson distribution with λ =

2. Based on the measured results of wifi-direct transmission in
Fig. 4 and sync BT in Fig. 5(a), the transmission rates are set to
be 1.46 MBps and 1.3 MBps for the single-host model and the
multi-host model, respectively. Since the link quality dynamically
changes, the communication may be interrupted during the file
download. The rule of retransmission is adopted from the begin-
ning in the single host model, while in themulti-host model, when
any host interrupts their transmission, the remaining host(s) will
continue to keep transmitting the remaining data. From Fig. 7,
it could be deduced that the download time has been reduced
significantly with the media file in larger size in the multi-host
model, comparedwith the case in the single-hostmodel. Therefore,
the multi-host model is an efficient method to improve communi-
cation reliability under network uncertainty, especially in the case
of sharing large files.

From the above analysis, we can draw up the rule that the
download ratio is increased by the number of hosts, while the
download time decreases as the number of hosts increase until
the total transmission rate (sum of the transmission rate of created
channels) exceeds the wireless capacity. To solve the tradeoff, we
assume that the candidate groups are the ones with two con-
straints: (1) satisfying the requirement of the download ratio; (2)
minimizing download time, defined as follows.

Definition 1 (Candidate Group). Combined with the QoS require-
ments of download task tj, the definition of candidate group is the
host group with two constraints: (1) whose link qualities satisfy
ρdownload ≥ ρth, where ρth is the threshold of download ratio; (2)
with the minimum number of hosts.

Therefore, the problem of discovering all candidate groups can
be decomposed into two subproblems:

1. Find all host groups that can satisfy QoS requirements,
i.e. the first constraint in Definition 1.

2. Prune the large set of host groupswith the second constraint
in Definition 1, and generate the candidate groups.



S. Luo, Z. Wen, X. Zhang et al. / Future Generation Computer Systems 95 (2019) 601–614 605

Fig. 6. One realistic scenario of GoSharing.

3.3. System model

Users first send their download requests to server s, and each re-
quested media file represents a task. This set of tasks is denoted as
T = {t1, t2, . . . , tM}, thusM is the total number of tasks, i.e., |T | =
M . According to the host information (locations and resource lists)
collected by cellular networks, the server can detect request users’
neighboring hosts and corresponding available resources.

All detected hosts are symbolized as U = {1, . . . ,N}, where N
is the size of U . If the request user launches the download task tj,
and downloads successfully from local neighbors, the server can
therefore obtain a revenue rtj , which depends on the popularity
of tj. Each host i has stored a set of media files (music or videos).

When request users launch a set of download tasks Ti, Ti ⊂ T ,
the hosts can share their content with them. Accordingly, host
i has an associated cost ci, which is private and only known to
itself. Traditionally, ci is related to the number of request users
that hosts support [12]. However, in our scenario, a host cannot
detect how many users he can provide resource to, thus each host
bids its cost based on its available time period, stored content
and remaining energy. Although the local-based edge server can
require the information about howmany users access its resource,
it does not know the real-time wireless link qualities between
the host and request users. Actually, the link qualities can be very
dynamic because of the frequent user movements. As a result, the
number of users that actually access the host is also dynamic in
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Fig. 7. Single-host model vs. multi-host model (when any host interrupts during
the file download, single host model adopts the rule of retransmission from the
beginning, while the remaining host(s) will continue to keep transmitting the
remaining data in multi-host model).

Table 1
Notation list.
Notation Description

T The set of all allocated tasks
M The total number of tasks
N The total number of hosts
Ti The tasks host i has capacity to participate in
S The host winners
Scurr The current selected hosts
Sk The selected hosts in the k-th iteration
Λ The set of current completed tasks
Λk The set of new completed task in the k-th iteration
SubUtj Users able to perform task tj
Stj The hosts with the capacity to perform task tj
Gtj For task tj , the candidate groups
G For all tasks, the candidate groups
rtj The revenue that the server obtained by finishing task tj
pi The payment for each host i
g One candidate group

real-time and unknown to both the edge server and the host. In
addition, each host announces the content-bid pair (Ti, bi) as well
as the location information to the server, where bi is the reserve
price that host i wants to charge for sharing its content.

Table 1 lists the frequently used notations.

3.4. Utility functions

Based on the content-bid pairs received from each host, the
server selects a subset of hosts Swinner ⊂ U as winners and
computes the payment pi for each host i. How to select hosts and
determinate the payment will be discussed in Section 4. The utility
of each winner i can be defined as:

ui = pi − ci (3)

The revenue is related to various customers’ information, in-
cluding their preference ofwatching videos, behavior histories etc.,
which is hard to measure. Since each task completion helps the
server to collect more efficient customer information, the revenue
R is defined as the sum of revenues obtained by completing tasks.
Similarly, the total payment P is the accumulation of the payment

for each winner. Hence, we have the equations as follows.⎧⎪⎪⎨⎪⎪⎩
R(Λ) =

∑
tj∈Λ

rtj

P(Swinner ) =
∑

i∈Swinner

pi
(4)

whereΛ is a set of completed tasks, and tj is one of completed tasks.
In addition, pi is the payment for each host i and rtj is the revenue
that the server obtained by finishing task tj.

3.5. Payment minimization problem

From a practical business perspective, the server needs to ob-
tain a lower bounded revenue such that its basic operating costs
can be covered. Meanwhile, corporations want to reduce the in-
centive cost to the minimum for their benefit. Hence, we give the
definition of the payment minimization problem in the following.

Definition 2. Payment Minimization (PM) problem: Given a set
of hosts U , the server selects a subset of hosts Swinner as providers
to share their content with local neighbors such that the server’s
total payment is minimized, subject to a given revenue target of
the server.

It is easy to deduce that the total payment of the server is
minimized with pi = ci. The PM problem can be formalized as an
optimization problem in the following.

Objective: Minimize
∑

i∈Swinner
ci

s.t. R(Λ) ≥ Rth (5)

where Rth is the minimal revenue that a server has to obtain.

3.6. Association-based intelligent auction method

Auction is a good way to determine the value of a commodity
or service that has an imponderable and dynamic price, which has
been applied to many fields [18]. The ordinary auctions belong to
the type of forward auctions which involve multiple buyers and a
single seller, where the buyers send bids to compete for the offered
commodity or service; the one with the highest bid will win the
competition. However, our GoSharing has multiple hosts to share
their content and the server has no idea about the exact cost of each
user, which inspires use of a procurement auction, namely reverse
auction. In otherwords,multiple hosts tell the server their required
reward for sharing their content. After that the buyer selects a
group of sellers with the minimum incentive cost.

In this paper, the AI incentive mechanism is common knowl-
edge among hosts, and contains three steps. In the first step, Candi-
date Generation, we present a fast generation candidate algorithm
to discover hosts’ association based on their stored content and
QoS requirements, which makes it possible for hosts to cooperate
efficiently. In the second step, Host Selection, the server decides
which host groups among filtered candidate groups to share their
content with request users. Since hosts have selfishness, they
have the intention to lie a higher bid price for their content to
obtain a higher utility. In the third step, Payment Determination,
the pricing algorithm is presented to avoid cheating behaviors. The
server computes the actual payment for each winner. Next, the
server returns to the hosts the auction outcomewhich contains the
matches of hosts and the request users as well as the payment of
each host. Finally, hosts share their designated content to request
users via the local wireless network. The details of the proposed
auction mechanism will be illustrated in Section 4.1.

The incentive mechanism aims to satisfy the following proper-
ties:
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• Computational Efficiency: the solution can be computed in
polynomial time.
• Individual Rationality (IR): each sharing host will have a non-

negative utility.
• Incentive compatibility (IC): also called truthfulness; each host

prefers to report his private information truthfully to the
server rather thanmake any potential lie, i.e. the host will get
the maximum utility when he bids his cost truthfully.

4. Main design of GoSharing

In this section, we illustrate the details of the AI incentive
mechanism that can be applied for general cooperative systems.

4.1. Association-based intelligent incentive mechanism

The main challenge of the host selection process is that the
exhaustive search by checking all possible combinations of hosts
makes it impossible for the server to match host groups with tasks
effectively. Fortunately, there is a stable association among hosts
based on their stored content lists and QoS requirements, which
can largely compact the search space. Therefore, before the auction
mechanism is presented, it is critical to design smart data filtering
method to discover hosts’ association and filter candidate groups
from host groups.

AI incentive mechanism consists of three parts: candidate gen-
eration, host selection andpayment determination. First, it exploits
hosts’ association to filter candidate groups from host groups.
Second, with searching among the candidate groups, we present
a greedy host selection method with a feasible approximate ratio.
Last but not least, we design a corresponding pricing algorithm to
make sure AI mechanism has the property of truthfulness.

The AI auction mechanism relies on Myerson’s well-known
characterization [19], illustrated in Theorem 1.

Theorem 1. Based on the theorem in [20,21], an auction mechanism
is truthful if and only if:

1. The Host Selection (HS) algorithm is monotone: If host i wins
the auction by bidding bi, it also wins by bidding b′i ≤ bi.

2. Given the HS algorithm, there is a unique truthful mechanism
associated with this selection algorithm. The pricing algorithm
pays each winner the critical value: the highest bid the host
could claim and still win under the condition of all other hosts’
bids being fixed.

4.1.1. Candidate generation
We propose a Fast Candidate Generation (FCG) algorithm, il-

lustrated in Algorithm 1, which can filter candidate groups effi-
ciently in coordinating hosts’ association that can be induced by
the content stored in hosts’ devices and QoS constraints. In terms
of collected hosts’ information, the server can calculate the link
quality of each host who belongs to SubUtj . For simple description,
we call the number of hosts in a host group its size, and call a host
group of size k a k-host group, noted as Hk. Hosts within a host
group are kept in decreasing order by their LQ values for each task.
The notation H1[1],H1[2], . . . ,H1[ηtj ] is used to represent the 1-
host groups for task tj, where ηtj is the number of hosts able to
perform task tj and LQ (H1[1]) ≥ LQ (H1[2]) ≥ · · · ≥ LQ (H1[ηtj ]).

The algorithm contains three steps: in the first join step, we join
host groups of a particular size k. In general, k = 1 and orders H1
decreasingly by their LQ values. Next in the filter step, QoS function
filters Hk with QoS constraints and the filtered groups are namely
the candidate groups with size k, Gk. Gk found in the kth round are
used to generate the host groups Hk+1. In the prune step, we delete
all the superset of Gk with size k + 1 from the original Hk+1. The

Algorithm 1 Fast Candidate Generation (U , B, V , Rth)
Input: Hosts set (U), request task (T ), user’s association(L).
Output: Candidate groups (G).
1: Hk: Set of k-host groups; Gk: Set of k-candidate groups.

L⇐ {SubUtj |
⏐⏐SubUtj

⏐⏐ = ηtj}

2: for all task tj ∈ T do
3: H1 = {1-host groups |LQ (H1[1]) ≥ LQ (H1[2]) ≥ ... ≥

LQ (H1[ηtj ])}
4: for (k = 1;Hk ̸= ∅; k++) do
5: Gk =QoS(Hk)
6: Hk+1 = Hk+1\ superset(Gk)
7: Gtj =

⋃
k Gk

8: G← combination of Gtj for all tj ∈ T .

Fig. 8. Fast candidates generation algorithm.

principle of prune rule is that the cpr (an important metric defined
in the process of host selection) of Gk is always larger than the
counterpart of all the superset of Gk, which is proved in Lemma 1.
Note that G is the combination of Gtj for all task tj ∈ T , which
provides the choice candidate groups as the input for the following
host selection algorithm.

In the following, a walk-through example of the FCG algorithm
is illustrated in Fig. 8. Assume that host A, B, C and D store the
content that task tj requested and they have the relations that
LQ (A) ≥ LQ (B) ≥ LQ (C) ≥ LQ (D). After the join step, H1 =

{(A), (B), (C), (D)}. In the next filter step, it is found G1, the 1-
candidate groups that satisfy QoS constraints. Let G1 = ∅, then in
the prune stepH2 = H2\superset(G1) = H2, since superset(∅) = ∅.
In the next iteration, let G2 = {(AB), (BC)}, noted as real line
circles in Fig. 8, then H3 = H3 \ superset(G2) = {ACD}, where
superset(G2) = {(ABC), (ABD), (BCD)}. In the final iteration, assume
G3 = QoS(H3) = {(ACD)}, namely host group (ACD) satisfies QoS
constraints, then H4 = H4 \ superset(G4) = ∅ and the iteration
terminals.

Note that there is no necessary to search the 1-host group
(B), (C), (D) when it is found 1-host group (A) cannot satisfy QoS
constraint. Because LQ (A) ≥ LQ (B) ≥ LQ (C) ≥ LQ (D), if host (A)
cannot satisfy QoS constraints, let alone other 1-host group. The
same as the 2-host groups {(AD), (CD)}, shown as the green dotted
circles in Fig. 8. Therefore, the search speed can actually be further
improved.
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Lemma 1. For each task tj, any given different host groups GA and
GB satisfying ρdownload ≥ ρth, if GB ∈ superset(GA), then cpr(GA) ≤
cpr(GB).

Proof. Since GA and GB satisfy ρdownload ≥ ρth, the server can
obtain the revenue rtj , no matter GA or GB is chosen. Since GA ⊆ GB,∑

i∈GA
ci ≤

∑
i∈GB

ci, cpr(GA) ≤ cpr(GB). □

4.1.2. Host selection
The objective is to design an incentive mechanism that selects

hosts to minimize the server’s payment under the condition that
the server can earn the targeted revenue, i.e. the targeted sharing
tasks. In Section 3.5, the Payment Minimization (PM) problem is
formalized as an optimization problem, which can be reduced to
a Weighted Multiple Set Cover (WMSC) problem, proved to be
NP-hard in [22]. The reduction process is similar to our previous
work [23]. Therefore, we put forward Theorem 2 below.

Theorem 2. The PM problem is an NP hard problem.

Unfortunately, the PM problem fails to be solved by exploiting
the well-known Vickrey–Clarke–Groves (VCG) mechanism that
ensures each host reveals its cost truthfully. The reason is that VCG
requires the selected set of users with the lowest cost all the time.
However, when the scale of the problem is increased, it is hard
to find a solution in polynomial time regarding the PM problem
is NP-hard. Moreover, [20] also proves that a non-optimal user
selection algorithm with the VCG mechanism could not guarantee
truthfulness. Hence, an alternative non-VCG auctionmechanism is
desired to ensure the truthfulness of hosts while minimizing the
payment subject to a server’s revenue target.

To solve the PM problem, we propose a host-selection greedy
algorithm summarized in Algorithm 2. The basic idea is to select
the most cost-efficient host group which has the smallest total
bid but makes the server obtain the most revenue, by iterating
the selection until the given revenue target has been reached. To
this end, we combine these two criteria into the single metric as
follows:∑

i∈Sk
bi∑

tj∈Λk
rtj

. (6)

The metric represents the ‘‘cost per revenue’’ (cpr), where Λk
means the task(s) that can be completed by selecting the host
group Sk. The total bid of Sk is

∑
i∈Sk

bi, where bi is host i’s bid. It is
assumed that selected hosts will not accept unallocated download
requests. Thus, we maintain the set Scurr of the current selected
hosts and the set Tuncom for the remaining unallocated download
tasks. The host set Sk is the candidate group with the minimum
marginal cpr in the kth iteration, defined as

cpr(Sk) =

∑
i∈Sk\Scurr

bi∑
tj∈Λk∩Tuncom

rtj
. (7)

In each while-loop, the server selects the host set Sk with the
minimummarginal cpr from G in the kth iteration.

4.1.3. Payment determination
After host winners are selected, combined with the HS algo-

rithm, we develop the PD algorithm summarized in Algorithm 3
to encourage hosts to bid honestly, which follows Theorem 2.

In Algorithm3, the outsider for-loop (Lines 2−11) is to compute
the critical bid for each winner i ∈ S. Each while-loop aims to
calculate host i’s maximum bid that can still be selected in this
iteration. Given the current selected hosts Scurr and remaining
download tasks Tuncom, we first select the set Sk and Sk\{i} with the
minimum cpr from the group set G and G\{i}, respectively (Lines 4
and 6), where G\{i} the set of candidate groups that do not contain

Algorithm 2 Host Selection (U , B, V , Rth)
Input: Candidate groups (G), hosts’ bids (B), request task (T ),
revenue from task completion (R) and server’s revenue target (Rth).
Output: Host winners (Swinner ) and social cost (C).
1: Initialization: Tuncom = T , Scurr = ∅, iteration round k = 0 and

revenue r = 0
2: while r < Rth do
3: Select the set Sk = argmin cpr(g), where g ∈ G.
4: Scurr = Scurr ∪ Sk, G = G \ Sk
5: r = r +

∑
tj∈Λk∩Tuncom

rtj

6: Tuncom = Tuncom \Λk
7: k = k+ 1
8: Swinner = Scurr
9: C =

∑
i∈Swinner

bi

Algorithm 3 Payment Determination
Input: Host winners (S), candidate groups (G) and hosts’ bids (B)
Output: Critical payments (P)
1: pi = 0 for all hosts i ∈ U , Tuncom = T , Scurr = ∅ and r = 0
2: for all host i ∈ Swinner do
3: while r < Rth do
4: Select the set Sk = argmin cpr(g), where g ∈ G
5: G\{i} = {g ′ ∈ G|i /∈ g ′}
6: Select the set Sk\{i} = argmin cpr(g\{i}), where g\{i} ∈ G\{i}.
7: Scurr = Scurr ∪ Sk\{i}
8: r = r +

∑
tj∈Λk\{i}∩Tuncom

rtj

9: Tuncom \ Tk\{i}
10: pi = max{cpr(Sk\{i})×

∑
tj∈Λk∩Tuncom

rtj −B(Sk \Scurr )+bi, pi}

11: k=k+1
12: P.add(pi)
13: Return P

i. The maximum bid in each iteration is the sum of host i’s bid and
the cpr difference between Sk and Sk\{i}. In the end, the maximum
of these bids among thewhile loops is set to be critical bid pi, which
can promise that host i will be selected in at least one iteration.

4.2. Properties of AI incentive mechanism

How good is the AI auction mechanism? In the following we
will analyze the above mechanism according to the four desirable
properties as performance metrics.

4.2.1. Individual rationality
In Algorithm 2, Line 4 aims to find the subset Sk including host

i with the minimum cpr , while Line 6 tries to find a subset Sk\{i}
with the minimum cpr exclusive of host i. If and only if cpr(Sk) ≤
cpr(Sk\{i}) is true, host iwill be selected in the host selection period.
Thus, we can have B(Sk\Scurr )∑

tj∈Λk∩Tuncom rtj
≤ cpr(Sk\{i}). Based on this

inequality, we therefore have the payment pi of host i:

pi = max{cpr(Sk\{i})×
∑

tj∈Λk∩Tuncom

rtj−B(Sk\Scurr )+bi, pi} ≥ bi (8)

Hence, GoSharing can guarantee that all hosts’ utility is non-
negative.

4.2.2. Truthfulness
As long as the conditions listed in Theorem 2 are satisfied, it can

promise that GoSharing canmake truth-telling a weakly dominant
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strategy for each host, such that each host reports its bid honestly.
For the first condition, themonotonicity of the HS algorithm is easy
to prove since host i bidding a smaller value could increase the cpr
value of the subset with host i. Thus, host imust win in the current
or an earlier iteration.

For the second condition, we should prove that pi is the critical
value for host i, i.e. bidding higher pi could prevent host i from
winning the auction otherwise host i must become a winner.
Suppose that host i is selected in the kth iteration. On the one hand,
if bi > pi, i cannot be selected in this iteration, because there exists
another subsetwithout ihaving smaller cpr value or r ≥ Rth, i.e. the
loopmeets the termination condition. On the other hand, if bi < pi,
host imust be selected in the kth iteration, because cpr value of the
subset with host i is lower than that with critical value pi:

cpr(Sk) =
bi + B(Sk\(Scurr ∪ {i}))∑

tj∈Λk∩Tuncom
rtj

<
pi + B(Sk\(Scurr ∪ {i}))∑

tj∈Λk∩Tuncom
rtj

(9)

4.2.3. Computational efficiency
First, we analyze the complexity of Algorithm 1. Set η =

max |SubUtj |, tj ∈ T , and we can get k ≤ η. The time complexity
of sorting SubUtj in descending order of LQ values is O(η log η). The
for-loop is atmost η, since k ≤ η. Therefore, by searching candidate
groups for M tasks, the FCG algorithm runs in O(Mη log η).

Next, given the candidate groups G, the time complexity of
finding the group with minimum cpr in each iteration is |G|. Since
there areM download tasks and each while-loopwill contribute at
least one download task, the number of while-loop is at most M .
Hence, the HS algorithm runs in O(M|G|) time.

After the set of host winners Swinner is selected, we compute
the running time of the PD algorithm. In each round of finding
the minimum cpr group (Lines 4 and 6), the process similar to
Line 6 of Algorithm 1 is realized. Thus, the time complexity of
finding Sk with minimum cpr is O(|G|). Moreover, the number of
while-loop is at most M since each while-loop will complete at
least one task. Therefore, the PD algorithm takes O(|Swinner | · |G| ·
M), which dominates the whole auction. It is obtained that the
running time of the GoSharing auction mechanism is bounded by
O(|Swinner ||G|M).

Realistic scenario: Generally speaking, the capacity of a bus
is set as 100. It is assumed that 50% of commuters are GoSharing
users, and the number of simultaneous launched hosts is less than
25% of total users. Thus, |Swinner | < 50 and M ≤ 12.5. Since
at most 10% hosts have stored the same common content, p ≤
5. Fig. 5 shows when a device has more than four connections,
download time will rise to quite long. Thus, the time complexity
is O(|Swinner ||G|M) < 50 · 25

· 12.5 = 2× 104, which is feasible in
our real scenario.

Specifically, when the bus is moving between two cell towers
with request calling, the soft hand-off technology is applied. That is
a cell phone simultaneously connected to two or more cells during
a request, such that server switch will not influence the normal
operation of our GoSharing for content sharing.

4.2.4. Approximate ratio analysis
It is supposed to analyze the approximation ratio achieved by

the proposed algorithm 1.

Theorem 3. The HS algorithm can obtain the approximate solution
with a factor of F(d), where F (d) =

∑d
p=1 (

1∑d
j=p rtj
× rtp ), d =

max |Λk| denotes the maximum size of completed tasks when any
candidate group Sk is selected.

Proof. Weassume thatS is the selected hosts byHS algorithm then∑
Sk∈S

∑
i∈Sk∩Scurr

bi =
∑
tj∈Λ

cprtj × vtj . (10)

where cprtj is the cpr value when tj is completed, and Λ is a set of
completed tasks.

The key of the analysis is to find out the upper bound of∑
i∈Sk∩Scurr

bi with the corresponding obtained value
∑

tj∈Λk∩Tuncom
cpr(Sk)× rtj , when candidate group Sk is selected.

Thus, we need to give an upper bound on the ratio∑
tj∈Λk∩Tuncom

cpr(Sk)× rtj∑
i∈Sk∩Scurr

bi
.

To simplify the notation, we assume that the set of tasks Λk

can be completed when the candidate group Sk is selected, that is
Λk = {t1, . . . , td}, where d = |Λk|. Furthermore, it is assumed
that these tasks are labeled in the order of cprtj computed by
GoSharing, i.e. {cprt1 ≤ cprt2 ≤ · · · ≤ cprtd}. In the pth iteration,
tp will be labeled completed, and where p ≤ d. Before tp is
labeled as completed, there are at least tp, tp+1, . . . , td tasks that
are uncompleted, noting {tp, tp+1, . . . , td} ⊆ Tuncom, i.e.

∑
tj∈Λk∩Tuncom

rtj ≥
d∑

j=p

rtj .

So we can have:∑
i∈Sk∩Scurr

bi∑
tj∈Λk∩Tuncom

rtj
≤

∑
i∈Sk∩Scurr

bi∑d
j=p rtj

.

In this iteration, HS selects a candidate groupSp with theminimum
cpr , and so we have

cprtp =

∑
i∈Sp∩Scurr bi∑

tj∈Λp∩Tuncom rtj
≤

∑
i∈Sk∩Scurr

bi∑
tj∈Λk∩Tuncom

rtj
≤

∑
i∈Sk∩Scurr

bi∑d
j=p rtj

.

Here we add up these inequalities for all tasks ∈ Λk.∑
tj∈Λk∩Tuncom

cpr(Sk)× rtj =
d∑

p=1

cprtp × rtp ≤

d∑
p=1

∑
i∈Sk∩Scurr

bi∑d
j=p vtj

× rtp =
∑

i∈Sk∩Scurr

bi ·
d∑

p=1

(
1∑d
j=p rtj

× rtp ). (11)

With the replacement of F (d) =
∑d

p=1 (
1∑d

j=p rtj
× rtp ), we can

obtain the∑
i∈Sk∩Scurr

bi ≥
1

F (d)

∑
tj∈Λk∩Tuncom

cpr(Sk) · rtj .

Let S∗ denote the optimum selected winners, so that∑
i∈S∗

bi =
∑

Sk∈S∗

∑
i∈Sk∩Scurr

bi

≥

∑
Sk∈S∗

1
F (d)

∑
tj∈Λk∩Tuncom

cpr(Sk) · rtj

=
1

F (d)

∑
Sk∈S∗

∑
tj∈Λk∩Tuncom

cpr(Sk) · rtj . (12)

Because in every iteration, HS always selects the candidate group
with the minimum cpr , we have∑
Sk∈S∗

∑
tj∈Λk∩Tuncom

cpr(Sk) · vtj ≥
∑
tj∈Λ

cprtj · vtj .
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Finally, combined with Eqs. (10) and (12), we get the desired
bound,∑
i∈S∗

bi ≥
1

F (d)

∑
Sk∈S∗

∑
tj∈Λk∩Tuncom

cpr(Sk) · vtj

≥
1

F (d)

∑
tj∈Λ

cprtj · vtj =
1

F (d)

∑
Sk∈S

∑
i∈Sk∩Scurr

bi

=
1

F (d)

∑
i∈S

bi. □ (13)

5. Performance evaluation

To evaluate the performance of the AI incentivemechanism, we
exploit the following metrics through the simulation experiments.

1. Social cost (C): The total cost of selected hosts. In the host
selection period, we aim to choose the hosts to minimize a
server’s total payment, subject to the given server’s revenue
target. Note that social cost is the minimum payment by a
non-truthful mechanism [12].

2. Approximation ratio (R): This is the main metric demon-
strating the performance of the HS algorithm. It illustrates
how the HS greedy algorithm approaches the optimal solu-
tion (denoted by OPT). R = CM

OPT where CM is the obtained
social cost by using mechanism M.

3. Overpayment ratio: It is computed as γ = P−C
C , where P

denotes the total payment by applying our truthful mech-
anism. Hence, the overpayment ratio characterizes the cost
that the server overpays to guarantee truthfulness.

4. Utility of all hosts: We record the utility of all hosts to
show the property of Individual Rationality (defined in Sec-
tion 3.6).

5. Execution time: The total time of auction execution is the
time cost to find hosts plus the time cost of determining the
payment to each host winner.

5.1. Simulation setup

It is assumed that 50% of users on the bus or subway have
launched the GoSharing application. Let δ denote the average frac-
tion of hostswho can share the samemedia content in each auction
period. Since only a small portion of hosts have the same media
content, δ is expected to be relatively small and set to be δ = 0.2
in the following simulations. All simulations ran on a PC with 2.9
GHZ CPU and 4 GBmemory. Each simulation is repeated 100 times,
and the average values are reported as statistical results.

5.2. Case study:

To evaluate the performance of GoSharing in the bus case, the
revenue of each task completion (rtj ) and the sharing cost of each
host (ci) are uniformly distributed over [5, 10] and [1, 5], respec-
tively. If the capacity of one bus is 100, the maximum number
of hosts is 50. When the bus is in normal status, N follows the
uniformdistribution over [20, 30].When the number of passengers
is over 50, it is considered as a crowded state. Therefore, it is set N
distributed among [40, 50] uniformlywhen the bus is crowded. LQs
of hosts to request users are followed by Poisson distribution with
λ = 2.

5.2.1. Evaluation of approximation ratio
We first evaluate the performance of the HS algorithm of AI

incentive mechanism. Since the HS problem is NP-hard, it is time
consuming to obtain the optimal solution with the general ap-
proach, i.e. brute force search. Hence, the approximate ratio of
GoSharing is only evaluated in settings with a small scale, i.e. the
bus is in normal status. Specifically, the total number of hosts N is
less than 25, while the number of tasks M increases from 6 to 12
with a step of 2. Moreover, we set δ = 0.2 to define the average
fraction of hosts who can involve the same media sharing, and the
target revenue Rth is set as the total revenue of all task completion
minus 5.

Fig. 9(a) shows the approximate ratios of AI mechanism in
various settings. The numbers located over bars inside black boxes
mean its upper bound, calculated by F (d) function, while the num-
berswithout black boxes represent the practical approximate ratio.
It is clear that the social costs of the GoSharing method are very
close to its corresponding optimal solutions. With the expanded
scale of hosts, the social cost has a declining trend. The reason
is that the augment of hosts resource can make the server have
better choices. With the augment of M , the social cost increases
dramatically, shown in 9(b). This is because the server needs to
recruit more hosts to share more media files. From Fig. 9(b), it is
also observed that the upper bound of AI mechanism approximate
ratio increases along with the expanded size of download tasks.
This is due to the fact that the candidate group can complete more
tasks, d is therefore increased.

When the bus is crowded, the upper bound of approximate ratio
for AI mechanism is calculated by the function f (d), as plotted in
Fig. 9(c). The social cost tends to keep stable when the number
of download tasks is over 20, the same with the upper bound of
approximate ratio of AI mechanism. The reason is that there are
not enough hosts to complete the given tasks when the number
reaches 20.

5.2.2. Evaluation of overpayment ratio
We investigate the impact of the number of hosts (N) on the

overpayment ratio. N is varied from 20 to 50with the increment of
10, and M from 5 to 15 with the step of 5. As shown in Fig. 10(a),
the overpayment ratio of the AI auction keeps below 0.5 under
differentM andN , indicating the AI auctionwith low overpayment
cost for the truthful property. With the increase of N , the overpay-
ment ratio is descending. The reason is that the difference of the
cost of the candidate groups with the minimum cost and second
minimum cost is suppressed with the expanding number of candi-
date groups. In addition, with the increase of M , the overpayment
ratio rises accordingly. That is because the number of host winners
increases for sharing more media files.

Fig. 10(b) shows that the social cost decreases with the rising
number of hosts but increases along with the increasing number
of tasks. Also, the social cost is not significantly impacted by the
host numbers whenM is in small scale.

5.2.3. Evaluation of individual rationality
In order to show all users have non-negative utility, we depict

the empirical CDF (Cumulative Distribution Function) of the utility
for all hosts under various settings. From Fig. 11(a), it is observed
that the proportion of hosts with negative utility is zero. The utility
with zero is corresponding to the proportion of unselected hosts in
y-axis in Fig. 11(a). All hosts have non-negative utility, and the AI
auction mechanism achieves the property of individual rationality
(see Section 3.6).
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Fig. 9. Approximate ratio under various conditions. (a) and (b) The impact of N and M on approximate ratio; (c) Approximate ratio when the bus is crowded.

Fig. 10. The impact of N and M on overpayment ratio and social cost.

5.2.4. Evaluation of computational efficiency
Fig. 11(b) demonstrates the computational efficiency of the AI

mechanism with different settings, and shows the execution time
of all cases is under 10 s. The study in [24] shows that users will
keep their patience when the response time in man–computer
conversational transactions is less than 10 s. Therefore, the AI
auction mechanism has high computational efficiency in the bus
scenario.

6. Related work

The contribution of our work lies in the intersection of two
important cutting-edge research topics. (1) Cooperative mobile
opportunistic systems; (2) Incentive mechanisms. Combining the

above cases, a fundamentally new incentive mechanism is pro-
posed to solve the cooperative allocation of multiple tasks in this
paper.

6.1. Cooperative mobile opportunistic systems

Mobile users usually have temporal and spatial correlations,
which can be exploited for task allocation to improve communica-
tion quality. Taking the geographical proximity into account, [12]
presents a collaborative sensing system for mobile crowdsourcing.
Based on the virtual opportunistic community associated with
an event, [25] presents several event detection methods toward
real-time and cooperative mobile visual sensing and sharing. In
order to handle the contradiction between dynamic user traffic
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Fig. 11. Individual rationality and computational efficiency of GoSharing mechanism.

and fixed data plans, [26] builds a collaborative sharing system
of data plans to make users help neighbors for data download.
Authors of [6] consider a scenario in which a group of smartphone
users in proximity are interested in the same video and propose a
MicroCast system to use the resource on groups of smartphones
in a cooperative way for a better streaming experience. Under
the assumption of packets being spatial–temporal correlated, [27]
presents a cooperative sensing and data forwarding framework to
tradeoff delivery delay and transmission overhead. Although the
above applications make use of the spatial information for data
offloading or media sharing, they are not suitable for the scenario
of transient get-together, such as urban transport for its special
requirements. While some works have shared similar scenarios as
this paper [1,5], none of them consider the cooperative approach
to improve the download quality of media content.

Furthermore, there aremany cooperation strategies amongmo-
bile devices for content dissemination or resource sharing in delay
tolerant and opportunistic networks, based on social ties [7,28].
However, they use the single-host delivery model, which cannot
solve the download problem of poor quality. More importantly, we
exploit amulti-hostmodel, as opposed to the single-hostmodel, to
improve the reliability of the GoSharing system.

6.2. Incentive mechanisms

[9] presents incentive mechanisms for both platform-centric
anduser-centricmodels. However, on the onehand, in its platform-
centric model, it assumes that users and the platform have knowl-
edge of users’ costs, which is neither practical in most mobile
sensing systems nor feasible for the cooperative wireless system.
On the other hand, in its user-centric model, it designs an auction
mechanism for tasks without taking users’ cooperation into con-
sideration. Authors of [29,30] design feasible recruitment models
for piggyback crowdsensing under the constraints of coverage
quality. Introducing a novel metric, users’ quality of information
(QoI) into mobile crowdsensing systems, both the single-minded
and multi-minded combinatorial auction models are proposed to
incentivize user participation [31]. Some research pays attention
to the incentive mechanisms based on social networks or social
cloud systems [8,32], which fails to be applied directly for our co-
operative content sharing system. The authors of [10] consider the
cooperative task individually, thus it cannot be directly extended
to the cooperative system with multiple correlated tasks.

In addition, [33] and [34] study the online incentive mecha-
nisms for multiple opportunistic users and the real-time require-
ment, which cannot handle the uncertainty of public transport
environments. [35] presents a bargaining game theoretic method
for virtual resource allocation in cellular networks, which ignores
the mobile edge networks.

To the best of our knowledge, this is the first paper to undertake
comprehensive research on the truthful incentive mechanism for
cooperative systems to share content in mobile edge networks. In
this paper, we propose a novel GoSharing framework which uses
the stored resources on mobile devices within proximity to share
popular content cooperatively. Furthermore, a corresponding AI
auction mechanism is proposed for motivating media hosts to
share their resources based on QoS requirements, while minimiz-
ing the payment of the server as well as keeping users giving their
truthful bids.

7. Conclusion

The edge storage of mobile devices and costly charge of cellular
network leads to the necessity of content exchange among neigh-
boring commuters. Moreover, the short-range wireless network
interface provides the technical support. In this paper, we propose
GoSharing to encourage a group of hosts within proximity to
share content cooperatively. Our GoSharing is objective to find the
effective solutionwhich canminimize incentive cost, subject to the
target revenues.

To this end, we first develop a network QoSmodel based on real
measurements to solve the tradeoff between download time and
download ratio. To handle the tradeoff and exploit users’ associa-
tion, a smart data filter method, namely a Fast Candidate Genera-
tion algorithm is presented. After the candidate groups filtered, a
new Host Selection algorithm, which is to find a set of candidate
groups with minimum social cost to share content. Furthermore, a
novel Payment Determination algorithm is developed to guarantee
the truthfulness of each host. Eventually, both theoretical anal-
ysis and extensive simulations demonstrate that the GoSharing
incentive framework achieves not only truthfulness, individual
rationality, high computational efficiency in real scenarios and low
overpayment ratio, but also highdownloaddelivery and acceptable
download time.

An interesting further extension of this work is to consider both
the strategies of hosts and request users, such that we can obtain
a better match for content sharing. The online scenario and the
impact of users’ mobility will be deeply analyzed for the future.
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