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• An adaptive EDC authentication technique with the help of a centralized cloud datacenter.
• Authentication is initiated by the cloud and then all EDCs authenticate with each other.
• Sustainable load balancing technique by considering the load of the destination EDCs.
• The proposed approach combines both the authentication and load balancing technique.
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a b s t r a c t

Edge computing is an emerging research area to incorporate cloud computing into edge network devices.
An Edge datacenter, also referred to as EDC, processes data streams and user requests in real-time and is
therefore used to decrease the latency and congestion in the network. EDC is usually setup as a distributed
system and is accordingly placed between the cloud datacenter and the data source. These EDCs work
as an intermediate layer in the fog hierarchy between IoT and Cloud datacenter. EDC’s are aided by
load balancers, responsible for distributing the workload amongst multiple EDC, in order to optimize
resource utilization and response time. The load balancersmake sure that theworkload is equally divided
amongst the available EDCs to avoid over loading of some EDCs while other remain idle as this directly
impacts the user response and real-time event detection. Given the fact that EDCs are deployed in remote
environments, the need for secure authentication is ofmajor importance. In this paperwe propose a novel
load balancing technique that enables EDC authentication as well as identification of idle EDCs for better
load balancing. The proposed load balancing technique is also compared with existing approaches and
proves to be more efficient in locating EDC’s with less workload. In addition to the improved efficiency,
the proposed scheme also strengthens the security of the network by incorporating destination EDC
authentication.

CrownCopyright© 2018 Published by Elsevier Inc. All rights reserved.

1. Introduction

An overlapping of the features of cloud along with additional
attributes, such as location awareness and EDC deployment, is
referred to as fog computing. When distributed geographically in
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large numbers, EDC’s can provide mobile, low latency data trans-
parency to achieve real-time requests and responses [12]. As a pop-
ular choice in providing scalable computation, cloud computing
can process large amounts of data (referred as big data), provide
storage and provision resources based on the user requirements.
Fog computing proposes the migration of cloud resources over
to EDCs which are then deployed across the network [21]. The
fog computing has various proposed architecture that link it with
the edge deployment. A block diagram of the three architectural
layers of fog computing is portrayed in Fig. 1. The model begins
with the bottom layer compromising of various terminal devices,
such as wireless sensors and smart devices, that are responsible
for the transmission of data onto the upper layers. The second
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layer of the model comprises mainly of highly intelligent devices,
such as the routers, switches and gateways that aid the network.
Some architecture models are known to divide the middle layer,
Edge Layer, into its two components; the edge device and the
edge datacenter, however in a fog computing architecture these
two component layers are combined into a single edge layer. The
topmost layer (also the third layer) comprises of several high-end
servers, known as fog servers, and acts as a cloud datacenter. These
cloud datacenters, when deployed, also contain user response fa-
cilities and occupy the topmost layer of the fog architecture. The
fog computing is defined as a combination of the above-stated
three layers as portrayed in Fig. 2 along with its comprehensive
architecture and various modules.

As computing environments achieve great advancements, the
EDC service’s availability in fog computing has also improved rais-
ing a lot of attention towards the load balancing problem faced
by EDCs. Various research models have been proposed in order
to solve the load balancing problem, however they fail to ade-
quately address the concerns regarding EDC authentication. Given
that EDC deployment is usually in remote unattended scenarios,
authentication is an important step before any load balancing takes
place. In addition, as network structure for an EDC deployment is
distributed, the load balancing also works in a distributed scenario
and is classified into dynamic load balancing and static load bal-
ancing [1].

In the static load balancing technique, the performance function
is minimized by providing a set of teaks to the specific EDCs. This
can be achieved using either deterministic means or probabilistic
means. According to the deterministic balancing technique, EDC-
I is responsible for allocation of tasks to EDC-J each time it is
required. However, in a probabilistic balancing technique, the al-
location of tasks done by EDC-I to EDC-K is with a probability x
and similarly for EDC-L is with a probability y. A major drawback
of static load balancing is due to the fact that it does not take
into account the status of the destination EDC when deciding the
load balancing. The dynamic load balancing takes amore real-time
approach by considering the current load over individual EDC and
accordingly suggest a destination EDC. This enables the tasks to
be assigned dynamically from an overloaded EDC to an under-
loaded or idle EDC. Compared to the static approach, the dynamic
approach is much difficult to implement, however it provides a
better solution towards achieving a sustainable solution to load
balancing. Given the above benefits, this paper considers the dy-
namic load balancing technique in the proposed solution

There are many solutions available to implement authenti-
cation over network systems, however none of them are suit-
able for the authentication of EDC. Due to the hostile nature of
EDC deployment, authentication become a major issue to identify
destination EDC before final assignment of incoming tasks. Ex-
isting authentication techniques authenticate the network edges
[8,9], whereas proposed authentication technique getting destina-
tions load information at the time of authentication. Which brings
novel properties to build sustainable load balancing with proper
authentications. In this paper we propose a secure authentication
method to select the EDC for load balancing. Below is a summary
of the main contributions made by our proposed approach:

• Our proposed approach uses a centralized cloud datacenter to
put forward an adaptive EDC authentication techniquewhich
once initiated enables the EDCs to authenticate each other
using the cloud credentials.

• The approach also considers the real-time load on each of
the destination EDCs to achieve dynamic load balancing. This
information is collected and also shared during the above-
mentioned authentication processminimizing any additional
communication that would have taken place if the informa-
tion was not shared.

• The proposed approach combines the above stated dynamic
load balancing technique along with the authentication and
apply it to the EDCs. The proposed scheme is also evaluated
for its performance to validate its efficiency and stability.

The remainder of the paper is organized as following. Section 2
discusses related works. Section 3 describes the proposed solution
for the secure and sustainable load balancing of the EDCs. Section 4
presents the formal security analysis and verification of ourmodel.
Section 5 evaluates the performance and efficiency of the proposed
solution through extensive experimentation. Section 6 covers the
conclusions and potential future directions.

2. Related works and problem analysis

A brief background study of related works and subsequently
problem analysis of the proposed method is described in this
section. This gives a clear understanding of the research problem
and a motivation to our proposed method.

2.1. Related works

IoT smart sensing devices, including mobile users, dump their
tasks to the nearest EDC [12]. As the source devices in this scenario
are mobile, the loads on different EDCs may vary depending upon
their location in the network. This can result in a disbalance of task
distribution as some EDCs in high activity area may be overloaded
whereas as others in a low activity area may be idling with very
less work load. There exist several works that proposed distinctive
strategies to address load balancing issues. When considering the
load balancing problem in EDC as an optimization problem, Jia
et al. [10] proposes a scalable algorithm that is able to redirect tasks
amongst a given set of EDCs in the network, thereby minimizing
the average response time. Willebeek-LeMair and Reeves [23] in
1993 proposed a tool for distributed systems that provided basic
load balancing, this initial tool have been made efficient towards
different scenarios and applications by the contributions of various
researchers. Tong et al. [21] also proposed a similar technique
that handles peak load while satisfying the requirements made
by remote program executions. Various other authors took the
concept of cloud server and hosted it in network edges in order
to design edge-computing architecture along with proposed al-
gorithms that maintain the load balancing efficiently. In order to
achieve geographical load balancing, the workloads are routed dy-
namically which overall help minimize energy consumption [25].
Zhang et al. [25] proposed an algorithm to solve the challenging
load balancing problem optimally and efficiently by discovering
the entire design space of strategic bidding. Tripathi et al. [22]
proposed a non-cooperative distributed load balancing algorithm
game to minimize the operating cost and obtain the structure of
Nash equilibrium. This method provides the approximate global
optimal solution in terms of the cost and it also ensures fairness
among the users. Wu et al. [19] presented a decentralized system
that detects short-term overload situations in a timely fashion and
optimally distributes the overload to remote datacenters by overall
response times. This method autonomously handles them using
geographical load balancing and admission control tominimize the
resulting performance degradation. Paya andMarinescu [13] intro-
duce an energy-aware operationmodel used for load balancing and
application by focusing on cloud scaling. The basic philosophy of
this method is defining an energy-optimal operation regime and
attempting to maximize the number of servers operating in this
regime. Fan et al. [5] proposed a novel load balancing approach
for mobile cloudlet or edges. This approach follows balls-and-bins
theory to handle extreme incoming loads and finally experimented
to validate their work.
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Fig. 1. Fog hierarchy with edge datacenter deployment.

Fig. 2. An all-inclusive architecture of edge datacenter deployment with complete data flow from IoT to cloud datacenter.

The need for security in an EDC deployment is discussed in [15]
based upon a study and classification of the current security is-
sues that impact EDCs. Various existing schemes and techniques
present their own way of dealing with the authentication problem
relevant to the network scenario. The authors Butun et al. [3]
propose a cloud-centric multi-level authentication scheme that
addresses constraints such as scalability, time and effectiveness.
Their proposed scheme is aimed towards connected devices in the
Internet of Things by providing an authentication technique for
public safety. He and Zeadally [7] analyze the overall architecture
associated with security requirements and propose an efficient
authentication technique, with a focus on healthcare technology,
that works for body area network. Another authentication scheme
proposed by He et al. [8] uses anonymous authentication for a
similar wireless body area network. Taking in account the current
cyber threat scenarios, system identification protection can be
achieved by developing a security perimeter [14]. Jan et al. [9] pro-
posed a lightweight payload-based mutual authentication scheme
for a cluster-based sensor networks. This method initially elects
the cluster heads, authenticates, and allows communication with
neighboring nodes and subsequently the cluster head authenti-
cates the nearby nodes for cluster formation. This remains a chal-
lenging task for the EDC, as EDCs are deployed in an open access
network. There is a need for a new authentication scheme for EDC
load balancing, a need addressed by this paper.

2.2. Problem analysis

Edge computing and fog computing is still an open research
problem where lots of researchers are focusing to bring cloud
resources to network edges [4,17]. This will facilitate processing
of the data in edge datacenters for emergency data processing and
quick responses. EDCs are distributed in nature and deployed with
network edges for quick response on user queries. As EDCs are
deployed in the network edges, they do not have enough resources
and computing power like cloud [6]. As a result, EDCs easily get

overloadedwith incoming tasks. Another prominent issuewith the
cyber threats is of hostile/open deployment [15]. So, not selecting
a fraudulent or malicious EDC for load balancing is still an open
challenge. Finally, we conclude that the following two issues are
really important for edge computing and subsequently develop a
novel method to avoid the issues.

1. Securely authenticate and select the recipient EDC to share
loads.

2. Efficient load balancingmethod to balance the load between
EDCs.

3. Proposed method

As stated previously and based on a recent literature review,
an architecture that can authenticate the edge datacenter before
allocating tasks does not exist. Hence, the authors propose a novel
architecture that not only authenticates but also collects the cur-
rent load information on the EDCs before assigning it any tasks.
The following subsections send light over the complete procedure
opted for the proposed load balancing technique, this includes
a discussion of the secure authentication process for the EDCs
followed by the sustainable load balancing technique. The notation
used in the proposed method description is listed in Table 1.

3.1. Secure authentication

As per the fog computing architecture, all the data must be
stored and processed in the cloud. In such a network EDCs are
intermediate datacenters that aid the network and reduce latency
for user requests. The cloud deployment always takes place in a
secure environment and is considered as fully trusted, whereas
EDCs are considered as partially trusted as they are deployed at
the network edges. For this reason, we consider the cloud for the
initiation of the authentication process. This process begins with
the assigning of an initial ID (Ei) linked to the key (Ki) and the
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Table 1
Notation.
Acronym Description

EDC Edge datacenters
Cloud Cloud datacenters
Kc Cloud shared key
Ki/Kj Key of EDC-I and EDC-J
Ei ID of ith EDC
Ki Secret key of ith EDC
PrKi Private key of ith EDC
PuKi Public key of ith EDC
∥ Concatenation operation
ACK Acknowledgment

common shared key (Kc) for each EDC during the EDC deploy-
ment (Cloud → EDCs {Ei∥Ki∥Kc}). To store the secret information
provided by the cloud and the rekeying process, EDC’s use trusted
modules such as the Trusted Platform Module (TPM) [16]. Once
initialized, individual EDCs will begin the authentication process
to verify other EDCs in the neighborhood. This step prevents mali-
cious EDCs to join the load balancing in the future. The individual
keys exchange for EDCs is initialized and maintain by cloud data-
center or fog server.

Let us consider EDC-I as the edge datacenter that initiates the
authentication process. It will combine its own ID with the asso-
ciated key, it will then encrypt using the shared key initiated by
the cloud

(
EKc (Ei ∥ Ki)

)
. EDC-I will then broadcast the generated

packets to all available EDCs in the locality. Once an EDC receives
the authentication request packet, it uses the cloud shared key(
DKc (Ei ∥ Ki)

)
to decrypt it. Given that the cloud shared key re-

mains constant for all EDCs, it can be used for both encryption
and decryption process. A common shared key (Kc) is, however,
initiated by the cloud and provided to individual EDCs and is
also trusted by other EDCs. When the destination EDC (EDC-J)
receives the source ID and the key associated with it, a check is
performed with the cloud to verify the authenticity of the source
EDC (EDC-J → Cloud {EKc

(
Ej ∥ EKj (Ei)

)
}). Subsequently the cloud

authenticates the EDC-J and uses the secret key to find the EDC-
I ID. If cloud found EDC-I is a authenticated node by checking
its’ own database, subsequently cloud respond the ACK to EDC-
J (EKj (Ei ∥ Ki)) by encrypting with recipient’s secret key. In case
of unauthenticated EDC-I, the cloud responds to EDC-J declining
the authentication request. Cloud confirm everything about the
authentication process, followed by EDC-J keeps EDC-I details as
an authenticated EDC. Then EDC-J concatenates associate key with
its own ID and encrypts them using source associated key such
as

(
EKi

(
Ej ∥ Kj

))
. Upon receiving the encrypted packets by EDC-

I, it uses own secret key for decryption and send authentication
details to the cloud for EDC-J verification. The encrypted packet
is of the format

(
EKc

(
Ei ∥ EKi

(
Ej

)))
, where Ej is encrypted with

source EDC-I associate key. This combines own ID to generate
an encrypted packet using cloud shared key. EDC-J decrypts the
encrypted packet using own shared key after receiving confirma-
tion from cloud datacentre and then retrieves the associated key
of Ej

(
Ej → Kj

)
and validate EDC-J. Once the process is validated,

cloud concatenates Ej, the associated key (Kj) and encrypts with
EDC-I associated key (Ki) to send it back to EDC-I. EDC-I decrypts
it to find the key (K ′

j ) after receiving the encrypted packet, which
compares with the associated key received from EDC-J. If a match
found i.e. Kj = K ′

j , then EDC-I combines the ID of EDC-I and
EDC-J and use destination associate key (Kj) for encryption. This
combined packet is received by the EDC-J, which confirms both
EDC-I and EDC-J are now authenticated to each other for load bal-
ancing. Proposed authentication model follows a straight forward
method to get authentication information from cloud datacentres.
Algorithm 1 gives stepwise process of authentication between

edge datacentres. Followed by, individual EDCs generate their key
pairs, i.e. public

(
PuKi/j

)
and private

(
PrKi/j

)
key pairs and broadcast

the public key
(
PuKi/j

)
for further use by the EDC (see Fig. 3).

3.2. Secure load balancing

Our proposed solution implies the breadth first search (BFS)
technique for the design of the load balancer [2]. The scheme uses
two parameters m and n to keep a check on the load on each
EDC; where the current load is defined by m and the processing
capacity is defined by n. To calculate the current load on an EDC,
the parameter p is used where p = m/n. Each EDC receives a load
balancing request from its neighboring EDCs.

For instance, if EDC-I overloads, it will broadcast a control
packet, containing its own ID and load information (Ei, Li), as a
request to other EDCs in its vicinity. Here, the Ei defines the ID
of the EDC sending the request and Li defines the received load
information. A neighboring EDC (referred to as EDC-J) will perform
a check on the received ID by comparing it with its own database.
If a match is found, EDC-J will look for load information from the
control packets, however if amatch is not found the EDCwill ignore
the packet in order to avoid a possible DDoS attack.

While processing the load sharing information at EDC-I, the
recipient EDC (i.e. EDC-J) checks the load information using value
of p. If the value of p is less than or equal to 0.6 (i.e. close to 40% free
resources) and the available resource index (i.e.n-m) to execute the
invited tasks from EDC-I, then EDC-J initiate to prepare the positive
ACK to EDC-I. If recipient i.e. EDC-J found the available resource is
more than the required resource to process the invited task, then
EDC-J processes the positive response packet to the EDC-I. Other-
wise, EDC-J remain silent and never respond to the EDC-I. If both
the condition satisfies, EDC-J prepares response and includes own
identity (Ej), associated key and the status of datacenter available
resource (i.e. p). Finally, the response packet is encrypted with the
public key of the destination EDC-I i.e. kpui,

(
EKpui

(
Ej∥Kj∥p

))
and

sends it to the EDC-I for further processing of load sharing. Upon
receiving the encrypted data packets, EDC-I apply own private key
i.e. Kprito decrypt the data packets

(
DKpri

(
Ej∥Kj∥p

))
. Followed by,

EDC-I verifies the source ID (Ej) of encrypted packet and likenswith
its own database to find match for authentication. If a match is
found, EDC-I excerpts the source device key (k′

j) and compares the
associated key with the received key (k′

j = kj). In case of match,
EDC-I accepts the ACK fromEDC-J, else ignore to avoidDDoS attack.
In an analogousway, EDC-I receives numerous replies fromvarious
EDCs in the region. EDC-I compares the values of p from all the au-
thenticated response (ACK) to find the less loaded EDCwith lowest
value of p. Finally, EDC-I sends tasks to the selected authenticated
EDCs to process them. Algorithm 2 defines the stepwise procedure
of secure load balancing process.

4. Security evaluation

The proposed authenticationmodel is evaluated using a combi-
nation of theoretical analysis and formal verification, both ofwhich
are discussed below in detail.

4.1. Security proof

Definition (Attack on Authentication). An intruder ‘‘Ma’’ launches
an attack on the authenticity and has the capability to monitor,
intercept and introducing itself as an authenticated EDC in order to
start the load balancing process. Possible attacks for this category
include impersonation attack and identity-based attacks [16].
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Fig. 3. Stepwise information and credential flow for the secure authentication of EDCs.

Definition (Attack on Confidentiality). A malicious attacker ‘‘Mc’’
is an unauthorized party which has the ability to access or view

the task information while sharing loads between EDC-I and EDC-
J [16].
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Definition (Attack on Integrity). An attacker ‘‘Mi’’ can attack on
reliability if it is capable of monitoring the load information and
trying to access and/or modify the tasks between EDCs [16].

Theorem 1. It is impossible for an attacker Ma to read the secret
credentials of EDC to introduce itself as an authenticated EDC to
participate in load balancing.

Proof. Following the above definition of attack on authenticity and
computational hardness of TPMmodule (a secure module of EDC),
we believe that attackerMa cannot get the secret information such
as Ei, Ki and Kc initiated by the cloud. All the secure information for
authentication is initiated by the cloud datacenter during the EDC
deployment. When EDCs start authenticating each other, they use
cloud shared key (Kc) to encrypt the initial authentication packet(
EKc (EDCi ∥ Ki)

)
followed by individual associate keys of EDCs

(Ki/j). Proposed technique follows AES encryption during the initial
authentication which is already proved that it would take years to
break the transaction with current processing capabilities [16]. In
our real-world experiment, we found AES 128-bit keys take 1.9e19
days and AES 64-bit keys take 11415 days to find all possible keys.

Thus, it is close to impossible for network intruders to monitor
the network thoroughly and get the authentication credentials.
During the authentication process, individual EDCs use their secure
module (such as TPM) to keep their keys for encryption or decryp-
tion. Hence, it is nearly impossible to get either process or keys
from secure module, following TPM properties. Consequently, we
conclude that an attackerMa cannot attack on authenticity during
load balancing.

Theorem 2. An attacker Mc andMi cannot read the tasks and/or load
information during load balancing to break the data confidentiality
and integrity.

Proof. Proposed load balancing technique use standard asymmet-
ric key cryptography for encryption and decryption process after
secure authentication. It is already proved that asymmetric ismuch
more secure than symmetric cryptography, whereas asymmetric
cryptography needsmore computational power compared to sym-
metric cryptography . While load balancing, EDC-I broadcasts a re-
quest packet with its own identity and load information i.e. (Ei, Li)
in format

(
EKc (EDCi ∥ Ki)

)
fromAlgorithm 1, which is proved to be

secure by maintaining authenticity (See Theorem 1). Upon receiv-
ing load information, recipient EDC responds to the EDC-I by en-
crypting with the destination EDC’s public key i.e. EKpui

(
Ej∥Kj∥p

)
.

Subsequently, EDC-I uses its private key to decrypt the response(
DKpri

(
Ej∥Kj∥p

))
and find the details about the recipient EDC’s

identity (Ej). In summary, after authentication EDCs use public
private key pairs (PuKi/PrKi) for encryption and decryption.

In thewhole authentication process, intruderMc andMi cannot
participate in the load balancing process because of the hardness of
the asymmetric key cryptography. So, the process is secure against
attacks on confidentiality and integrity. The stepwise key exchange
and load balancing is shown in Algorithm 2.

Theorem 3. Proposed load balancing method provide sustainable
result by choosing less loaded recipient EDC for task sharing.

Proof. The reposed load balancing technique follows BFS (Breadth
First Search) method to share loads. Where, the graph defines as
G (V, E) for complete network and N(v) defines for the number of
neighbor nodes, where V is the EDC. σ (EDC1, EDC2, . . . EDCn) are
set of neighbors from the network. ∀ EDC∈V, all the n number of

EDCs are in the range for load sharing. Source EDC broadcasts the
overloaded information to get the recipient EDC to share the load.
Followed by, EDC received x number of responded where ∀ 1 ≤ x
≤ n.

As proposed technique following authentications method dur-
ing initial broadcast (refer Algorithm 1), EDC-I receives the re-
sponse in a format i.e. (EKpui

(
Ej∥Kj∥p

)
) from x number of EDCs. This

packet shows the information about the recipient EDC’s current
load (p) after identifying the authenticity of received data packets.
More importantly, recipient authenticated EDCs respond to this
request only if they have enough resources (p≤ 0.6 & Li ≪ (n−m))
to handle the multiple tasks.

To conclude, our method not only secures the process but also
identifies the less loaded recipient EDCS to share loads.

4.2. Forward secrecy

By following a standard symmetric key cryptography proce-
dure for initial authentication of EDCs, shared keys are used for
a specific period of time before they are broken by any potential
attacker [16]. EDCs use the same key to verify the recipient EDC
authentication with cloud, as the authentication process happens
only once at the beginning of the EDCs initialization. However, if
an intruder gets the key for authentication, it is useless after ini-
tial authentication. Asymmetric key technique (i.e. public/private
keys) in initialized to encrypt the information in load balancing.

4.3. Formal security verification

We use the Scyther simulation environment [20] for the formal
verification of our proposed secure authentication scheme. The
security methods and flows are designed using Security Protocol
Description Language (.spdl) as supported by Scyther. The roles
of Ei and Ej are defined following the Scyther features; where the
authentication initiator (EDC-I) is defined by Ei and the destination
EDC for authentication (EDC-J) is defined by Ej. Our verification sce-
nario considers that both Ei and Ejpossess the security information,
which have been initiated by the cloud. The process begins with Ei
sending the packets to Ej and accordingly Ej responds to Eiwith the
load information. During this verification scenario we introduce
an authentication attack where a malicious adversary acquires the
authentication details of Ei and using it sends a malicious packet
to Ej in order to initiate the load balancing process. This scenario is
run 100 times with checks at intervals of 10 to verify any possible
attack on authenticity. In addition, the default properties of the
Scyther tool is also used to run the simulation.

Even though an attack model can comprise of various possible
attacks, for this particular scenariowe focusmore towards authen-
tication attacks. Authentication attacks can involve an attacker
being able to observe the communication between EDCs in order
to discover andma authentication patterns. Our assumption is that
any malicious EDC is able to observe and replicate the behavior of
an authenticated EDC for load balancing. As discussed previously,
our proposed solution uses trusted modules such as the TPM on
an EDC to store sensitive information such as the rekeying process
and the secret keys.

We ran the experiment using the Scyther environment for 100
iterations with checking at intervals of 10, as described above. The
simulation did not result in any successful authentication attack
during the entire runtime. Fig. 4 displays the security verification
result obtained from the Scyther environment showing that the
proposed security solution is secured against authentication at-
tack.



66 D. Puthal et al. / J. Parallel Distrib. Comput. 124 (2019) 60–69

Fig. 4. Scyther formal security verification result page.

5. Experiment and results

We have evaluated the performance of the proposed architec-
ture in two different environments such as in Matlab simulation
environment and in real time testbed.

5.1. Simulation findings

We have used Matlab simulation environment to evaluate the
performance of our proposed load balancing solution [11]. The
simulation was run on a Dell system with Intel Core i7 proces-
sor and 8GB of RAM. Each simulation instance was run 10 times
and an average value of the results obtained has been used for
the validation of our proposed scheme. For the experiment, 10
EDCs were initialized to evaluate the overall performance of the
proposed scheme. We have considered task arrival rate λi with
Poisson arrival process. The simulation process EDC-I is assumed
to be currently overloaded andwould perform load balancing upon
receiving additional tasks. Once EDC-I receives the additional tasks,
it starts the load balancing process by initiation the authentica-
tion to receive the destination EDC’s load information in order
to locate an idle or less loaded EDC to allocate the tasks. Once
EDC-I receives the load information from its neighboring EDCs,
it can assign the tasks to the least loaded ones. The simulation
also includes and evaluates benchmarks; random allocation, pro-
portional allocation, static and greedy allocation load balancing
technique. Alongwith benchmarking approach,we comparedwith
one recently published approach i.e CTOM [5]. For the random
allocation technique, the mobile cloudlet offloads its tasks to a
randomly selected neighbor. In comparison, the proportional allo-
cation technique uses a global load information query and selects
the most optimal option from its neighbors to offload the tasks.
Greedy load balancing technique follows greedy algorithm from
graph theory to allocate tasks to recipient EDC [24]. However, the
static allocation technique allocated the task to the same specified
destination every time. Finally, CTOM follows ball and bin theory
for efficient load balancing.

The initial results from the simulation are generated for our
proposed load balancing solution where a suitable EDC is selected
based on its current load. This is achieved using the same scenario
simulation setup as described above. Fig. 5 displays the simulation
results for a successful destination EDC discovery. The success
of finding a destination EDC is measured in percentage (%) and
as shown in the results, the proposed load balancing solution
obtained a 100% success rate. Proposed method collects recipi-
ent EDC’s load information at the time of authentication. After
successful authentication, overloaded EDC select less loaded EDC
as the recipient for load balancing. As a result, proposed method

achieves sustainable load balancing without additional communi-
cation. Due to the information collected by the proposed scheme
to find a suitable destination EDC, it is able to achieve sustainable
load balancing without additional communication. When com-
pared to other schemes, the CTOM, proportional and greedy alloca-
tion scheme performed better than the random and static schemes
as it also takes into account the load on the destination EDC before
allocating it a task. We also discovered that the proposed scheme
performed consistently with the increase in the number of tasks.
Hence, we can imply that the proposed load balancing solution
is both secure and efficient is destination EDC selection for load
sharing.

Response time of the destination EDC also plays a vital role in
improving the efficiency of the overall processing time. We also
considered the same simulation setup as above to compute the
response time. In a similar way, we compared the performance of
the proposed load balancing solution with CTOM, static, random,
proportional and greedy allocation. The result of the response
time performance metric is shown in Fig. 6. From the result, we
found that proportional and greedy allocation always provides bet-
ter performance compared to the other two existing techniques.
However, the proposed load balancing performs better than the
proportional allocation technique. At the same time, the proposed
solution also authenticated the destination EDCs before load bal-
ancing. This shows that the proposed load balancing solution has
better response time compared to other existing techniques even
after the secure authentication process.

This paper integrated the authentication mechanism with load
balancing for first time in distributed edge datacenters. So, prefer
to compare performance of our proposed method with the bench-
mark schemes such as static, random, greedy and proportional
allocation. Along with that, we also found our technique performs
better than CTOM method. Finally, we conclude that, our method
performs efficiently for load balancing even after additional au-
thentication properties.

5.2. Testbed implementation

The overall real-time evaluation of the proposed method is
evaluated in this subsection. This testbed evaluation section is
divided into two parts such as testbed configuration and testbed
performance as follows.

5.2.1. Testbed configuration
We have deployed the testbed in a real-time environment to

compute the performance of the model proposed in this paper.
This paper has considered Raspberry Pi as the edge datacenters
and a computer with DigitalOcean cloud setup. The cloud config-
ured computer configuration is a Dell computer with Intel Core
i7 processor and 8 GB RAM. The Raspberry Pi configuration is
1.2 GHz 64/32-bit quad-core ARM Cortex-A53 CPU, 1 GB LPDDR2
RAM at 900 MHz and Broadcom BCM2837 system-on-chip. All
the devices (i.e. both cloud and Raspberry Pi) are connected to
the internet for recent updates and EDCs (Raspberry Pi) are in
WiFi communication to share their loads. In order to pass loads,
there are three sensors (such as temperature, humidity and touch
sensors) connected to a Raspberry Pi (EDC-I) to collect data streams
for evaluation [18]. Where, EDCs work as intermediate devices to
cloud with limited resources. When the first Raspberry Pi (EDC-
I) is overloaded it sends a request to other two Raspberry Pis for
sharing loads. Cloud has been deployed with MySQL database and
Kafka server to process data, whereas Raspberry Pi deployed with
lightweight MySQL (SQLite) database and Kafka server to process
data. Fig. 7 shows the complete setup for the testbed performance.
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Fig. 5. Percentage of successfully selecting the destination EDCs for load balancing.

Fig. 6. Response time of destination EDC for load balancing.

Fig. 7. Testbed implementation of EDCs for load balancing.

5.2.2. Testbed performance
All the Raspberry Pis are initialized with predefined shared and

public/private key pairs by omitting the initial authentication pro-
cess in our testbed. The Raspberry Pi (EDC-I) connected to sensors
receive the continuous data streams. EDC-I store sensing data in
the data base and evaluate in real-time.We set the threshold at 60%
of the total size of the database, once the amount of data reaches

that threshold value, the initial Raspberry Pi (EDC-I) starts sending
requests to other authentication Raspberry Pis (EDCs) in the com-
munication range to share loads as shown in Fig. 7. The response
time for load balancing between the EDCs is shown in Fig. 8. This
figure concludes that the response time always depends on the
network size, so it is showing small response time while we are
considering a small network using only three Raspberry Pis. As is
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Fig. 8. Load balancing performance in a simple three EDC testbed implementation.

also shown in the simulation results from Fig. 6, the proposed load
balancing achieves comparatively better performance than stan-
dard techniques.Wehave achieved equivalent results from testbed
implementation. The last bar (named Proposed Solution) combines
the authentication technique during load balancing. Even after ad-
dressing secure authentication, the proposed technique performs
better in comparison to other traditional techniques.

From the above theoretical and experimental evaluation, we
conclude that the proposed load balancing solution is not only
sustainable, but also secured. This improves the load balancing
performance of EDCs in fog computing environments. This testbed
implementation aims to provide the validation of proposed tech-
nique in real-time networks. The performance of proposed tech-
nique does not achieve high performance compared to standard
techniques. However, proposed technique performs efficiently af-
ter introducing security mechanism to load balancing i.e. our tech-
nique is secure and sustainable in load balancing.

6. Conclusion

This paper presented our proposed load balancing solution for
EDCs that is both secure and sustainable and oriented towards a fog
computing environment. The proposed load balancing solution is
a combination of two major components; the first component fo-
cuses on providing a secure authentication of the EDCs in the local-
ity using a cloud initiated credentials while the second component
enhances the performance by collecting information for improving
load balancing to avoid overloading of some EDCs while other
EDCs are idle or on a low load. We conduct a theoretical analysis
along with an experimental evaluation to evaluate our proposed
load balancing solution. Based on the results obtained from the
performance evaluation and comparison, we can conclude that our
proposed solution is both secure and sustainable. This is achieved
by collecting the current workload on each destination EDC during
the authentication process. In addition, the proposed scheme also
addresses the security concerns related to the remote deployment
of the EDCs by proposing security solutions that prevent outsider
attacks and the authentication scheme that avoids malicious EDCs
from gaining access to the network.

The future scope of the proposed solution is in expanding the
research areas and proposing lightweight security solutions to
improve the security aswell as the load balancing performance and
efficiency for EDCs in fog computing environments. In addition, the
authors also aim to build a real-time testbed in order to implement
the proposed security and load balancing schemes.
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