
00

Orchestrating Big Data Analysis Workflows in the Cloud: Research
Challenges, Survey, and Future Directions

MUTAZ BARIKA, University of Tasmania
SAURABH GARG, University of Tasmania
ALBERT Y. ZOMAYA, University of Sydney
LIZHE WANG, China University of Geoscience (Wuhan)
AAD VAN MOORSEL, Newcastle University
RAJIV RANJAN, Chinese University of Geoscienes and Newcastle University

Interest in processing big data has increased rapidly to gain insights that can transform businesses, government policies and
research outcomes. This has led to advancement in communication, programming and processing technologies, including
Cloud computing services and technologies such as Hadoop, Spark and Storm. This trend also affects the needs of analytical
applications, which are no longer monolithic but composed of several individual analytical steps running in the form of a
workflow. These Big Data Workflows are vastly different in nature from traditional workflows. Researchers are currently
facing the challenge of how to orchestrate and manage the execution of such workflows. In this paper, we discuss in detail
orchestration requirements of these workflows as well as the challenges in achieving these requirements. We also survey
current trends and research that supports orchestration of big data workflows and identify open research challenges to guide
future developments in this area.

CCS Concepts: • General and reference → Surveys and overviews; • Information systems → Data analytics; •
Computer systems organization → Cloud computing;

Additional Key Words and Phrases: Big Data, Cloud Computing, Workflow Orchestration, Requirements, Approaches

ACM Reference format:
Mutaz Barika, Saurabh Garg, Albert Y. Zomaya, Lizhe Wang, Aad van Moorsel, and Rajiv Ranjan. 2018. Orchestrating Big
Data Analysis Workflows in the Cloud: Research Challenges, Survey, and Future Directions. ACM Comput. Surv. XX, XX,
Article 00 (October 2018), 38 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
In recent years, Big Data has gained considerable attention from governments, academia and enterprises. The
term “big data" refers to collecting, analyzing and processing voluminous data. Those interested in big data are
looking for ways to efficiently store and analyze their large datasets to distill useful information [Chen and Zhang
2014]. However, it is difficult for traditional data processing platforms to process large datasets with a great
variety of types. Similarly, traditional data processing applications that relied on these platforms are incapable of
achieving the intended analytical insights to make better decisions. Hence, many big data platforms have recently
been proposed for transacting with big data, facilitating the design and building of big data analysis applications
to ingest, process as well as analyze tremendous volumes of data.
The complexity of supporting big data analysis is considerably larger than the perception created by recent

publicity. Unlike software solutions that are specifically developed for some application, big data analytics
solutions typically require to integrate existing trusted software components in order to execute the necessary

2018. 0360-0300/2018/10-ART00 $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

ACM Computing Surveys, Vol. XX, No. XX, Article 00. Publication date: October 2018.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

00:2 • Barika et al.

analytical tasks. These solutions need to support the high velocity, volume and variety of big data (i.e. 3Vs of big
data [Liu et al. 2016]) and thus should leverage the capabilities of cloud datacenter computation as well as storage
resources as much as possible. In particular, many of the current big data analytics solutions can be classified as
data-driven workflows, which integrate big data analytical activities in a workflow. Analytical tasks within these
big data workflow applications may require different big data platforms (e.g. Apache Hadoop or Storm) as well as
a large amount of computational and storage resources to process large volume and high velocity data. Intrusion
detection, disaster management, and bioinformatics applications are some examples of such applications.

Big data workflows are very different from traditional business and scientific workflows (see Appendix B), as
they have to continuously process heterogeneous data (batch and streaming data) and support multiple active
analytical tasks at each moment in time. Moreover, they involve analytical activities that have heterogeneous
platform and infrastructure requirements, and the overall workflows can be highly dynamic in nature, because
processing requirements at each step are determined by data flow dependencies (the data produced in earlier
steps in the workflow) as well as control flow dependencies (the structural orchestrations of data analysis steps
in the workflow). In addition, big data workflows are different from streaming operator graphs that formed by
streaming processing systems like Apache Storm and Flink, as they have heterogeneous analytical activities, and
involve multiple data sources that inject their data into upstream or/and downstream analytical activities and
multiple outputs; but these systems employ continuous operator model to process streaming data only and has
one cluster, and they form operator graph with one feeding data sources and one sink operator. Accordingly,
combining these challenges and complexities with heterogeneous compute resources that are available in Cloud
and Edge datacenters and users’ Quality of Service (QoS) requirements make managing the application execution
is a non-trivial task.
Unfortunately, the focus of previous taxonomy studies [Giaglis 2001][Yu and Buyya 2005] [Rahman et al.

2011][Mistrik, Bahsoon, Ali, Heisel, and Maxim Poo] are on either business processes and information systems
(for G. M. Giaglis [Giaglis 2001]) or Grid computing and application systems relied on such environment (for J. Yu
and R. Buyya [Yu and Buyya 2005] and Rahman et al. [Rahman et al. 2011]). Furthermore, these works considered
static workflows and lack of dealing with the heterogeneous and dynamism of big data workflows in cloud
and edge computing systems. Sakr et al. [Sakr et al. 2013] focused on big data analysis with MapReduce model
research, while Sakr et al. [Sakr et al. 2011] and Mansouri et al. [Mansouri et al. 2017] studied data management
aspects for deploying data-intensive applications in the cloud. These surveys are limited to investigate one aspect
of data-intensive applications. Moreover, Sakr et al. [Sakr et al. 2011] and [Mansouri et al. 2017] do not focus on
big data systems, and [Sakr et al. 2013] ignored that big data workflows are quite complex as each analytical task
is a workflow application in itself and various big data programming models can be orchestrated to enact such
workflow. Recently, Liu et al. [Liu et al. 2018] provided a survey of scheduling frameworks for various big data
systems and a taxonomy for the features of different categorises of these frameworks. This study focused on
scheduling problem and ignored other important dimensions of big data workflows orchestration process such as
workflow initialization and parallelization, and even other cloud-related aspects.

Big data workflow applications processing big data exhibit different patterns and performance requirements
that traditional workflow processing methods and current workflow management systems cannot handle the
execution of these applications efficiently. Therefore, we require research into new orchestration models as well
as orchestration platform and management technologies that can provide services to support the design of big
data workflows, selection of resources (including at platform and infrastructure), scheduling and deployment of
workflows. This need for future research drives us to answer the following research questions in this paper: (1)
what are the different models and requirements of big data workflow applications?, (2) what are the challenges
based on the nature of this type of workflow application and cloud + edge datacenters that we will face when
developing a new big data orchestration system? and (3) what are the current approaches, techniques, tools and
technologies to address these challenges?

ACM Computing Surveys, Vol. XX, No. XX, Article 00. Publication date: October 2018.

Orchestrating Big Data Analysis Workflows in the Cloud: Research Challenges, Survey, and Future Directions
• 00:3

To assist in this future aim and answer the above research questions, we identify the requirements of big data
workflow orchestration systems for management of such workflows execution on the cloud. We discuss the
current state of the art, provide research taxonomy and list open issues. The paper makes the following concrete
research contributions:

• An exhaustive survey of big data programming models (see Section 3.3). We further elaborate on this
survey to explain the relationship between big data programming models and workflows (Appendix A).
• Propose a comprehensive research taxonomy to allow effective exploration, assessment and comparison
of various big data workflow orchestration issues (see Section 5) across multiple levels (workflow, data
and cloud).
• Apply the proposed research taxonomy for surveying (see Section 6) a set of carefully chosen big data
workflow orchestration tools (see Appendix C), orchestration techniques, and research prototypes.
• Identify current open research issues (see Section 8) in the management of big data workflows based on
the literature survey and requirements.

This paper is structured as follows: Section 2 compares the proposed research taxonomy against the literature.
Section 3 presents a typical example of big data workflow that spans the three layers (workflow, data and cloud)
and its orchestration in a cloud system. Section 4 highlight the key important requirements of big data workflows
while in Section 5, we present a taxonomy for challenges in fulfilling those requirements. Section 6 presents the
current approaches and techniques to address these challenges. Section 7 reviews scientific workflow systems
with data-intensive capabilities and big data orchestrating systems, and discusses the capabilities of big data
orchestrating systems against the presented research taxonomy. Section 8 presents and discusses the open issues
for further research.

2 RELATED WORK: POSITIONING VERSUS EXISTING TAXONOMIES
Several previous studies[Giaglis 2001][Yu and Buyya 2005] [Rahman et al. 2011][Mistrik, Bahsoon, Ali, Heisel,
and Maxim Poo] focus on understanding either business process modelling or scientific workflow orchestration
tools and techniques. As discussed earlier, big data workflow applications present a unique set of requirements
that require a fresh perspective on researching orchestration tools and techniques.

In a narrow context, Liu et al. [Liu et al. 2018] provided a survey and taxonomy of existing big data workflow
orchestrators (e.g., YARN, Mesos), focussing on scheduling techniques. Sakr et al. [Sakr et al. 2013] provided a
survey of MapReduce-based approaches and techniques for the development of large-scale data analysis solutions.
In another paper, Sakr et al. [Sakr et al. 2011] presented a survey of big data storage solutions (e.g., HadoopDB,
HyperTable, Dryad) for managing big data in cloud environments. Similarly, Mansouri et al. [Mansouri et al.
2017] presented a taxonomy and survey of cloud-based big data storage management tools.
To the best of our knowledge, existing taxonomies and surveys are limited to one aspect of big data or data-

intensive applications (e.g., MapReduce data processing model [Sakr et al. 2013] or data management [Sakr
et al. 2011] [Mansouri et al. 2017]). In contrast, we present a holistic research taxonomy to understand end-
to-end issues related to orchestrating big data workflow applications on clouds. We propose a taxonomy that
gives exhaustive classification of big data workflow orchestration tools and techniques from the perspective of
additional (sub-)dimensions contributing to future development by giving "in-depth” analysis of existing works.
In other words, this work aims to alleviate the research gaps in understanding of the big data workflows.

ACM Computing Surveys, Vol. XX, No. XX, Article 00. Publication date: October 2018.

00:4 • Barika et al.

Fig. 1. An example workflow for anomaly detection over sensor data streams and its mapping to programming mod-
els/frameworks and cloud + edge datacenters.

3 BIG DATA WORKFLOW ORCHESTRATION

3.1 Representative Example of a Big Data Workflow
To aid understanding of big data workflows and the issue of orchestrating such workflow applications in the cloud
and edge resources, we present a typical example of anomaly detection (shown in Figure 1). It is a representation
of the workflow presented in [Ano 2015].
The data pipeline is used to analyze sensor data streams for online anomaly detection. The representation of

this workflow spans the three layers (workflow, data and cloud) is shown in Figure 1. First of all, the streams of
data (i.e. stream logs) are ingested in the pipeline by following a message ingestion model (i.e. Kafka), where
all events that are collected within a window of time are pre-processed by filtering and enriching them with
additional metadata, e.g. external timestamps. Next, aggregation of events is done, for example per region or
sensor type in a given window of time, which get clustered into different categories and later passed to pattern
matching step (last step). At the cluster events step, a clustering-based outlier detection algorithm will run in a
batch fashion over all produced aggregated events in order to generate outliers (possible/proposed anomalies).
After that, all outliers are mined to extract possible frequent patterns, and those extracted patterns are further
transformed into complex event processing queries reliant on the selected strategy. Finally, all patterns are
matched to output the outliers by constantly injecting the rules into distributed complex event processing engines,
and these engines perform continuous queries on the streams of data coming from either the pre-processing
step or aggregate step for online anomaly detection. Accordingly, the stream programming model is followed for
processing and analyzing sensor data streams ingested in this workflow to produce continuous insights (online
anomaly detection) by using Apache Storm [Ano 2015]; also, the anomaly patterns and analysis results generated
in this workflow could be stored in SQL or NoSQL databases.
From the above example, we can easily see that the analytical tasks included in the data pipeline require

seamless coordination for real-time and dynamic decision making handling different types of heterogeneity and
uncertainties such as changing in data velocity or data volume. That includes (1) fulfilling the need of diverse
computational models for pre-processing streams, aggregating and clustering events, and extracting possible
frequent patterns, (2) managing inter-dependent analytical tasks, where any change in execution and performance
characteristics of one can affects the downstream steps, and (3) match patterns analytical task need to take

ACM Computing Surveys, Vol. XX, No. XX, Article 00. Publication date: October 2018.

Orchestrating Big Data Analysis Workflows in the Cloud: Research Challenges, Survey, and Future Directions
• 00:5

the advantage of edge resources available at edge datacenters to perform edge analytics, avoiding any possible
latency. Therefore, to achieve this seamless execution for such types of workflow, various programming tasks
needs to be performed, leading to several challenges related to cloud + edge resources and data orchestration,
which span over three different levels (workflow, data and cloud).

3.2 Workflow Level
One of the aims of the big data workflow orchestration platform is to manage the sequence of analytical tasks
(formed workflow application) that needs to deal with static as well as dynamic datasets generated by various
data sources. This includes various programming tasks i.e. workflow composition and workflow mapping [Ranjan
et al. 2017]. Workflow composition is to combine different analytical tasks, where their workloads are dependent
on each other and any change made in the execution and characteristics of one step affects the others. Therefore,
different users of the workflow define their requirements and constraints from different contexts, resulting in
different analytical tasks of a workflow needing to be executed, where the requirements are not only different but
may also conflict with each others. Accordingly, a workflow orchestration system should provide the guidance
for domain experts to define and manage the entire pipeline of analytical tasks, data flow and control flow, and
their SLA and QoS needs. It can support different workflow orchestration techniques to compose heterogeneous
analytical tasks on cloud and edge resources including script-based (that defines composition flow using script
languages), event-based (that uses event rules defined in workflow language to provide responsive orchestration
process) or adaptive orchestration (that dynamically adopts composition flow in accordance to application and
execution environment needs). In Internet of Things (IoT) and Cyber-Physical Systems (CPS), processing large
amount of data streams from physical world, the real-time reactive to sensor events and dynamic management
of data flow all are needed [Seiger et al. 2018], thereby IoT and CPS workflows are adaptive workflows involve
event-driven tasks that sophistically analyses data streams to get analytical insights. These workflows can be
instilled into holistic big data pipeline and managed under the umbrella of big data workflow orchestration
system and techniques, as big data workflow supports dynamic and heterogeneous analytical activities, where
data arrives in different formats, at different volumes and at different speeds [Zhou and Garg 2015].
Workflow mapping is to map the graph of analytical tasks to big data programming platforms (e.g. batch

analytical task to Apache Hadoop, streaming analytical task to Apache Storm), cloud resources and edge resources.
It also needs to consider different configuration possibilities (configuration of each big data programming
framework, e.g. number of map and reduce tasks with Apache Hadoop in the context of batch processing,
configuration of cloud resources, e.g. the type of resource and the location of datacenter, configuration of edge
resources, e.g. type of edge device and network latency) This requires a cross-layer resources configuration
selection technique in the big data orchestration system to select custom configurations from plenty of possibilities.
As a result, several challenges have emerged due to the complexity and dynamism of big data workflow

including workflow specification languages, initialization, parallelization and scheduling, fault-tolerance and
security. Since the heterogeneous and dynamic nature of cloud + edge resources bring additional challenges (we
will discuss this at Cloud + Edge Datacenter level), these challenges further complicate those workflow-related
challenges.

3.3 Big Data Programming Models/Frameworks Level
The processing of big data requires heterogeneous big data programming models, where each one of them
provides a solution for one aspect. Within big data workflow, various computational models may be required
for involved analytical tasks, where one analytical task may also need distinct computation models based on
the characteristics of data (batch processing for static datasets, stream processing for dynamic datasets, hybrid
processing for static and dynamic datasets). SQL and NoSQL models are also utilized for storing data to cope

ACM Computing Surveys, Vol. XX, No. XX, Article 00. Publication date: October 2018.

00:6 • Barika et al.

with volume and velocity of data. Therefore, understanding these models is essential in selecting the right big
data processing framework for the type of data being processed and analyzed.
These different models cover ingesting, storing and processing of big data. The MapReduce programming

model (batch-oriented model) and stream programming model are used for data processing, NoSQL/SQL models
are used for data storage, and message ingestion models are used for data importing. In this section, we will
review these models and compare them to outline the main differences.
The complex and dynamic configuration requirements of big data workflow ecosystems calls for the need to

design and develop new orchestration platforms and techniques aimed at managing: (1) sequence of analytical
activities (formed workflow application) that needs to deal with static as well as dynamic datasets generated by
various data sources; (2) heterogeneous big data programming models; and (3) heterogeneous cloud resources.

3.3.1 MapReduce Programming Model. The MapReduce programming model [Dean and Ghemawat 2008] is a
leading batch-oriented parallel data programming model that is intended for processing complex and massive
volumes of data at once (static data) to gain insights. It was developed at Google Research, and relied on the
following functions: Map and Reduce. The input data (finite large datasets) is stored firstly in Hadoop Distributed
File System (HDFS). Then, the input data is split into smaller chunks and then these chunks are processed in
a parallel and distributed manner by Map tasks which generate intermediate key-value pairs. After that, these
pairs are aggregated by Reduce function. Due to the finiteness property, this model has the capability to perform
computation on data in stages, where it can wait until one stage of computation is done before beginning another
stage of computation, allowing it to perform jobs just as sorting all intermediate results globally [Hirzel et al.
2013]. Moreover, in respect of increasing future computation load, this model allows us to scale horizontally by
adding more workers to cope with such loads. This model exploits data locality to schedule computation task to
avoid unnecessary data transmission [Hu et al. 2014].

3.3.2 Stream Programming Model. In this model, data arrives in streams, which are assumed to be infinite and
are being processed and analyzed (in a parallel and distributed manner) as they arrive and as soon as possible to
produce incremental results [Hu et al. 2014] [Hirzel et al. 2013]. The sources of streams could be, for example,
mobile and smart devices, sensors and social media. Thus, the stream computation in the stream programming
model is assumed to process continuous incoming streams with low latency (i.e. seconds and minutes of delays),
instead of processing a very large dataset in hours and more [Lin et al. 2016]. There are two approaches to achieve
this kind of processing/computation. The native stream processing approach processes every event as it arrives
in succession, resulting in the lowest-possible latency, which is considered as the advantage of this approach;
nevertheless, the disadvantage of this approach is that it is computationally expensive because it processes
every incoming event. The micro-batch processing approach aims to decrease the cost of computation for the
processing stream by treating the stream as a sequence of smaller data batches; in this approach, the incoming
events are divided into batches by either time of arrival or once batch size hits a certain threshold, resulting
in the reduction of processing computational cost, but could also bring together more latency [Keenan 2016]
[Lopez et al. 2016]. With this model, stream computations are independent of each others, which means there is
no dependency or relation among them. Moreover, in respect of increasing future computation load, this model
allows us to scale vertically and horizontally to cope with such loads. Due to data-flow graphs implementing both
data programming models, the stream-programming model can emulate batch processing. Apache Storm is one
of the example of the stream processing platform. In addition to stream-oriented big data platforms, a number of
stream-oriented services are offered by various cloud providers, which deliver stream-oriented big data platforms
as services. Examples of these services are Microsoft Azure Stream Analytics and IBM Streaming Analytics.

3.3.3 NoSQL/SQL Models. For storing big data, there are two models, which are: NoSQL model and SQL
model. The NoSQL models (MongoDB, Amazon Dynamo, Cassandra, HyperTable, BigTable, HBase) provide

ACM Computing Surveys, Vol. XX, No. XX, Article 00. Publication date: October 2018.

Orchestrating Big Data Analysis Workflows in the Cloud: Research Challenges, Survey, and Future Directions
• 00:7

access capabilities reliant on transactional programming primitives in which a specific key allows a search
for a specific value. The use of these access primitives results in improving the scalability and predictions of
performance, making it suitable for storing huge amounts of unstructured data (such as mobile, communication
and social media data). SQL data stores (Oracle, SQL Server, MySQL, PostGreSQL) organize and manage data in
relational tables, where Structured Query Language as a generic language provides the ability to query as well as
manipulate data. In essence, when transactional integrity (ACID properties) is a strict requirement, these data
stores are more effective than NoSQL stores. However, both NoSQL and SQL data stores are likely to be used by
future big data applications, and that is driven by data varieties and querying needs. SQL Models (Apache Hive,
Apache Pig) provide the ability to query data over various cloud storage resources e.g. Amazon S3 and HDFS,
based on structured query language. In respect of increasing future load, the NoSQL model allows us to scale
horizontally using sharding or partitioning techniques to cope with this future load, while the SQL model has
limited capability to cope with such loads.

3.3.4 Message Ingestion Models. The message ingestion model is a publish-subscribe messaging pattern that
allows us to import data from various sources and inject it as messages (i.e. events/streams) into big data platforms
for processing to produce analytical insights, where the senders of messages are called publishers and the receivers
of messages are called subscribers. The stream computations are independent to each others, which means there
is no dependency or relation among them. Moreover, in respect of increasing future computation load, this
model can scale horizontally by adding more workers to cope with such load. Relying on these models, message
ingestion systems (such as Amazon Kinesis, Apache Kafka) acheives a durable, high-throughput, fault-tolerant
and low-latency queuing of streaming data.
AWS Kinesis is a cloud based stream platform offered by Amazon. It provides powerful services that allow

working easily with real-time streaming data (to load and analyze continuous data) in the AWS cloud, and the
ability to develop and build custom streaming data applications to meet specific needs.

3.3.5 Hybrid Models. To support applications requiring both batch and stream data processing, hybrid models
are developed. An example of a cloud service that implements hybrid data programming models (batch and
stream) is Google cloud Dataflow. It is a Google fully-managed service for stream data processing and batch
data processing as well. Dataflow is an unified execution framework and programming model for creating and
executing both batch and stream pipelines to load, process and analyze data, without having to pay attention to
operational tasks such as resource management and performance optimization. As an execution framework, it
handles the lifetime of resources transparently and provisions resources on demand to reduce latency while at the
same time maintaining high utilization efficiency. Moreover, as a unified programming model, it uses the Apache
Beam model that eliminates programming model switching cost between batch and streaming mode by providing
the ability for developers to represent the requirements of computation without taking into consideration the
data source.
Lambda Model − A batch-first approach uses batching for unifying batch and stream processing, where data

streams are treated as micro-batches (collection of small batches). It supports batch processing for historical
datasets to get insights according to the needs of users, and stream processing via micro-batching approach,
which is suitable for applications where the data collection and availability through dashboards have time delays,
and such data needs to be processed as it arrives [Kiran et al. 2015]. The Lambda model comprises three layers.
Batch layer as a first layer is responsible for storing the master dataset and periodically precomputing the views
of batch data. Speed layer as a second layer is responsible for processing online data as it is received in near
real-time fashion to minimize latency. Serving layer as a third layer is responsible for consolidating both by
combining the results from batch and speed layers to answer user queries. Lambda architecture achieves two
properities of big data, which are velocity and volume. By using such architecture, users can determine which
data parts need stream or batch processing in order to improve their data processing costs.

ACM Computing Surveys, Vol. XX, No. XX, Article 00. Publication date: October 2018.

00:8 • Barika et al.

Table 1. Comparison between big data programming models

Property
MapReduce Programming
Model

Stream Programming Model NoSQL/SQL Model Message Ingestion Model

Native Micro-batch
Data Flow Static Streaming Transactional Streaming
Data Volume Known (finite large datasets) Unknown (infinite continu-

ous events − small data)
Unknown (infinite
continuous events
– micro-batches (a
batch is finite set of
streamed data))

Known (structured data) Unknown (infinite continu-
ous events − small data)

Relation Dependent and synchronous
computations

Independent asynchronous
computations

Bulk synchronous
computations

- Independent and asynchro-
nous computation

Scalability Horizontal scalability (adding
more workers)

Vertical and horizontal scalability (increas-
ing the capacity of workers as well as
adding more workers)

NoSQL: Horizontal scalability (using
sharding or partitioning technique)
SQL: limited scalability (manual)

Horizontal scalability (adding
more workers)

Pros (+) +Extensive and distributed
data processing for static
data
+No need for ingestion sys-
tem
+Estimation of completion
time of data processing task

Both:
+Extensive and distributed processing for
real-time and near real-time data
+Store data portion in memory or no store
+Low latency (milliseconds for native
and seconds for micro-batch model
[Venkataraman et al. 2017])
Native [Venkataraman et al. 2017]:
+No barrier and thus no centralized
communication overhead
+Low latency during normal execution
Micro-batch [Venkataraman et al. 2017]:
+Efficient fault-recovery and scaling due
to the use of barriers

SQL:
+Multi-row ACID properties
+Relational features (e.g. join opera-
tions)
NoSQL:
+Extensive and distributed data pro-
cessing support with limited flexibil-
ity [Cai et al. 2017]
+Support various data types and data
speeds
+Update schema on the fly

+Extensive and distributed
processing for real-time and
near real-time data
+Different message process-
ing semantics (at-least-once,
exactly-once and at-most-
once)

Cons (-) -All data need to be stored in
storage system
-Redundant and excessive pro-
cessing
-High communication cost
-High latency

Both:
-Need ingestion system
-High overhead
Native [Venkataraman et al. 2017]:
-High overheads during adoption
Micro-batch [Venkataraman et al. 2017]:
-Need blocking barrier following every batch
- Communication overheads

SQL:
-No strong support for extensive and
distributed data processing [Cai et al.
2017]
-Offline database to update schema
NoSQL:
-No relational features (e.g. join oper-
ations)

-Limit of message size
-Overhead
-Balancing the data that com-
ing from various data sources

Kappa Model − A stream-first approach that considers all data as streams, whether such data is batch data or
stream data. In contrast to Lambda architecture, this architecture, in favour of simplicity, dispenses the batch
layer. Thus, there is no periodical recomputation for all data in the batch layer, instead the Kappa architecture
performs all data computation in one system (i.e. stream processing system) and executes recomputation only
when there is a change in business logic by rerunning historical data. This accomplishes by utilizing a powerful
stream processor that is able to handle data at a higher rate than incoming data rate as well as a scalable streaming
system for data retention. The Kappa architecture comprises two layers. The speed layer manges processing of
stream data, while the serving layer is responsible for answering user queries, similar to the serving layer in the
Lambda architecture. Apache Spark is an example of such big data processing platform that combined more than
one programming model.

3.3.6 Comparison of Properties of Big Data Models. The comparison between big data models including a
batch programming model, stream programming model, NoSQL/SQL models and message ingestion models is
given in Table 1. This comparison is based on five properties, which are data flow (a pattern in data computation
implementation), data volume (the size of data), relation (the relationship between the computation implementa-
tion of functions), scalability (the capability of increasing resource(s) capacity in response to the future load), and
plus and negative points.

As there are different big data models, several big data platforms and services have become developed such as
Apache Hadoop, Spark, Storm, Flink, Amazon Kinesis, Azure Stream Analytics, Google Cloud Dataproc and IBM
Streaming Analytics. Rao et al. [Rao et al. 2018] provided a survey of various big data systems.

ACM Computing Surveys, Vol. XX, No. XX, Article 00. Publication date: October 2018.

Orchestrating Big Data Analysis Workflows in the Cloud: Research Challenges, Survey, and Future Directions
• 00:9

3.4 Cloud and Edge Datacenters Level
The cloud and edge infrastructures that provide heterogeneous and distributed compute and storage resources
are viable solutions for executing and managing big data workflows, and fulfilling the SLA and QoS requirements
defined by users. However, the process of executing and managing such types of workflow in cloud + edge
datacenters is a complex resource and data orchestration task.The complexity comes from the composite data flow
pattern, various computational models involved in the data pipeline, various big data programming frameworks
needed for those computational models and different types of cloud and edge resources required during the
workflow orchestration. The heterogeneous and dynamic nature of cloud + edge resources bring additional
challenges (selection of optimal resource types and their configurations, resource failures and so on), where these
challenges also further complicate the workflow-related and data-related challenges, and therefore present a
unique cross-layer challenge. The key issue at this level is the real time selection of the optimal configurations of
cloud and edge infrastructures for given heterogeneous workflow components taking into consideration SLA and
QoS requirements defined by workflow users based on the context of application. This includes the following
challenges: cloud platform integration and cloud + edge resources management.

In summary, for managing and executing the big data workflow application, several requirements need to be
considered due to complex interaction of the three layers i.e. (1) big data workflow, (2) the different big data
models and different big data analysis applications (such as batch processing, stream processing, SQL, NoSQL,
Ingestion), and (3) cloud + edge computing environments. In the next section, we will identify these requirements.

4 REQUIREMENTS OF BIG DATA WORKFLOW IN THE CLOUD
Based on the extensive literature review and study of the characteristics of big data workflow applications, we
discuss the key requirements for their orchestration over heterogeneous cloud resources (CPU, Storage, and
Software Defined Networking Infrastructure). The heterogeneity at the workflow level (different analytical
activities deal with real-time and historical datasets), big data programming model level (batch, stream or
hybrid processing), and cloud-level (cloud datacenters and edge resources) leads to diverse requirements that are
described as follows:

(1)Compute/CPU Resources Provisioning Requirement − To execute tasks/analytic activities related to a big data
workflow, diverse mix and type of compute/CPU resources (e.g. virtual machines, lightweight containers) are
required. These resources are provisioned in static or dynamic way [Rodriguez and Buyya 2017] according
to the need of such workflow task/activity and type of underlying big data programming model used (e.g.
batch processing, stream processing or hybrid). Provisioning the necessary compute resources for executing
big data workflow is not the end of story, monitoring and managing those resources in a dynamic execution
environment is also needed because those resources are provisioned and released on demand due to changes
in data volume and velocity and resource-level failures [Kashlev and Lu 2014].

(2)Storage Requirement − By taking the decision to move and execute big data workflow using cloud infrastructure,
the next decision that will be taken implicitly is moving and storing big data products of such application in
the cloud. Thus, we need to intelligently provision the cloud storage to store data and feed the data to different
big data programming models at different stages of the workflow execution including, for example, choosing
the right cloud storage resource, data location (hence requires novel indexing and metadata management
techniques) and format.

(3)Data Movement Requirement − For data residing out of the cloud, such data needs to be transferred to the cloud
and stored before being processed by big data workflow. In addition, the stored datasets may reside across
different locations and these locations may differ based on geographical deployment of cloud datacenters
where compute and storage resources are hosted, so dynamically transferring these large datasets to between

ACM Computing Surveys, Vol. XX, No. XX, Article 00. Publication date: October 2018.

00:10 • Barika et al.

compute and storage resources presents new research requirements such as bandwidth allocation and data
transfer latency and throughput management. For example, transferring a large amount of data (i.e. large
datasets) needs a high bandwidth. In addition to an external network (i.e. Internet), dealing with internal
networks of the cloud (networks inside the cloud itself) is also needed. The performance of such networks as is
not the only thing required, but dealing with its structure and configuration is also needed. One interesting area
of research that will emerge includes how to exploit SDN-based infrastructure within clouds to create more
dynamic and flexible data movement techniques and protocols driven by SLA and QoS needs of workflows.

(4)Synchronization and Asynchronization Requirement − In big data workflow, there may exist control and data
flow dependencies across analytics tasks. For the dependent tasks, the run-time synchronization is required
at both data flow as well control flow levels. Moreover, the execution of dependent tasks requires dynamic
synchronization of the states (e.g. output of upstream tasks forms the basis of input data to one or more
downstream tasks) of upstream and downstream analytic tasks. On the other hand, for independent tasks, no
such run-time state (data plus control flow) synchronization requirement exists. In summary, the data and
control flow requirement is one of the most important workflow choreography requirements to be considered
because it directly impacts the correctness of workflow execution and end-to-end performance, to say the least.

(5)Analytic Task Scheduling and Execution Requirement − Provisioning the necessary virtual resources for big data
workflow is not the end of the story to running such workflow, scheduling and coordinating the execution of
workflow tasks across diverse sets of big data programming models [Ranjan et al. 2017] as well as balancing
compute resource utilization across the tasks also being required [Zhao et al. 2014]. In addition, partitioning big
data workflow into fragments and parallelizing the execution of those fragments using parallelism techniques
is important for the scheduling process, which allows it to schedule the partitioned workflow fragments
separately on different compute resources to maximize performance and reduce the complexity of scheduling.
Moreover, during the execution of a task, the input data for this task is moved to compute resource, the output
data is generated and in general, data products’ provenance is produced [Liu et al. 2015]. Therefore, tracking
and capturing provenance of data is also needed.

(6)Service Level Agreement Requirement − The execution of big data workflow may need to meet quality attribute
measures defined by users via SLA. These measures, requirements of QoS, are stated in SLA in order to ensure
reliable QoS [Beloglazov et al. 2012]. For example, one quality might be execution deadline, which means the
execution of workflow should be completed with strict time constraint (i.e. on or before deadline). Therefore,
we need not only to execute big data workflow in the cloud, but also meet user-defined QoS requirements.

(7)Security Requirement − Moving big data computation along with the associated datasets to the cloud imposes
the need to secure both data and computation. This introduces a number of challenges that require solutions
that go well beyond standard encryption approaches, but include challenges such as private (anonymous)
computation, verification of outcomes in a multi-party setting [Dong et al. 2017], placement of components
according to security policies [Mace et al. 2011], etc.

Thus, applying security protection to workflow tasks during their execution and to the data itself provides
a high level of security when running such workflow in the cloud.

(8)Monitoring and Failure-Tolerance Requirement − Big data workflow comprised of data-intensive tasks and the
execution of those tasks is usually a lengthy process. Therefore, monitoring the execution of workflow is
needed to ensure that everything is streamlined and executed as anticipated. Moreover, failures could happen
at any time during the workflow execution, so that handling those failures when they occur or predicting them
before they happen is also needed.

ACM Computing Surveys, Vol. XX, No. XX, Article 00. Publication date: October 2018.

Orchestrating Big Data Analysis Workflows in the Cloud: Research Challenges, Survey, and Future Directions
• 00:11

Fig. 2. A taxonomy of challenges for orchestrating big data workflow in the cloud with the mapping of aforementioned big
data workflow requirements to these challenges

5 RESEARCH TAXONOMY FOR ORCHESTRATING BIG DATA WORKFLOW APPLICATIONS
The complexity and dynamic configuration requirements of big data workflow ecosystems calls for the need to
design and develop new orchestration platforms and techniques aimed at managing: (1) sequence of analytical
activities (formed workflow application) that needs to deal with static as well as dynamic datasets generated by
various data sources; (2) heterogeneous big data programming models; and (3) heterogeneous cloud resources
[Ranjan et al. 2017]. The orchestration process contains a set of programming tasks, which are workflow
composition, workflow mapping (to map the graph of analytical activities to big data programming platforms
and cloud/edge resources), workflow QoS monitoring (to oversee QoS and SLA statistics at runtime for each
activity in this graph such as alert delay, load, throughput, utilization) and workflow dynamic reconfiguration (to
reconfigure workflows in composite computing infrastructure comprised of cloud, edge and multiple big data
platforms), all for guaranteeing consistency and adaptive management [Ranjan et al. 2017]. The requirements
posits numerous challenges that do not occur when executing those workflows in conventional computing
infrastructure. This section outlines and discusses the research challenges (cloud-related, data-related and
workflow-related challenges) and associated taxonomy with the mapping of big data workflow requirements in
the cloud discussed in previous section to these challenges (Figure 2).

5.1 Cloud-related Challenges
The cloud related challenges can be viewed from four dimensions: Cloud Platform Heterogeneity, Resource
Management, Data Management and Storage, and Data Security and Privacy.

5.1.1 Cloud Platform Heterogeneity. The cloud platforms offered by different vendors are heterogeneous and
varies in their capabilities. Following details challenges associated with this dimension:

ACM Computing Surveys, Vol. XX, No. XX, Article 00. Publication date: October 2018.

00:12 • Barika et al.

(1)Cloud Platform Integration: Before provisioning cloud resources, the mapping of big data programming models
(that realize different workflow activities) to cloud platforms is required. Each cloud provider defines a specific
set of API for supporting such mapping and deployment. This means that the application programming process
varies across different cloud providers and for each one of them, the user should learn how to interact with
different cloud providers that support heterogeneous APIs [Kashlev and Lu 2014]. Thus, connecting to multiple
cloud platforms is more complex since the workflow application programmer and/or administrator needs
to know the specific programming primitive and patterns relevant to APIs of underlying cloud providers.
Accordingly, the user needs to learn several vendor-specific virtualization formats, pricing policies and other
hardware/software configurations, yielding much complex integration challenge. Overall, dealing with integra-
tion challenge is complex and requires novel tools, techniques, and API stack for simplifying the mapping and
deployment of complex big data workflows to heterogeneous cloud providers.

(2)Cross-Cloud Workflow Migration: After mapping and deploying activities of a big data workflow in one cloud,
migrating such workflow activities with large datasets to another cloud is a non-trivial process. The users
and/or administrators could need to migrate their workflows from one cloud to another because, for example,
they might aspire to specific QoS features in the target cloud or better price [Kashlev and Lu 2014]. In the target
cloud, different types of heterogeneous resources (e.g. virtual machines, storage types, network types) are there
and selecting the right number and configurations of resources is a crucial (i.e. remapping and re-deployment)
step [Kashlev and Lu 2014]. Further migrating (mapping + redeploying) workflow activities to other clouds
also means moving large datasets and data platforms, which may be a costly and time-consuming task. As a
result, the integration challenge in a cloud and/or across multiple clouds (i.e. difficulties of providing a uniform
and transparent way to access to different clouds and provision virtual resources from different clouds) is
complicated in big data workflows orchestration [Ranjan et al. 2017] [Kashlev and Lu 2014].

5.1.2 Cloud Resource Management. Big data workflow execution in the cloud requires the appropriate selection
of cloud resources and their configurations including the provisioning such virtual resources on demand, and
creating and managing those resources as well as coping with the dynamic nature of cloud resources.

Resource Provisioning. As the execution of big data workflow will be carried out in the cloud, the first and
important step is selecting the right configuration of virtual resources (virtual machine and/or virtual CPU,
storage, and network), which is a challenging decision in case of considering various types of resources offered by
various vendors and becomes even harder when considering different instances from different clouds to achieve
the intended goal. Furthermore, when the selection of edge resources come to the picture, new challenges are
added including the consideration of diverse edge devices, their hardware features and virtualization support
with container technologies, and the conflict SLA and QoS requirements [Ranjan et al. 2017]. In addition, the
resource selection decision should meet the degree of parallelism needed for data processing tasks composed
in a workflow. For example, considering particular configuration of a cloud such as Google Compute Engine
with 18 predefined instance types, it is difficult to find an optimal configuration in order to achieve an optimal
execution time, as the configuration selection problem is generally an NP-complete problem [Ranjan et al. 2017]
[Kashlev and Lu 2014]. Thereby, with different stages of resource selection, scheduling workflow activities on the
selected resources at each stage to run them is also an extremely hard problem (workflow scheduling problem).
Also, when considering various resource configurations provided by multiple cloud providers, comparing those
configurations to find the best one for a given set of workflow activities is an open research problem as we note in
[Ranjan et al. 2015] [Ranjan et al. 2017]; it is not only for workflow activities, but also involving implicitly big data
programming frameworks, a cross-layer problem (at IaaS and PaaS-levels) [Ranjan et al. 2015]. In other words,
the resource configuration search space grows exponentially when we consider each analytical task composing
the workflow.

ACM Computing Surveys, Vol. XX, No. XX, Article 00. Publication date: October 2018.

Orchestrating Big Data Analysis Workflows in the Cloud: Research Challenges, Survey, and Future Directions
• 00:13

Big data workflows involve various big data workloads, and these workloads have different resource require-
ments. For batch workloads, the storage requirements dominate, and for streaming workloads, the communication
requirements dominate, while for transactional workloads, the computational requirements dominate [Ranjan
et al. 2015]. Considering different types of workloads in complex workflow scenarios require configuration
selection mechanisms to have intelligence in order to assist them in reducing resource contention that can occur
due to the interference of workload. This will require determination of those workloads (aka virtual machines)
that can be combined in a same physical environment. Obtaining resource contention information needs both
offline benchmarking and real time SLA monitoring mechanisms.
After the configuration selection, the next step is just to call the cloud provider specific API which will

instantiate the resources we need for example virtual machine/CPU instance, storage space, network IPs and
network bandwidth (in case of cloud that support software defined networking). Such a process is not as easy as
it seems at first glance because various aspects need to be taken into consideration such as resource location. Big
data workflows include multiple data analysis tasks and those tasks are executed in several stages, where each
stage might require specific cloud resources. Those resources can be configured differently in order to achieve
the intended requirements, but the level of granularity and flexibility is hard to determine [Zhao et al. 2015b].

As a result, the problem of resource configuration selection exists across various types of cloud resources since
the need here is to allocate resources (virtual machine, storage, network IP, network bandwidth, etc.) to workflow
activities and underlying big data programming frameworks. Thus, the allocation of cloud resources at IaaS-level
to big data programming frameworks at PaaS-level is not any more a conventional resource maximization or
even time minimization problem, however it includes simultaneous objectives and configuration dependencies
over various IaaS-level resource and big data programming platforms [Ranjan et al. 2015].

Resource-based Big Data Programming Frameworks Management. Orchestrating heterogeneous workflow tasks
over the cloud requires cloud resources (e.g. virtual CPU, storage and network) as well as big data programming
frameworks (for example Apache Hadoop, Apache Spark, NoSQL). Therefore, the management of PaaS-level
big data programming frameworks (that implement various software-based data processing primitives (such
as batch processing or stream processing) on IaaS-level resources (that provide computing capacity to those
frameworks) is needed in the context of big data workflows. Achieving such demand is a complex challenge as it
requires determining the optimal approach to automatically select the configurations for both IaaS-level resource
and PaaS-level framework to consistently accomplish the anticipated workflow-level SLA requirements, while
maximizing the utilization of cloud datacenter resources [Ranjan et al. 2015].

Resource Volatility. As mentioned earlier, the loss of the provisioned resources often happens due to different
failures [Kashlev and Lu 2014]. As well, big data workflows consist of complex big data tasks/analytic activities,
and thus the loss of state of analytical processes executed by the big data programming framework could happen
at any time. Accordingly, several challenges have emerged as a consequence of the complexity and dynamic
nature of cloud resources and big data workflows (i.e. different platform and infrastructure requirements for each
workflow task, and dynamic processing requirements of each workflow task which are determined by either data
flow or control flow dependencies).
During the execution of workflow tasks involved in workflow application, we consider the task completed

when the following steps are executed successfully before the provisioned virtual resources being are terminated
and released: (1) data computation and processing is done and (2) the output data as a result of this computation
and processing is stored in temporary or permanent storage. However, the user may at any time and under any
circumstances terminate the virtual resource while the execution of a workflow task is still under way or the
aforementioned steps are not yet completed. This highlights a challenge to deal with failures of virtual resources
that originated not from the resources themselves but from user actions. Even after a successful completion
of task executions, storing output data products produced as a result of the execution of a big data workflow

ACM Computing Surveys, Vol. XX, No. XX, Article 00. Publication date: October 2018.

00:14 • Barika et al.

application is a challenging task, since those data products are big data products and the user in most cases tries
to avoid paying for unused virtual resources after completion of execution by terminating and releasing those
resources immediately [Kashlev and Lu 2014]. Moreover, the user might need to add new analytic tools and
libraries to virtual machines to be used later on. Those products could be lost in the case of terminating VM
if precautionary actions are not taken. Furthermore, workflow may rely on specific libraries and packages to
run, where different tasks might have different dependencies. The volatile nature of cloud resources means that
configuring a virtual machine with the required dependencies is actually not a one-time procedure, where such
configuration will be lost in the cases of the VM being terminated.

In addition, the problem of resource volatility becomes more complicated in big data workflows when consid-
ering the volatility of resource at different levels (VM-level, big data progressing framework-level and workflow
tasks-level). The resource volatility at VM level is the sense of losing the state of the virtual machine in terms of
data stored in Random Access Memory (RAM) and/or non-persistent storage, at big data programming framework
level (such as Apache Hadoop), is the sense of losing the state of mapper and reducer processes which we cannot
capture at VM level, while at workflow tasks level it includes the loss of analytic computation completed so for,
which may incur additional cost or delay in execution with the best case. Overall, dealing with resource volatility
in the context of big data workflows is more complex task.

5.2 Data-related Challenges
Moving the execution of big data workflow to the cloud means dealing with end-to-end orchestration operations
relevant to securing and managing data including storage, movement, provenance, indexing, security and privacy.
Each of these orchestration operations individually is a very challenging task [Zhao et al. 2015b] and to large
extent this remains a fertile area of research in the context of big data workflows.

5.2.1 Data Storage. As big data workflows support the composition of heterogeneous data processing tasks
into data pipelines, the different types of data flow (batches of data or streams of data) associated with different
big data programming models that form part of workflows existFor instance with message queueing (such as
Apache Kafka) and stream processing (e.g. Apache Storm), the streams of data flow into Kafka via Kafka producer
or into Storm cluster via spout, while with batch processing (e.g. Apache Hadoop), large datasets should be stored
over cloud storage and then fed into Hadoop cluster via HDFS. Since the execution of big data workflows will be
carried out in the cloud, the different storage needs for heterogeneous workflow tasks lead to different challenges
in dealing with cloud storage resources to satisfy their needs.

With batch processing tasks, these tasks communicate using files (i.e. large files). The one or more output files
(output datasets) generated by each analytical task become input datasets to other analytical tasks, and those
datasets are passed between tasks using data movement techniques or through shared storage systems [Cafaro
and Aloisio 2011]. Thus, the large input datasets stored out of cloud must to be moved to and stored in the cloud
before analytics can start, and the intermediate output datasets generated during the processing as well as the
final large output datasets produced upon the completion of processing are required to be put in storage in the
cloud, where the data can be thrown out after analytics is done. On the other hand for stream processing tasks,
the analytic result and some input data for provenance can be stored. Accordingly, different storage needs for
workflow tasks incur different computing "network and storage" costs, where dealing with that is so complicated
as compared with traditional application workflows. Also, choosing which cloud storage resources to use to
store data for batch and stream processing tasks has a direct implication on the incurred computing cost. Such
selection is a challenging task and becomes more difficult when taking into consideration where the data will be
residing, which data format will be used and where processing will be done.

5.2.2 Data Movement. As the execution of big data workflows will be carried out in the cloud, transferring
data to the cloud, within the cloud and/or between clouds is needed to proceed in execution. The different data

ACM Computing Surveys, Vol. XX, No. XX, Article 00. Publication date: October 2018.

Orchestrating Big Data Analysis Workflows in the Cloud: Research Challenges, Survey, and Future Directions
• 00:15

flows associated with different big data programming models poses different demands for data movement, so
that the problem of data movement is more complicated in the context of big data workflows.
For batch processing tasks, transferring input datasets stored in local machine to cloud storage or data in

bulk through hard-disks is required before those tasks are started. Similarly, intermediate datasets produced by
those tasks must be moved among execution virtual resources and the outputs resulting from their execution
must also be transferred to the following tasks or to cloud storage. Thus, coping with the movement of high
volume of historical data to the cloud, and between clouds for batch processing tasks is a non-trivial challenge,
because this movement is a costly and time-consuming process as well as having direct implications (in term of
expensive execution overhead). Moreover, avoiding both the suspension of some workflow tasks to perform data
movements [Tudoran et al. 2016] and the waiting time until data is moved to the execution environment are
important issues that should be addressed with this challenge.

On the other hand for stream processing, there is no bulk data to be transferred as data is continuously coming
from data stream sources and ingesting into data pipelines, however the streams of data generated by data
producers should be moved to the cloud resources where stream processing tasks are executed, and that is
incurring data transfer time as well as data transfer cost in case of transferring data between clouds, which are
relatively small compared with moving high-volume batch processing of historical data. The challenge here is
avoiding or at least minimizing the delay in transferring real-time data as the freshness of this data so important,
as well as analytical results for streaming data.

Accordingly, different data flows affect data movement latency (high with batch processing due to moving vast
volumes of historical data and low for stream processing as the size of the stream is small), as well as incurring
different network costs (high with batch processing and low with stream processing). Hence, the complex
problem in data movement is no longer just in moving one type of data flow, but heterogeneous workflow tasks
communicate using different types of data flow where each one has its implications on the movement of data
in big data workflows. In addition, despite the different types of data flow in data pipeline, transferring the
large-scale application data that have been collected and stored across geo-distributed datacenters may be subject
to certain constraints (e.g. the data size, the network burden or the General Data Protection Regulation (GDPR))),
which determine which of these data can be migrated and which cannot [Hung et al. 2015] [Convolbo et al. 2018]
[Chen et al. 2018]. Thus, the problem of data movement becomes even harder if taking into consideration such
data movement constraints and more complex if taking into account several constraints together (such as data
size and network burden) when moving data across geo-distributed datacenters during data processing time.

5.2.3 Data Provenance. The data provenance describes the origins and historical derivations of data by means
of recording transformation provenance (those transformations that are in charge of creating a certain data
element) and data provenance (derivation of a given data element as of which data elements) [Glavic 2014].
An instance of such transformation is big data workflow that generated data product provenance. Dealing
with provenance for such workflow is a challenge due to the properties of big data (i.e. 3vs of big data), the
characteristics of the execution environment (highly-distributed and dynamic), the distributed provenance
information of data elements, the cost of transferring such information together with data elements (large amount
of information) and the complexity of evaluating queries over such information [Glavic 2014].

The track of provenance of historical data deals with a large volume of finite datasets, so that the provenance
collection cost/overhead is high and the collecting provenance can be grown larger than the size of data being
described. For that, provenance data of historical data is too large, and the storage requirement is becoming an
additional challenge. Tracking of provenance of streaming data deals with infinite streams, non-deterministic
behavior (e.g. high input rates, delay), stream aggregation (combining multiple streams into one by streaming
workloads), ordered sequences (order of streams) and performance requirements (e.g. provenance generation and
retrieval) [Glavic et al. 2011], makes it a hard challenge. As well, the fine-grained provenance data generating from

ACM Computing Surveys, Vol. XX, No. XX, Article 00. Publication date: October 2018.

00:16 • Barika et al.

small datasets (e.g. streaming data) can be large in size, so that the storage requirements [Huq et al. 2011] and
provenance collection overhead are the associated challenge, but the communication overhead is the dominant
challenge. For that, this hard challenge becomes even greater since the demand is to trade off expressiveness
(provenance representation) with a moderate overhead during provenance processing and retrieval.

Moreover, the dynamic and distributed execution environment introduces the demand for capturing and query-
ing distributed provenance of data products, which makes the audit, track and query of distributed provenance
more complex [Malik et al. 2010]. In addition, distributed transformations of a data item incurs collecting both
the provenance of such an item that refers to data and transformations out of each virtual machine that was in
use when creating such an item, where the transfer of data items with their provenance means to transfer large
amount of information among virtual resources. That is leading to the need for distributed query solution for big
provenance [Glavic 2014]. As a result, the problem of data provenance is complex, but its importance lies in the
fact that tracking of data provenance allows understanding and reusing workflows [Zhao et al. 2015b].

5.2.4 Data Indexing. It is data structure that aims at creating indexes on datasets in order to accelerate data
access as well as data query operations. Data indexing is an issues in big data workflows because (1) each
workflow step needs different datasets based on nature of analytic computation, (2) datasets are tremendous,
highly dimensional, heterogamous and complex in stricture [Chen et al. 2013], and (3) execution environment (i.e.
cloud) is distributed, where all of that complicates the developing of the indexing approach. Moreover, challenges
exist in knowing the type of data being indexed and the data structure being used, keeping the cost of creation
and the cost of storage space (for storing indexes) low or moderate, and specifying index generation and size.

5.2.5 Data Security and Privacy. In cloud and edge computing, data security remains a major concern. When
the execution of big data workflow is performed on cloud/edge resources, big data being processed by workflow
tasks will be stored in and accessed from the cloud/edge. Thus, security aspects of workflow data are including
cryptography (to secure actual data [Mattsson 2016]), integrity (to ensure data consistency and accuracy), access
control (to enforce restrictions on access to data), authentication (to verify the identity of an individual with or
without disclosing such identity [He et al. 2018] [He et al. 2016]), data masking (to replace sensitive data with
masked data), tokenization (to replace original data with random value of the same data format [Mattsson 2016])
and privacy (to restrict the collection, sharing and use of data). Since investigation of these aspects is a large
topic and is beyond the scope of this paper, we list some of security issues and briefly review them along with
the related approaches in Appendix D.

5.3 Workflow-related Challenges
5.3.1 Workflow Specification Language. Workflow specification language defines workflow structure and its

task. For big data, there are different big data models available such as batch processing (MapReduce), stream
processing, SQL, NoSQL, where each one of them have their own way to specify computation, so that further
functionality and flexibility in the specification of workflow is required to support those models. Consequently,
the hard challenge here is to create a workflow-level specification language that can be more human-friendly
and can be automatically transformed to programming model specific specification language (e.g. MapReduce in
the context of Apache Hadoop, continuous query operators in the context of Apache Storm, relational queries
in the context of SQL, non-relational queries in NoSQL databases). Moreover, this challenge becomes more
complicated if the specifications of cloud resource and big data management are taken into consideration. The
former challenge is in specifying the cloud resource specification as part of the workflow specification language
at least at high level and that could be in terms of QoS, performance, security/privacy constraints, and the latter
challenge is in specifying big data management specification also as part of specification language at least at
high level and that could be in term of data format, storage constraints, data movement restrictions. In addition,

ACM Computing Surveys, Vol. XX, No. XX, Article 00. Publication date: October 2018.

Orchestrating Big Data Analysis Workflows in the Cloud: Research Challenges, Survey, and Future Directions
• 00:17

for Multicloud architecture, a standard specification language for big data workflows is needed to make such
workflows portable and scalable across multiple clouds.

5.3.2 Workflow Initialization. Workflow initialization aims to divide a workflow into several small parts called
workflow fragments (or fragments for short) to allow parallel and distributed processing, where each fragment
contains part of the workflow activities and their data dependencies [Liu et al. 2015] [Liu et al. 2014]. It could
be a constraint-based process to take into account some constraints such as compute resources or minimizing
data transfer during partitioning a workflow. Since big data workflows include multiple data analysis tasks and
those tasks are executed over virtual resources provisioned from one or more clouds in a parallel and distributed
manner, such an initialization process is needed. In other words, workflow initialization is needed for executing
big data workflows in the cloud in a parallel and distributed manner.
Workflow initialization is a non-trivial task since it necessitates to take into account the task and data

dependencies within the workflow, and to avoid cross dependency. It becomes harder if considering the aspects
of data management (storage and indexing). For the data storage aspect, we need to consider the different needs
of storage resources for heterogeneous workflow tasks during the partitioning process, so that fragments of
workflow respect these needs. For the data indexing aspect, we need to consider the index data for datasets
during the partitioning process since each workflow step requires various datasets based on the nature of analytic
computation, so that the data required for these workflow steps can be searched and retrieved quickly.

Furthermore, this challenge becomes more complicated if other restrictions are taken into account. For example,
multisite execution, data transfer, storage resource constraints or balancing the activities of workflow in each
workflow fragment whilst lessening the linked edges amongst various workflow fragments [Liu et al. 2015].

5.3.3 Workflow Parallelization and Scheduling. After initialising the workflow, the partitioned workflow
fragments are parallelized and scheduled on cloud resources in order to be executed on those resources. For
workflow parallelization, various techniques are utilised in order to produce concrete executable workflow tasks
for the execution plan [Liu et al. 2015]. The workflow parallelization results included in the workflow execution
plan is a decision of parallelizing workflow tasks to execute them in parallel. For big data workflows, they are
parallelizable across all two levels: big data programming framework level and workflow activity level. At big data
programming framework level, the frameworks (e.g. Apache Hadoop, Apache Storm) are workflows themselves,
for example, workflow of Map/Reduce tasks in Apache Hadoop, workflow of spout and bolts tasks in Apache
Storm. While at workflow activity level, each activity is heterogeneous and mapped to a different machine.

The workflow scheduling needs to cater for above super-workflows and then find an optimal resource allocation
plan for lower level cloud resources, which is an extremely hard research problem. This complexity comes from
several aspects that have to be taken into consideration to create an efficient scheduling plan, which aimed at
balancing resource utilization across sub-workflows involved in big data workflow and making the execution
complete to achieve the desired objectives as well as revising this plan in response to unexpected changes
occur at runtime such as changes in data velocity and resource availability. The heterogeneity of data analysis
tasks involved in big data workflows complicates the situation. Considering the location of data during the
task scheduling period is important [Liu et al. 2015]. In other words, task scheduling has to be aware of the
location of data to minimize data movement. Moreover, the user quality of service requirements need to be
considered. Furthermore, the use of Multicloud architecture is a complex aspect since it necessitates to be aware
of the arrangement of resources and big data programming frameworks in this architecture in order to map the
fragmented workflow parts or tasks to available workers in addition to utilize resources in this architecture by
considering data location during task scheduling.
Furthermore, when workflow scheduling utilizes edge resources, new challenges come to the picture to

efficiently map and deploy data analysis tasks on resource constrained edge devices, achieving three core
proprieties in container, which are isolation, orchestration and scheduling [Rao et al. 2018]. The lightweight

ACM Computing Surveys, Vol. XX, No. XX, Article 00. Publication date: October 2018.

00:18 • Barika et al.

hardware with lightweight containerization software is what is needed - visible combination [von Leon et al. 2019].
Finding the optimal resource selection and allocation plan for executing data analysis tasks at edge resources
should take into account the characteristics and hardware constraints of edge devices, and the heterogeneity
of these tasks, where this plan could be part of a full allocation plan for cloud and edge resources. The other
challenge is modernizing heterogeneous big data workloads (i.e. data analysis tasks) from VM-based workload
to container-based workloads for container platform, Kubernetes. This also includes the challenge of creating
efficient container images for those workloads. Moreover, managing and monitoring the containers for big data
workloads over edge resources with Kubernetes is complicated due to the dynamic nature of edge resources and
their changing performance, and the need to define runtime configuration and instill them into the container
environment. This container management process becomes even harder with the need to maintain SLA and
QoS requirements on those constrained resources (such as execution cots and data processing throughputs), and
to response to unexpected changes at runtime [Ranjan et al. 2017]. Overall, additional challenges are added to
workflow scheduling in term of using lightweight containers with Kubernetes (or lightweight Kubernetes) as an
alternative to VMs to schedule and execute workflow activities and their tasks as containers at edge resources.
Finding optimal virtual resources to allocate them to workflow tasks and underlying big data programming

frameworks, and the optimal configurations for both IaaS-level resource and PaaS-level big data programming
frameworks helps to achieve SLA scheduling.

5.3.4 Workflow Fault-Tolerance. Workflow fault-tolerance intends to handle failures that occur during the
execution of workflow and assure its availability and reliability [Liu et al. 2015]. Since big data workflow is
complex, dynamic, and heterogeneous (the complexity and dynamism of big data ecosystems), and its execution is
usually a lengthy process and will be carried-out in a dynamic environment, the failures may happen at any time
for numerous reasons such as the change in execution environment, the loss of compute resource, error during
analytical task exaction or unhandled errors during task execution. Thus, failure management in workflows
is much more complicated as things can go wrong at any level (workflow-level, big data processing-level and
cloud-level). It becomes harder and harder with big data workflow consisting of data- and compute-intensive
tasks along with the need to predict failures and accordingly take appropriate actions in order to avoid additional
expensive costs that could be incurred if failures occur such as re-computation and re-transferring data costs. As
a result, developing a holistic failure-management/tolerance technique is a challenging process, and most likely
ends with a suite of failure management algorithms specific to each workflow activity type.

5.3.5 Workflow Security. In the context of big data workflow, securing big data [Cuzzocrea 2014] is not the
whole story, it is considered as a part in preserving workflow security. The other part is guaranteeing the security
of workflow logic and computation. As big data workflow is data-centric, ensuring the security and integrity of
processing or computation carried out on big data in addition to data security are the main challenges. The lack of
interoperability is a particular issue since the underlying execution environment used for running such workflow
is distributed and heterogeneous by nature [Kashlev and Lu 2014]. Moreover, with the difficulties of managing
authentication and authorization in such workflows, preserving such levels of security becomes even harder and
more challenging. The heterogeneous data processing involved in workflow may require different security needs
adding more complexity and makes ensuring security at workflow level a complex task [Mace et al. 2011].

6 CURRENT APPROACHES AND TECHNIQUES
Presenting several orchestrating big data workflow in the cloud is important, but knowing how to resolve them is
crucial. This section reviews the current approaches and techniques related to the presented research taxonomy.

ACM Computing Surveys, Vol. XX, No. XX, Article 00. Publication date: October 2018.

Orchestrating Big Data Analysis Workflows in the Cloud: Research Challenges, Survey, and Future Directions
• 00:19

6.1 Cloud Platform Integration
The aim of cloud platform integration is to mask the heterogeneity among different cloud platforms offered
by various cloud providers in order to provide a uniform way to access clouds of various vendors as well as to
provision, consume and manage resources from different clouds. There are two following generic approaches to
resolve the incompatibilities between different cloud platforms [Gonidis et al. 2013].

Standardization Approach. This approach intends to standardize interfaces in each service level of cloud
computing, so that cloud applications and resources are provisioned, deployed and managed independently of
specific platform environments. It is an efficient approach to accomplish cloud integration (cloud interoperability
and portability), but it is very complicated for different cloud platforms to agree on a common standards.

Intermediation Approach. This approach intends to provide an intermediate layer (middleware service or
platform) that hides the proprietary APIs of cloud providers. It achieves that by dealing with several vendor-
specific connection protocols and APIs, and vendor-specific provisioning interfaces as well as all stages of the
software development lifecycle. As the integration challenge is raised, some recent efforts such as SimpleCloud and
mOSAIC [Martino et al. 2015] have attempted to mask the API heterogeneity between different cloud platforms
by providing uniform, multi-provider compatible APIs. Libraries such as jClouds enable access, provisioning and
management of resources from different clouds, and mOSAIC offers the developers an abstraction from native
APIs by implementing several API layers [Gonidis et al. 2013]. Therefore, this approach provides a quick and
easy way to have access to different clouds supported by the selected toolkit.

6.2 Cross-Cloud Workflow Migration
The migration process here aims to migrate the workflow completely or part of it (in terms sub-workflows
or analytic activities) from one cloud system to another, targeting several optimization requirements such as
improving performance, reducing execution cost and time, and achieving specific QoS features. Figure 3 shows
the classification of cross-cloud migration approaches for workflow. As seen from this figure, the three approaches
for migrating workloads (i.e. workflow and its analytic activities) between different execution environments are
workflow abstraction-based, cloud broker-based and container-based approaches.

Workflow Abstraction-based Approach. This approach aims to describe abstract data-intensive workflows,
enabling the portability of these workflows across diverse execution platforms. The abstract model is used to
define data-intensive workflow and removing the details of target execution platforms and the steps of data
handling [Filgueira et al. 2016] [Filguiera et al. 2017]. Makeflow [Albrecht et al. 2012], Asterism DIaaS [Filgueira
et al. 2016] and dispel4py [Filgueira et al. 2015] [Filguiera et al. 2017] are examples of workflow abstraction
models that are not mainly designed to support the heterogeneity and dynamism of big data workflows, however,
they can be elaborated in abstraction of those workflows.

Cloud Broker-based Approach. This approach provides the ability to run workflow applications in intercloud
environments. It acts as mediator among users of workflow and providers of cloud systems, helping in the
selection of target cloud(s), accessing this/those cloud(s) and achieving user-defined SLA and QoS requirements
[Jrad et al. 2012] [Jrad et al. 2013].

Container-based Approach. This approach exploits containerization technology (e.g. Docker, udocker [Gomes
et al. 2018], Singularity [Kurtzer et al. 2017]) to provide the ability to quickly and efficiently build and deploy
workflows (sub-workflows or workflow activities) across cloud computing systems by encapsulating compute
resources and delivering a user-defined execution environment [Gerlach et al. 2014] [Qasha et al. 2016] [Zheng and
Thain 2015]. A container packs only the libraries and packages (i.e. full software stack) needed by sub-workflow

ACM Computing Surveys, Vol. XX, No. XX, Article 00. Publication date: October 2018.

00:20 • Barika et al.

Fig. 3. Classification of Cross-Cloud Migration Ap-
proaches for Workflow

Fig. 4. Classification of Data Storage Approaches for
Workflow

or workflow activity [Qasha et al. 2016]. By doing that, the workflow portability and migration are improved,
allowing seamless and agentless migration of workflows across diverse cloud infrastructures.

6.3 Resource Provisioning
Resource provisioning aims to select and provision the cloud resources that will be used to execute the tasks (i.e.
big data workflow fragments or tasks). There are two following approaches to resource provisioning.

Static Resource Provisioning Approach. This approach takes the decision of provisioning virtual resources that
are required to run workflow fragments or tasks before the execution of workflow. It is not able to dynamically
scale resource in or out [Rodriguez and Buyya 2017]. The provisioned resources are fixed, and they are the only
resources available during the whole period of workflow execution. Thus, such an approach is suitable to be used
in cases where the demand of the workflow is predicted and fixed in term of resources.

Dynamic Resource Provisioning Approach. In contrast, this approach takes the decision of provisioning resources
during the execution of workflow or at runtime. It decides which resource types and configurations are most
suitable, and when to add or remove resources according to the demands of the workflow. In other words, this
approach is taking all decisions or refining initial ones at runtime and determining which virtual resources need
to keep running and active, which resources should be provisioned and which resources from the provisioned
resources should be deprovisioned as the workflow execution progresses. This approach aims to avoid under-
provisioning because of its implication on performance (lowers performance) and over-provisioning because of
its implication on cost and system utilization (increase the cost and lowers system utilization).

6.4 Resource Volatility
In any environment, there is a possibility of losing these resources or the state of analytical processes executed
by big data programming framework at any time due to different failures. Mitigating such failures need to be
carried out at different levels (VM level, big data progressing framework level and workflow tasks level). For
each level, a corresponding approach is needed to mitigate those failures that occur at this level, achieving that
without ignoring the consideration of resource consumption and performance efficiency. Therefore, there are
three level-based approaches: at VM-level, at data processing level and at workflow-level.

• VM-level Mitigation Approach This approach aims to mitigate the failure and the loss of the state
of virtual machine in terms of data stored in Random Access Memory (RAM) and/or non-persistent
storage. Examples of techniques under this approach are replication approaches based on active/active or
active/passive mode. Checkpointing is a common technique that can be used to save or replicate the state
of VM (periodically or on-demand) and then mitigate failures by recovering from stored or replicated

ACM Computing Surveys, Vol. XX, No. XX, Article 00. Publication date: October 2018.

Orchestrating Big Data Analysis Workflows in the Cloud: Research Challenges, Survey, and Future Directions
• 00:21

Fig. 5. Classification of Data Indexing Approaches for
Workflow

Fig. 6. Classification of Data Movement Approaches for
Workflow

state [Souza et al. 2018] [Dong et al. 2013]. VM workload consolidation-based fault-tolerance technique
is another technique used to improve the VM’s reliability [Li et al. 2017].
• Big Data Processing Framework-level Mitigation Approach This approach aims to mitigate the failure
and the lose of the state of computational units/processes within big data processing system (such as
with Apache Hadoop is the sense of losing the state of mapper and reducer processes which we cannot
capture at VM level). Examples of techniques used to recover from the failures of data processing tasks
are byzantine fault tolerance (in MapReduce [Costa et al. 2011]), replication-based fault tolerance (in
MapReduce [Liu and Wei 2015]) and rollback recovery (in dataflow systems [Isard and Abadi 2015]).
• Workflow task-level Mitigation Approach This approach aims to mitigate the failure and the loss of
workflow tasks including the loss of analytic computation completed so for, which may incur additional
cost or delay in execution with the best case. Workflow task-level techniques (either reactive or proactive)
can be to handle task failures occurring during the execution of workflow.

6.5 Data Storage
Big data workflow comprises of a set of data-intensive tasks, which communicate using large files (large datasets).
These large files should be stored in the cloud since the execution of big data workflows will be carried out in the
cloud, and be passed among workflow tasks using data movement techniques or shared storage systems [Cafaro
and Aloisio 2011]. Figure 4 shows the classification of data storage approaches for workflow.

Cloud Storage. This is a storage service offered by cloud providers. This approach requires the workflow
management system to manage data on the cloud storage service [Cafaro and Aloisio 2011]. However, the
reliability of data stored in cloud storage system could be an issue with this approach [Nachiappan et al. 2017].

Shared Cloud-backed File System. It intends to deploy shared file systems in the cloud [Cafaro and Aloisio
2011], where the backend can be single cloud (by utilizing single cloud storage service) or cloud-of-clouds (by
utilizing multiple cloud storage services) . It resolves the storing data problem in a generic way and follows either
a proxy-based architectural model or direct-access architectural model [Bessani et al. 2014]. The descriptions of
these models are as follows:

• Proxy-based Model − In this model, the proxy implementing the core functionality of the file system and
interacting with cloud storage in order to store and retrieve files [Bessani et al. 2014]. With the single file

ACM Computing Surveys, Vol. XX, No. XX, Article 00. Publication date: October 2018.

00:22 • Barika et al.

system, the single point of failure and performance bottleneck are issues with this model [Bessani et al.
2014], while the parallel file system addresses those issues. The file system following this model can be:
– Custom Cloud File System − The aim here is to build a custom shared file system for workflow

tasks. For example, a file system can be hosted in extra VM provisioned from a particular cloud
platform/infrastructure, and the other provisioned VMs, i.e. worker nodes can mount such a file
system as a local drive/volume [Cafaro and Aloisio 2011]. In addition, parallel file systems can be
hosted by several VMs in case better performance is required [Cafaro and Aloisio 2011].

– Managed Cloud File System − The aim here is to select and use one of the shared file system options
offered by cloud providers.

• Direct-access Model − In this model, there is no proxy and the access to the cloud storage is direct. Also,
with this model, the single point of failure is no longer an issue, but it becomes hard to offer file sharing
in a controlled manner since the convenient rendezvous point for synchronization is missed [Bessani
et al. 2014]. The file system following this model can be:
– Custom Cloud File System − The aim here is to build a custom shared file system for workflow tasks
without the interposition of a proxy.

– Pre-developed Cloud File System − The aim here is to select and use an existing shared file system.

6.6 Data Movement
By moving the execution of big data workflow to the cloud, the working datasets should be moved to the cloud
as well. These datasets are large datasets and moving or transferring them is an expensive task. In the literature,
several research works have been proposed various approaches to tackle the problem of data movement for
data-intensive workflows. The classification of data movement for workflow is depicted in Figure 6.

Data Transfer. This approach intends to transfer data with minimal data transfer time. The heterogeneity
and instability of the cloud network affect this transfer [Tudoran et al. 2016]. The following are three different
techniques to achieve lowest data transfer time [Pandey and Buyya 2012]:

• Data Parallelism − The ability of a service to process data chunks in parallel with minimal performance
loss. Such ability includes the processing of independent data on various compute resources.
• Data Streaming − This technique intends to enable data transport among workflow fragment/tasks
through the use of data streams. That allows support for high-throughput and low latency.
• Data Throttling − This technique intends to determine and control the arrival time and the rate of data
transfer as opposed to the movement of data from one place to another as quickly as possible. As an
alternative of transferring data to a task, this technique can be used to delay data transfer or transfer
data using lower capacity links in order to allocate resources to serve other crucial tasks.

Data Locality. Since the working datasets for big data workflow are huge, moving those datasets among
compute resources provisioned from multiple clouds is costly and time-consuming. This approach aimed at
minimizing data movement by means of moving the computation in proximity of data.The different techniques
to exploit such approach are as follows:

• Task Centric − This technique aims to move workflow tasks towards data without considering the interest
of workers. The locality of data is exploited by schedulers to map tasks to compute resources in which
tasks are being executed on compute resource that is in or close to the location of data. Task clustering
is a method that aims to group small workflow tasks together as one executable unit for eliminating
data movement overhead (and by the way removing the overhead of executing those small tasks). By
doing grouping of tasks, the intermediate results generated by each grouped task remains in the same
virtual resource (i.e. VM), which allows other grouped tasks to locally access the result. A special case

ACM Computing Surveys, Vol. XX, No. XX, Article 00. Publication date: October 2018.

Orchestrating Big Data Analysis Workflows in the Cloud: Research Challenges, Survey, and Future Directions
• 00:23

of task clustering is spatial clustering. With this method, a workflow task is created by relying on the
spatial relationship of files in datasets [Pandey and Buyya 2012]. It groups workflow tasks into clusters
based on spatial proximity, where each cluster contains a subset of tasks and is assigned to one execution
site. Network-aware task distribution is a method exploited by a scheduler to mix data localization and
geo-distributed datacenter data transfer (network bandwidth) requirements to tackle the data movement
problem for a large-scale application whose data has been collected and stored across geo-distributed
datacenters and is subject to certain constraints (e.g. the General Data Protection Regulation (GDPR))
[Hung et al. 2015] [Hu et al. 2016] [Jin et al. 2016] [Convolbo et al. 2018] [Chen et al. 2018].
• Worker Centric − This technique aims not only to exploit the locality of data, but also to take into

consideration the interests of workers on executing computation. The idle worker takes the intuitive and
expresses its interest to execute a workflow task, in that case, the scheduler chooses the best task for this
worker by exploiting locality in data accesses

Co-location of Data and Computation. Instead of moving data to compute nodes or bringing computation to the
data, co-locating data and computation is a viable solution; it addresses the data problem as part of the resource
utilization strategy. Thus, this approach aims to combine compute and data management for tackling the problem
of data movement to minimize the overhead and scalability for forthcoming exascale environments for to achieve
better resources utilization.

6.7 Data Provenance
As mentioned earlier,the provenance data for big data workflow represents the execution behavior of such
workflows, which allows tracing the data-flow generation [Costa et al. 2014]. To provenance data, there are two
following approaches based on granularity level [Glavic 2014].

Coarse-grained Provenance. It is control-flow-based approach that does not peer into data-flow inside trans-
formations and handles them as black boxes, so that for a given transformation, it records the elements of data
that are inputs and outputs of such a transformation. For instance, with word count transformation and by
considering documents as single data units, this approach deliberates all documents as a pair (w, c) provenance.
The graph structure is usually used to represent such information in which data elements are linked to provenance
transformations that generated or consumed those elements.

Fine-grained provenance. It is data-flow-based approach that peers into data-flow inside transformations to
provide insight information. In other words, this approach exposes the transformation processing logic as a result
of modeling the significant parts of inputs in the derivation of a specific output data element. For instance, with
word count transformation and by considering documents as single data units, this approach deliberates input
documents that contain the word w as provenance of a pair (w, c).

6.8 Data Indexing
The aim of data indexing is to accelerate data access as well as data query operations but it comes at an extra cost
for both data index creation operations and data writing operations, and additional storage space required for
storing these indexes.Various indexing approaches have been reviewed and investigated for big data requirements
in the literature [Gani et al. 2016] [Adamu et al. 2016] [Cai et al. 2017]. The classification of data indexing for big
data in big data workflow is depicted in Figure 5.

Traditional / Non-AI-based Indexing. With this approach, neither the meaning of the data element nor the
relationship among words is included in the index formation. That means the formation of indexes is dependant
on the cover-known patterns (i.e. most searched and retrieved data elements) in a given dataset. Hash indexing
is an efficient strategy for data access and retrieval in a high-dimensional data context as it is able to detect

ACM Computing Surveys, Vol. XX, No. XX, Article 00. Publication date: October 2018.

00:24 • Barika et al.

duplication of data in a big dataset. Bitmap Indexing is a strategy that uses bitmap data structure for storing data
and then retrieving it quickly. It works nicely with low-cardinality columns as well as it is considerably being
appropriate for big data analysis along with low data storage space. Graph/Tree-based indexing strategy is a
strategy that uses the index of more complex data structures to make data indexes to enhance the performance
since the bitmap data structure is feeble in transaction processing. Examples of such data structures used for
indexing data are B-Tree, B+-Tree, R-Tree, Log-Structured Merge (LSM)-Tree, bLSM (LSM with B-Trees and log
structured methods). In case of storing the big data of workflow application by using SQL model with many
relational database systems and/or NoSQL model with Cassandra, BigTable or/and HBase, this approach is
followed but with different data strictures. Indeed, many relational database systems used B-Tree data structure
while aforementioned NoSQL database management systems are used LSM-Tree data structure [Tan et al. 2014]
to support data indexing. Inverted Indexing strategy intends to enhance the full-text searching capability by the
use of an inverted index data structure to store the mapping of content (e.g. numbers, word sequences) to its
location in document database. Custom indexing strategy intends to create multiple field indexing by replying on
either random or user-defined indexes. Generalized Inverted Index (GIN) and Generalized Search Tree (GiST) are
two types of custom indexing [Adamu et al. 2016].

AI-based Indexing. This approach is able to discover unknown big data behavior by utilizing a knowledge
base, providing efficient data indexing, and thus effective data search and retrieval. However, it needs more time
compared with a non-AI indexing approach to answer the search query in general. Soft computing AI-based
indexing techniques blend fuzzy set and neural computing methods for indexing data, while Machine Learning
(ML)-based indexing techniques improve data indexing by utilizing machine learning methods such as manifold
learning. Knowledge Representation and Reasoning (KRR)-based indexing achieves that using semantic ontology.

Collaborative AI-based Indexing. This approach enhances the accuracy of data indexing and the efficiency of
search by relying on collaborative artificial intelligence, aimed at providing greater cooperative data indexing
solutions. With this approach, collaborative ML-based indexing and collaborative KRR-based indexing methods
are provided that relate individual and cooperative decision-making to index big data.

6.9 Workflow Specification Language
Workflow specification language is used to describe the structure of workflow and its tasks to allow interpreting
and executing the specification. There are two approaches that we can consider here for specification language:
generic and custom. In generic approach, the generic (general-purpose) workflow specification language is
properly selected and used to describe the big data workflow. In custom approach, the new workflow specification
language is designed to describe big data workflows. Such a specification language limits the portability and
scalability capabilities for workflow across a variety of execution environments.

6.10 Workflow Initialization
Workflow initialization aims to partition (with or without constraint) a workflow into fragments to parallelize
the execution of those fragments over provisioned compute resources. Since big data workflow is composed
of data-intensive tasks, parallelizing the execution of these tasks needs partitioning of such workflow into
fragments. The approaches of workflow initialization can be classified as either non-constraint-based partitioning
or constraint-based partitioning. This classification is depicted in Figure 7.

Non-Constraint-based Partitioning. This approach decomposes a workflow into smaller fragments to allow
distribution of those fragments among compute resources for parallel execution. It considers the task and data
dependencies within the workflow, and avoids cross dependency, no other constraints are taken into account.

ACM Computing Surveys, Vol. XX, No. XX, Article 00. Publication date: October 2018.

Orchestrating Big Data Analysis Workflows in the Cloud: Research Challenges, Survey, and Future Directions
• 00:25

Fig. 7. Classification of Workflow Initialization Ap-
proaches

Fig. 8. Classification of Workflow Parallelization Tech-
niques

Thus, the decision of partition is made based on task and data dependencies and not based on the capacity of
compute resources or the cost of data movement.

Constraint-based Partitioning. This approach partitions a workflow into smaller fragments, taking into consid-
eration the defined constraint, to allow distribution of those fragments among compute resources for parallel
execution. It not only considers the task and data dependencies within the workflow, and avoid cross dependency,
but also any other constraint that is defined. There are five following techniques to support constraint-based
partitioning.

(1)Data Transfer Constrained Partitioning − This technique aims to minimize the amount of data to be moved
among fragments of a workflow [Liu et al. 2014]. By considering the cost of transferring data between fragments
that will be executed in one site or multisite as a partitioning constraint, the workflow will be decomposed in
such a way that minimizes data transfer so as to reduce the total execution time.

(2)Security and Privacy Constrained Partitioning − This technique aims to partition a workflow into fragments
under security and privacy restrictions. For instance, a workflow may contain a critical activity that requires
execution to be done at a trusted cloud site, so this workflow will be partitioned in such a way that this activity
and its following activities for processing output data must be designated to the same fragment, and the others
will be designated to another fragment.

(3)Compute Capacity Constrained Partitioning − This technique partitions a workflow into fragments according
to compute resource configurations. The different configurations of compute resource in one cloud or het-
erogeneous multisite cloud configurations can be used to adapt workflow partitioning [Liu et al. 2014]. For
example, some tasks of a workflow may need more computing capacity than other tasks, so that those tasks
will be assigned to available compute-intensive resources or to the cloud site that has more compute capacity.

(4)Storage Constrained Partitioning − This technique aims to respect storage constraints during partition of a
workflow into fragments [Chen and Deelman 2011].

(5)Multi-Constraints Partitioning − This technique aims to respect multiple factors or constraints in the process
of partitioning a workflow.

6.11 Workflow Parallelization and Scheduling
Following the classification of workflow parallelization techniques presented by [Liu et al. 2015], the two
parallelization techniques based on the level of parallelism are coarse-grained parallelism and fine-grained
parallelism [Liu et al. 2015]. This classification is depicted in Figure 8.

ACM Computing Surveys, Vol. XX, No. XX, Article 00. Publication date: October 2018.

00:26 • Barika et al.

Coarse-grained Parallelism. This approach achieves parallelization at the level of workflow. It is crucial to
meta-workflow execution or parameter sweep workflow execution. For meta-workflow, this technique parallelizes
the execution of independent sub-workflows composed of such workflow by submitting them to corresponding
workflow engines. In a parameter sweep workflow execution, each set of input parameter values results in an
independent sub-workflow.

Fine-grained Parallelism. This approach achieves parallelization at activity level within a workflow or a sub-
workflow, where different activities will be executed in parallel. At this level, there are different types of parallelism
to handle within an activity and between activities. For parallelism within an activity, data parallelism is used, for
parallelism between activates, independent parallelism and pipeline parallelism are used and for higher degrees
of parallelism, hybrid parallelism is used. Following are their description[Liu et al. 2015]:

• Data Parallelization − This type handles parallelism within an activity. To achieve such parallelism, it
needs to have various tasks perform the same activity and each one of them processes different chunks
of input data in a various compute node. Thus, the resultant data is partitioned since the input data is
already partitioned. This partitioned result (output data) could be input data for data parallelism for the
next activities or be combined in order to produce single result. This type of parallelism can be static,
where the number of data portions is fixed and specified prior the execution, dynamic, where the number
of data portions is identified at runtime, and adaptive, where the number of data portions is automatically
modified to the execution environment.
• Independent Parallelism − This type handles parallelism between independent activities of a workflow. To

achieve such parallelism, workflow should have at least two or more independent fragments of activities
and the activities of each fragment have no data dependencies with activities of other fragments, as well
as those independent activities need to be identified in order to be executed in parallel.
• Pipeline Parallelization − This type handles parallelism between dependent activities. These activities
with a popular type of relationship among activities (i.e. producer-consumer relationship) can be parallel
executed in pipeline fashion, where the output of one data portion of one activity is the input of the
following dependent activities. By exploiting this type of parallelism, the consumption of data portions is
performed as soon as those portions are ready.
• Hybrid Parallelism − This type combines three types of parallelism in order to achieve higher degrees
of parallelism. It applies data parallelism within each activity, then independent parallelism between
independent activities and lastly pipeline parallelism between dependent activities.

After parallelizing the activities of big data workflow, these activities should be scheduled on cloud resources
for execution. Figure 9a shows the classification of workflow scheduling techniques. The techniques of workflow
scheduling can be categorized into push-based and pull-based scheduling.

Push-based Scheduling. This technique allows scheduling tasks of workflow among compute resources by
pushing them to available resources. The scheduler maps workflow tasks to resources according to the generated
scheduling plan. By following task-centric, the scheduling techniques are as follows:

• Static scheduling − This technique generates and assembles schedules that allocate all tasks of workflow
to compute nodes prior to the execution of workflow and these schedules (i.e. scheduling plan) are strictly
observed during the whole execution [Bux and Leser 2013] [Liu et al. 2015]. Since the scheduling decision
is made before execution of workflow, this technique produces little overhead at runtime. It is efficient
and achieves good results when execution environment experiences little change, i.e. controllable or
homogeneous compute environments. With execution environments that vary greatly, it is very hard to
achieve load-balance, and with variations in resource performance, the overall execution time will be

ACM Computing Surveys, Vol. XX, No. XX, Article 00. Publication date: October 2018.

Orchestrating Big Data Analysis Workflows in the Cloud: Research Challenges, Survey, and Future Directions
• 00:27

(a) Classification of Workflow Scheduling Techniques

(b) Classification of Workflow Fault-
Tolerance Technique

strongly impaired [Bux and Leser 2013] [Liu et al. 2015]. There are various scheduling techniques which
can be classified into the following categories:
– Granularity-based scheduling − In this category, the process of scheduling workflow is based on

granularity level. The techniques/methods are [Liu et al. 2015]:
∗ Workflow-based − This technique maps the partitioned fragments of workflow to compute
resources. It is a preferable technique used for data-intensive applications because the overhead
of transferring data between fragments is less than transferring data between tasks.
∗ Task-based − This technique maps the tasks of workflow directly to compute resources.

– Optimized-based scheduling − In this category, the scheduling problem is considered as an optimiza-
tion problem. The techniques/methods are [Wu et al. 2015] [Liu et al. 2015]:
∗ Heuristic: There are three types of heuristics that have been proposed. List scheduling heuristic
constructs a scheduling list for tasks that will be scheduled by appointing those tasks some
priorities, and then sorting them in accordance with the assigned priorities, then performing
"task selection" and "resource selection" steps recurrently until all tasks in the directed acyclic
graph are scheduled, where in the "task selection" step, the head of the scheduling list is
selected (i.e. first task) and in the "resource selection" step, the task is allocated to the selected
resource. Clustering heuristic focusses on optimizing the time of transmission among data
dependent tasks. A general clustering heuristic comprises of two phases, which are clustering
(to map tasks to clusters) and ordering (to order tasks that belong to the same cluster). Similarly,
duplication heuristics focus on optimising the transmission time using duplication of tasks.
∗ Meta-Heuristics − The scheduling algorithm uses a global search oriented meta-heuristic
to find a very good solution quickly and efficiently. The most used meta-heuristic for task
scheduling problems is the genetic algorithm. Other meta-heuristics are investigated and used
such as ant colony optimization and particle swarm optimization. There are two types of
meta-heuristics algorithms: (1) single-objective optimization for optimizing the value of single
objective function either by minimizing or maximizing it, and (2) multi-objective optimization
for more complex problems with more than one conflicting objective that it is obliged to
optimize simultaneously, where it provides alternative optimal solutions by trading-off between
those objectives [Talbi et al. 2012].
∗ Guided random search based − This technique schedules tasks randomly.

ACM Computing Surveys, Vol. XX, No. XX, Article 00. Publication date: October 2018.

00:28 • Barika et al.

• Adaptive/Dynamic scheduling − This technique generates a scheduling plan that maps workflow tasks
to compute resources at runtime by monitoring execution infrastructure [Liu et al. 2015] [Bux and Leser
2013]. Such a plan is adjusted continually during the execution of workflow according to the perceived
changes. It is a suitable technique for use when workflow tasks exist in a highly dynamic environment or
when the amount of work for those tasks is hard to estimate. This technique can be either:
– Semi-Adaptive − In this type, the scheduler maps tasks to compute resources during workflow

execution in accordance to the on-line performance statistics of the resource.
– Full-Adaptive − In this type, the scheduler schedules tasks onto compute resources during workflow

execution in accordance to the on-line performance statistics of the resource, plus specific task
requirements and characteristics. For example, a full-adaptive scheduler may map a workflow task
with a high degree of parallelism on a compute resource that has multiple threads.

• Hybrid scheduling − This approach combines static and dynamic scheduling to gain the advantages of
both in order to provide better performance than just using one or the other [Liu et al. 2015]. For instance,
the static scheduling can be used to schedule part of workflow tasks (e.g. there is enough information for
them) and the remaining tasks can be scheduled at runtime using dynamic scheduling [Liu et al. 2015].

Pull-based Scheduling. This technique intends to exploit the interest of worker/node in scheduling a task when
it is idle by allowing the worker to request from a scheduler to schedule a task and the scheduler pulls the best
task for this worker from among available tasks and maps such tasks to it.

6.12 Workflow Fault-tolerance
Big data workflow composed multiple data-intensive tasks and the execution of those tasks is usually a lengthy
process, so that failures or errors could happen at any time during the execution period. Workflow fault-tolerance
intends to handle failures occurring during the execution of workflow and assure its availability and reliability
[Liu et al. 2015]. Figure 9b shows the classification of workflow fault-tolerance techniques.

Reactive Fault-Tolerance. This technique aimed at minimizing the impact of failures after their occurrence. To
achieve that, there are numerous fault-tolerance techniques such as checkpoint/restart, replay (replication) and
retry (task resubmission). This technique can resolve the faults at either:

• Workflow level − As th name suggests, detecting failures is carried out at workflow level, similar to
application level. Thus, it deals with the failures of the execution of sub-workflows or workflow fragments
by resubmitting the affected fragment.
• Task level − At this level, task failures are detected after perceiving failures and then being resolved.

Proactive Fault-Tolerance. This technique avoids waiting until the failures or errors occur and then recovering
from them by foreseeing the failure and proactively substituting those components that have been suspected
from those other components that are working properly [Liu et al. 2015]. It can resolve the faults at either:

• Workflow level − The aim here is to predict the failures at workflow level, in other words, it predicts
the failures of sub-workflows or workflow fragments. For example, if an error is predicted for a given
workflow fragment, it is replaced proactively from other working fragments.
• Task level − The focus here is on the tasks of workflow, where it predicts task failures and replaces them
proactively from other working tasks.

6.13 Workflow Security
In the context of big data workflow, securing big data is not the whole story, it is considered as a part in preserving
workflow security. The other part is guaranteeing the security of workflow logic and computation. Workflow
security aims to secure the data-intensive tasks, which process and generate vast amounts of data. It is intended

ACM Computing Surveys, Vol. XX, No. XX, Article 00. Publication date: October 2018.

Orchestrating Big Data Analysis Workflows in the Cloud: Research Challenges, Survey, and Future Directions
• 00:29

Table 2. Exemplar works under each classification level in the presented research taxonomy

Taxonomy Approaches Exemplar Work

Cloud Platform
Integration

Standardization Approach Standardization bodies: NIST, DMTF, SNIA and ITU-T [Peoples et al. 2013]
Major open standards: OVF (by DMTF), CDMI (by SNIA) and OCCI (through OGF) [Zhang et al. 2013]

Intermediation Approach SimpleCloud , DeltaCloud , Libcloud , jCloudsand mOSAIC

Cross-Cloud Workflow
Migration

Workflow Abstraction-based
Approach

Makeflow [Albrecht et al. 2012], Asterism DIaaS [Filgueira et al. 2016] and dispel4py [Filgueira et al. 2015] [Filguiera
et al. 2017]

Cloud Broker-based Approach Cloud service broker [Jrad et al. 2012], STRATOS [Pawluk et al. 2012] and Broker-based framework for workflow
applications [Jrad et al. 2013]

Container-based Approach Skyport [Gerlach et al. 2014], Containerization strategies within workflow system [Zheng and Thain 2015],
TOSCA-based platform [Qasha et al. 2016], Asterism [Filgueira et al. 2016] and CoESMS [Kaur et al. 2017]

Resource Provisioning Static Resource Provisioning AROMA [Lama and Zhou 2012]

Dynamic Resource Provisioning Cost-aware and SLA-based algorithms [Alrokayan et al. 2014], RPS [Cao et al. 2016], Resource provisioning method
[Jr et al. 2017] and Data-aware provisioning algorithm [Toosi et al. 2018]

Resource Volatility VM-level Mitigation Approach COLO [Dong et al. 2013], VM workload consolidation-based fault-tolerance technique [Li et al. 2017] and Hybrid
adaptive checkpointing technique [Souza et al. 2018]

Big Data Processing
Framework-level Mitigation

Approach

MapReduce Online [Condie et al. 2010], BFT MapReduce technique and prototype [Costa et al. 2011], Falkirk wheel
[Isard and Abadi 2015], Mapreduce replication-based fault-tolerance technique [Liu and Wei 2015] and

Checkpointing & confined and replica recovery techniques for dataflow systems [Xu et al. 2017]
Workflow Task-level Mitigation

Approach Workflow task-level techniques in workflow fault-tolerance classification can be used here

Data Storage Cloud Storage Amazon Cloud Storage (S3) , Microsoft Azure Data Storage , Google Cloud Storage , Rackspace Database Service and
Rackspace Cloud Block Storage

Shared Cloud-backed file system Gfarm [Mikami et al. 2011], BlueSky [Vrable et al. 2012], DepSky [Bessani et al. 2013], WaFS [Wang et al. 2015], Týr
[nd others 2016] and Faodel [Ulmer et al. 2018]

Data Movement
Data Transfer Online parallel compression framework [Bicer et al. 2013] and Data throttling technique in the proposed system

[Mon et al. 2016]

Data Locality
Two-stage data placement method [Zhao et al. 2015a], Task placement method [Ebrahimi et al. 2015], Heuristic data

placement method [Zhao et al. 2016a], Clustering method based task dependency [Mon et al. 2016], GEODIS
[Convolbo et al. 2018] and Fair job scheduler [Chen et al. 2018]

Co-location Data and
Computation

DPPACS [Reddy and Roy 2015], Task assignment method [Zhao et al. 2016b] and DACS [Hassan et al. 2017,
Chapter 18]

Data Provenance Coarse-grained Provenance Stream provenance method [Vijayakumar and Plale 2007] and Workflow provenance management in WorkflowDSL
[Fernando et al. 2018]

Fine-grained Provenance
RAMP [Park et al. 2011], On-the-fly provenance tracking technique [Sansrimahachai et al. 2013], Ariadne [Glavic

et al. 2014], Big data provenance techniques [Chen 2016], Titian [Interlandi et al. 2017] [Interlandi and Condie 2018]
and DfAnalyzer [Silva et al. 2018]

Data Indexing

Traditional / Non-AI-based
Indexing

Bitmap [Wu et al. 2010], Diff-Index [Tan et al. 2014], Inverted index pruning approach [Vishwakarma et al. 2014],
UQE-Index [Ma et al. 2012], GIN , Metadata index and search system [Yu et al. 2014], SpatialHadoop [Eldawy and

Mokbel 2015]
AI-based Indexing GRAIL [Yıldırım et al. 2012] and Semantic indexing technique [Rodríguez-García et al. 2014]

Collaborative AI-based Indexing Collaborative semantic technique [Gacto et al. 2010], Collaborative learning [Fu and Dong 2012] and Collaborative
filtering technique [Komkhao et al. 2013]

Workflow
Specification Language

Generic Approach YAWL [Van Der Aalst and Ter Hofstede 2005] and CWL [Amstutz et al. 2016]
Custom Approach WorkflowDSL language [Fernando et al. 2018]

Workflow Initialization Non-Constraint-based Partitioning Workflow partitioning method [Chen and Deelman 2012]

Constraint-based Partitioning Workflow partitioning based on storage constraints [Chen and Deelman 2011], PDWA [Ahmad et al. 2014] and
I-PDWA [Ahmad et al. 2017]

Workflow
Parallelization

Coarse-grained Parallelization Workflow-level parallelism in Globus Genomics system [Bhuvaneshwar et al. 2015] and Type-A workflow execution
algorithm [Mohan et al. 2016]

Fine-grained Parallelization Online parallel compression framework [Bicer et al. 2013], Type-B workflow execution algorithm [Mohan et al. 2016]

Workflow Scheduling Push-based Scheduling

SLA-Based resource scheduling [Zhao et al. 2015c], Dynamic fault-tolerant scheduling method [Zhu et al. 2016],
Tree-to-tree task scheduling technique [Zhao et al. 2016b], Stable online scheduling strategy [Sun and Huang 2016],
T-Cluster algorithm [Mohan et al. 2016], Elastic online scheduling [Sun et al. 2018], GEODIS [Convolbo et al. 2018]

and Fair job scheduler [Chen et al. 2018]
Pull-based Scheduling Data-aware work stealing technique [Wang et al. 2014] [Wang et al. 2016]

Workflow
Fault-Tolerance

Reactive Fault-Tolerance Fault-tolerance scheduling algorithm [Poola et al. 2014], Fault-tolerant scheduling technique (FASTER) [Zhu et al.
2016] and Fault-tolerance scheduling heuristics [Poola et al. 2016]

Proactive Fault-Tolerance FTDG [Sun et al. 2017]

to ensure the security and integrity of the logic of operations. As big data workflow is an emerging research topic,
there is a very limited research on this problem, and therefore preserving the security of this type of workflow
is still an open issue (see Section 8). However, some existing techniques that can be utilized are Multicloud
architectures, replication-based techniques (with or without trust component called verifier) and task selection
techniques [Bohli et al. 2013] [Shishido et al. 2018]. In addition, there are other research works have proposed
Multicloud security framework for data intensive workflows such as [Demchenko et al. 2017] and secure workflow
deployment technique on federated clouds such as [Wen et al. 2017].

Table 2 shows the example work(s) for each classification level (approach) in the presented research taxonomy.

ACM Computing Surveys, Vol. XX, No. XX, Article 00. Publication date: October 2018.

00:30 • Barika et al.

7 SYSTEMS WITH BIG DATA WORKFLOW SUPPORT
There are several platforms that can be extended or have capability to support big data workflows. As discussed
before, scientific workflow management systems also require require coping with large volumes of data, hence
in recent years many of them have been extended to support big data applications. Similarly, there are plat-
forms/systems that have been designed specifically for orchestrating the execution of big data applications such
as YARN. In this section, we survey these systems respectively.

7.1 Scientific Workflow Systems with Big Data Extensions
Since the demand for data-intensive scientific workflow has increased and with the emerging of big data
technology, several research works have extended the functionalities of existing SWMSs with data-intensive
capabilities in order to enable big data applications in SWMS. We summarize and compare those research works
(aka data-intensive scientific workflow management systems) in Table 4 of Appendix B.

7.2 Big Data Application Orchestrator
There are existing workflow tools that can be integrated with Hadoop to support MapReduce workflows, which
are Luigi, Linkedin Azkaban, Apache Oozie and Airflow. These tools are specific-purpose workflow managers
that do not need to support the dynamism and heterogeneity of big data workflows. Rachel Kempf [lKempf 2017]
compared these tools and highlighted their features. In the same context, Garg et al. [Garg et al. 2018] reviewed
and compared the current orchestration tools for big data. Some of tools reviewed in this research book chapter
are also specific-purpose workflow managers. Accordingly, there are mainly three big data orchestrating systems
that can be extended for big data workflow management. They are Apache Yet Another Resource Negotiator
(YARN), Apache Mesos and Amazon Lambda. The details of each of these platforms can be studied from Appendix
C. As these platforms can be extended for big data workflow management, we discuss their capabilities against
the challenges taxonomy that shown in Figure 2.

Cloud Resource Management Challenge. For Apache YARN and Apache Mesos, the number and types of compute
resources that will be allocated to workflow tasks need to be pre-selected as well as the configuration of these
resources being determined. Therefore, these systems use limited resource provisioning since the provisioned
resources are pre-determined and limited during the workflow execution (the only available resources for this
workflow). Of course, both of them take into consideration managing all the available compute resources in all
machines in the managed cluster. For AWS Lambda, the compute resource is determined based on the amount of
memory , so that the amount of memory allocated to the Lambda function needs to be pre-determined, and AWS
Lambda allocates the power of CPU proportional to that amount by using the same ratio as a general purpose
Amazon EC2 instance type [Amazon 2017]. The scaling of compute capacity is done dynamically by AWS Lambda
in accordance to traffic load[Amazon 2017].

Data Management and Storage Challenge. In Apache YARN, the use of HDFS is to store large amounts of
data on cheap clusters and to provide high-performance access to that data across the cluster. Thus, Apache
YARN utilizes a cloud-backed file system approach that allows it to deploy a shared file system in the cloud for a
workflow. Moreover, for data movement, Apache YARN exploits data locality since the RM is a central authority
and has a global view of cluster resources, it can enforce locality across tenants [Vavilapalli et al. 2013]. On the
other hand, Apache Mesos offers persistent volumes to store data. The persistent volume can be created once
a new task is launched, exists outside the sandbox of a task, provides exclusive access to a task by default and
will persist on the slave node even after the task finishes or dies. Shared persistent volumes is also supported by
Apache Mesos in order to allow sharing of a volume between multiple tasks operating on the same node.

ACM Computing Surveys, Vol. XX, No. XX, Article 00. Publication date: October 2018.

Orchestrating Big Data Analysis Workflows in the Cloud: Research Challenges, Survey, and Future Directions
• 00:31

Data Security and Privacy Challenge. Authentication is supported by all systems, where Apache YARN uses
Kerberos authentication, Apache Mesos uses a factor authentication approach, i.e. a challenge-response protocol
(CRAM-MD5), which is essentially single-factor authentication, and AWS Lambda also supports a factor authenti-
cation approach, i.e. multi-factor authentication. In addition, controlling the access to resources and services is
provided by the reviewed systems. Apache YARN supports coarse-grained access control, while Apache Mesos
supports some extent fine-grained access control, and AWS Lambda provides fine-grained access control via AWS
IAM. Moreover, to encrypt data and communication remain data private and integral, Apache YARN and Apache
Mesos use SSL and HTTPS, where SSL uses public-key cryptography at first and then symmetric cryptography
for the rest of computation to encrypt the transmitted data.

Workflow Scheduling Challenge. Apache YARN offers a single centralized scheduler to schedule competing
workflow tasks among compute resources in the cluster. Therefore, Apache YARN uses a push-based approach
with static scheduling. On the other hand, in Apache Mesos, the distributed two-level scheduling mechanism that
lets this framework either accept the offer, or reject it. After the offered resource is accepted by the framework,
this framework passes the task description to Apache Mesos, which launches the tasks on the corresponding
agents [Sphere 2017] using push-based approach. This scheduling mechanism is called "resource offers".

Workflow Fault-Tolerance Challenge. In Apache YARN, the RM detects and recovers from its own failures, where
with work-preserving RM restart, the running applications will not lose their works, as well as RM detecting the
failures of NM and AM and recovering them. In addition, in Apache Mesos, the failure of the master is detected
and automatically recovered, where the running tasks can continue to execute in the case of failover [Lynn
2016]. Accordingly, the tasks of a workflow will not be affected by the failure of RM (with work-preserving RM
restart) in Apache YARN or the failure of the master in Apache Mesos. However, the responsibility of handling
the failures of containers in Apache YARN is by frameworks themselves [Vavilapalli et al. 2013] as well as the
failures of node and executor in Apache Mesos being reported to framework schedulers and letting them take
the appropriate actions to react to these failures, so that the responsibility of recovering from failures is by
frameworks themselves. According to that, Apache YARN and Apache Mesos do not provide a mechanism to
handle failures at application/framework level. As a result, Apache YARN and Apache Mesos use a reactive
fault-tolerance approach for detecting and recovering from the failures of their masters, and have no mechanism
for handling the failures at the level of workflow application and leave this responsibility to the workflow
application itself, which reacts with its failures that may occur. For AWS Lambda as a serverless compute service,
the underlying infrastructure is automatically managed, and in the cases where the Lambda function fails during
processing an event, the functions invoked synchronously will reply with an exception and the functions invoked
asynchronously are retried at least three times. If the input streams of Lambda function come from Amazon
Kinesis streams and Amazon DynamoDB streams, these streams/events are retried until this function succeeds or
the data expires, where the data remains in Amazon Kinesis streams and Amazon DynamoDB streams for at least
24 hours [Amazon 2017]. Thus, it does not provide a mechanism to handle application-level failure, so that the
fault-tolerance mechanism for workflow tasks is the responsibility of the workflow application.

8 OPEN ISSUES
In previous sections, several research studies have been highlighted that addressed big data workflow challenges
and issues. Despite these efforts, some challenges are still open and not yet resolved, and others have not yet
been investigated. In this section, we discuss key open research issues for big data workflow orchestration.
(1)Workflow Interoperability and Openness − Since the execution of big data workflow is carried out in the cloud,
there is an opportunity to achieve the level of interoperability between cloud-based workflow systems via
standard models for interoperability and cooperation. Thus, the integrated execution of big data workflows

ACM Computing Surveys, Vol. XX, No. XX, Article 00. Publication date: October 2018.

00:32 • Barika et al.

from heterogeneous workflow systems and different cloud platforms is needed. It allows workflow reuse and
automation, enables workflow sharing, and workflow migration.

(2)Workflow Fault-Tolerance and Dependability − Several techniques and mechanisms of workflow fault-tolerance
have been proposed to handle failures occurring during workflow execution and ensure its availability and
reliability, but still supporting dependable big data workflow is a complex task. The dynamism of suchworkflows
and execution environments as well as the lengthy execution process are all factors that need to be considered.
Generally, handling the failures that occurred requires first catching the error, identifying its source, then
reducing its impact and finally taking the appropriate actions to recover from it. Considering a "Cloud of
clouds" environment, achieving those tasks is even harder due not only to the characteristics of big data and
big data workflow, but also because of the characteristics of such environments.

(3)Distributed Workflow Execution − The dynamism of big data workflow due to data coming in different formats,
velocity and volumes [Zhou and Garg 2015], poses the need for distributed execution of such workflow
over clouds to gain the benefits of both parallel data processing and the dynamic nature of the execution
environment, achieving data processing efficiencies and better performance. The Multicloud or "Cloud of
clouds" architecture as an execution environment relies on multiple clouds makes such distributed execution
possible. However, such architecture allows avoiding vendor look-in and provides more flexibility on the
one hand, and on the other hand, it complicates the whole execution process and related processes such as
scheduling and parallelization, resulting in y challenges and issues still being open, such as balancing workloads
among clouds or reducing the cost of moving large datasets between workflow tasks/fragments.

(4)Workflow Security − Despite the benefits gained from using cloud computing and big data processing platforms,
establishing standardized holistic solutions to security and privacy issues associated with moving big data
workflow applications and their data to the cloud are still an important open issue. Comprehensive security
solutions need to integrate the security of data-intensive tasks involved in workflow applications with the
security of the consumed, generated and produced big data. The industry is further challenged by the regulatory
requirements that are different in each jurisdiction, with a trend to become increasingly protective and
prescriptive, as in the general data protection regulation in the European Union (regulation ‘EU 2016/679’).
Novel technologies, such as blockchain, provide potential solutions for trusted cloud provision of computational
services, but at the same time pose new challenges with respect to privacy and scalability. Although many
point solutions exist for security, and trusted platforms have been proposed (at operating system as well as
application integration level), the above-mentioned increasingly challenging environment presents a need to
expand on this through research in new security and privacy platforms for the ultra-dynamic environment of
emerging big data workflows. Solutions may often not be technological only, but marry economic, business or
personal incentives of stakeholders with the opportunities provided by technologies (see [Dong et al. 2017] for
an example), thus providing solutions that are not only technically feasible but also leverage and align with
stakeholder interests.

(5)User Perspective − Despite the necessity of achieving the requirements of orchestrating big data workflow
in the cloud, the requirements of users for the workflow should also be considered and accomplished. Thus,
various requirements and constraints from different users result in different steps of a workflow needing to be
executed, where the execution of these different steps might not be straightforward as the requirements may
be conflicted. To clarify that, let us consider a data pipeline example in transportation, which is a workflow for
analyzing traffic flow on the roads. The driver and traffic red light management are examples of users for this
workflow and these users define performance requirement as SLA requirements but from different contexts.
For the driver, it would be getting the analyzed results for congestion on the road quickly, allowing him/her to
slow down the car speed before this congestion; and for traffic red light management, it would be getting the
analytical results on the density of roads and traffic volume changes quickly, allowing it to react accordingly to
avoid any congestion that could happen.

ACM Computing Surveys, Vol. XX, No. XX, Article 00. Publication date: October 2018.

Orchestrating Big Data Analysis Workflows in the Cloud: Research Challenges, Survey, and Future Directions
• 00:33

(6)Cross-Cloud Workflow Migration Management − The important open research issue relating to workflow
migration management is twofold: (1) finding the equivalent instances in the target cloud environment since
the exact equivalent for instances between original cloud and target cloud may not exist, and (2) transferring
large datasets to the target cloud environment in case of such data stored in original cloud. These issues
complicate the workflow migration task, and along with the absence of universally accepted standards that
make uniform the communication with the cloud, and provisioning and managing cloud resources [Kashlev
and Lu 2014] poses the need to deal with vendor-specific platform at the target cloud.

(7)Workflow Resources Operability and Volatility −With different clouds, creating and registering virtual machine
images for cloud resources differing. The open issue here is selecting or customizing images offered by cloud
providers in order to achieve different requirements of orchestrating big data workflow in the cloud. For
example, different tasks of a workflow may require different software stacks to run, which means different
images are required. Moreover, virtual resources may be provisioned from different clouds, so that maintaining
and tracking these resources during the whole execution of big data workflow is a difficult issue since those
resources are distributed and reside in various cloud platforms, and are provisioned and released on demand.

Although cloud computing provides cloud resources on demand, the dynamic nature of cloud resources
poses the need to deal with their volatilities because the loss of those resources often happens as a consequence
of different failures [Kashlev and Lu 2014]. That is crucial for big data workflow since the execution of such
workflow is usually a lengthy process. Therefore, the configuration of virtual machines required for running
workflow tasks, the new data products attached to virtual machines and the intermediate and output big data
products generated must all be stored and maintained during the whole execution of workflow to avoid any
unexpected losses due to the loss of resources, whether they were virtual machines and/or storage volumes.

(8)Cross-Layer Resources Configuration Selection −With different software-based data processing primitives (such
as batch processing or stream processing) that implemented by different PaaS-level big data programming
frameworks on IaaS-level resources, there is a need for cross-layer resource configuration selection techniques.
The open issue here is to automatically select the configurations for both IaaS-level resource and PaaS-level
framework to consistently accomplish the anticipated workflow-level SLA requirements, while maximizing
the utilization of cloud datacenter resources [Ranjan et al. 2015].

9 CONCLUSION
Big Data Workflows consists of cross-disciplinary applications where timely results are critical: agriculture,
transport, water management, healthcare, finance, utility networks and environmental monitoring. However,
exploiting the benefits of such big data workflows requires a deep and fundamental understanding of the different
software, hardware, tools and techniques required to compose, choreograph, and orchestrate such new types of
workflows.

In this paper, we outlined requirements for big data workflows in the cloud, presented a research taxonomy
and reviewed the approaches and techniques available for orchestrating big data workflow in the cloud. We also
reviewed big data workflow systems and compared them against the presented research taxonomy. In addition,
we discussed research problems that are still open for future research.

ACKNOWLEDGMENT
This research is supported by an Australian Government Research Training Program (RTP) Scholarship. This
research is also partially funded by two Natural Environment Research Council (UK) projects including (LAND-
SLIP:NE/P000681/1 and FloodPrep:NE/P017134/1).

ACM Computing Surveys, Vol. XX, No. XX, Article 00. Publication date: October 2018.

00:34 • Barika et al.

REFERENCES
Chapter 15 - A Taxonomy and Survey of Fault-Tolerant Workflow Manag. Sys. in Cloud and Dist. Computing Env. In Software Architecture for

Big Data and the Cloud, Ivan Mistrik, Rami Bahsoon, Nour Ali, Maritta Heisel, and Bruce Maxim (Eds.). Morgan Kaufmann.
2015. Anomaly Detection over Sensor Data Streams. (2015). http://wiki.clommunity-project.eu/pilots:and
Adamu et al. 2016. A survey on big data indexing strategies. Technical Report. SLAC National Accelerator Lab., Menlo Park, CA (US).
Ahmad et al. 2014. Data-intensive workflow optimization based on application task graph partitioning in heterogeneous computing systems.

In 4th International Conference on Big Data and Cloud Computing (BdCloud). IEEE, 129–136.
Ahmad et al. 2017. Optim. of data-intensive workflows in stream-based data process. models. The J. of Supercomputing 73, 9 (2017), 3901–3923.
Michael Albrecht, Patrick Donnelly, Peter Bui, and Douglas Thain. 2012. Makeflow: A portable abstraction for data intensive computing on

clusters, clouds, and grids. In Proceedings of the 1st ACM SIGMOD Workshop on Scalable Workflow Execution Engines and Technologies.
Alrokayan et al. 2014. Sla-aware provisioning and scheduling of cloud resources for big data analytics. In CCEM. IEEE, 1–8.
Amazon. 2017. AWS Lambda. (2017). https://aws.amazon.com/lambda/details/
Amstutz et al. 2016. Common Workflow Language, Draft 3. (2016).
Beloglazov et al. 2012. Energy-aware resource allocation heuristics for efficient management of data centers for cloud computing. Future

Generation Computer Systems 28, 5 (2012), 755–768.
Bessani et al. 2013. DepSky: dependable and secure storage in a cloud-of-clouds. ACM Transactions on Storage (TOS) 9, 4 (2013), 12.
Bessani et al. 2014. SCFS: A Shared Cloud-backed File System. In USENIX Annual Technical Conference.
Bhuvaneshwar et al. 2015. A case study for cloud based high throughput analysis of NGS data using the globus genomics system. Computational

and structural biotechnology journal 13 (2015), 64–74.
Bicer et al. 2013. Integrating online compression to accelerate large-scale data analytics applications. In 27th International Symposium on

Parallel & Distributed Processing (IPDPS). IEEE, 1205–1216.
Bohli et al. 2013. Security and privacy-enhancing multicloud arch. IEEE Trans. on Dependable and Secure Computing 10, 4 (2013), 212–224.
Marc Bux and Ulf Leser. 2013. Parallelization in scientific workflow management systems. arXiv preprint arXiv:1303.7195 (2013).
Massimo Cafaro and Giovanni Aloisio. 2011. Grids, clouds, and virtualization. In Grids, Clouds and Virtualization. Springer, 1–21.
Cai et al. 2017. IoT-based big data storage systems in cloud comp.: Perspectives and challenges. IEEE Internet of Things 4, 1 (2017), 75–87.
Cao et al. 2016. A Resource Provisioning Strategy for Elastic Analytical Workflows in the Cloud. In 18th International Conference on

High-Performance Computing and Communications, 14th International Conference on Smart City, and 2nd International Conference on Data
Science and Systems (HPCC/SmartCity/DSS). IEEE, 538–545.

Chen et al. 2013. Big data challenge: a data management perspective. Frontiers of Computer Science 7, 2 (2013), 157–164.
Chen et al. 2018. Scheduling jobs across geo-distributed datacenters with max-min fairness. IEEE Trans. on Network Science and Engg. (2018).
CL Philip Chen and Chun-Yang Zhang. 2014. Data-intensive applications, challenges, techniques and technologies: A survey on Big Data.

Information Sciences 275 (2014), 314–347.
Peng Chen. 2016. Big Data Analytics in Static and Streaming Provenance. (2016).
Weiwei Chen and Ewa Deelman. 2011. Partitioning and scheduling workflows across multiple sites with storage constraints. In International

Conference on Parallel Processing and Applied Mathematics. Springer.
Weiwei Chen and Ewa Deelman. 2012. Integration of workflow partitioning and resource provisioning. In 12th International Symposium on

Cluster, Cloud and Grid Computing (ccgrid 2012). IEEE Computer Society, 764–768.
Condie et al. 2010. MapReduce online. In Nsdi, Vol. 10. 20.
Convolbo et al. 2018. GEODIS: towards optim. of data locality-aware job sched. in geo-distrib. datacenters. Computing 100, 1 (2018), 21–46.
Costa et al. 2011. Byzantine fault-tolerant MapReduce: Faults are not just crashes. In 3rd International Conference on Cloud Computing

Technology and Science (CloudCom). IEEE, 32–39.
Costa et al. 2014. Towards an Adaptive and Distributed Architecture for ManagingWorkflow Provenance Data. In 10th International Conference

on e-Science (e-Science), Vol. 2. IEEE.
Alfredo Cuzzocrea. 2014. Privacy and security of big data: current challenges and future research perspectives. In First International Workshop

on Privacy and Secuirty of Big Data. ACM.
Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: simplified data processing on large clusters. Commun. ACM 51, 1 (2008), 107–113.
Demchenko et al. 2017. Defining Intercloud Security Framework and Architecture Components for Multi-Cloud Data Intensive Applications.

In 17th International Symposium on Cluster, Cloud and Grid Computing. IEEE Press, 945–952.
Dong et al. 2013. COLO: COarse-grained LOck-stepping virtual machines for non-stop service. In 4th annual Symposium on Cloud Computing.
Dong et al. 2017. Betrayal, distrust, and rationality: Smart counter-collusion contracts for verifiable cloud computing. In SIGSAC Conference

on Computer and Communications Security. ACM, 211–227.
Ebrahimi et al. 2015. TPS: A task placement strategy for big data workflows. In International Conference on Big Data (Big Data). IEEE, 523–530.
Ahmed Eldawy and Mohamed F Mokbel. 2015. Spatialhadoop: A mapreduce framework for spatial data. In Data Engineering (ICDE), 2015

IEEE 31st International Conference on. IEEE, 1352–1363.

ACM Computing Surveys, Vol. XX, No. XX, Article 00. Publication date: October 2018.

http://wiki.clommunity-project.eu/pilots:and
https://aws.amazon.com/lambda/details/

Orchestrating Big Data Analysis Workflows in the Cloud: Research Challenges, Survey, and Future Directions
• 00:35

Fernando et al. 2018. WorkflowDSL: Scalable Workflow Execution with Provenance for Data Analysis Applications. In 42nd Annual Computer
Software and Applications Conference (COMPSAC). IEEE, 774–779.

Filgueira et al. 2016. Asterism: Pegasus and dispel4py hybrid workflows for data-intensive science. In 7th International Workshop on
Data-Intensive Computing in the Cloud. IEEE Press.

Rosa Filgueira, Amrey Krause, Malcolm Atkinson, Iraklis Klampanos, Alessandro Spinuso, and Susana Sanchez-Exposito. 2015. dispel4py: An
agile framework for data-intensive escience. In e-Science (e-Science), 2015 IEEE 11th International Conference on. IEEE, 454–464.

Rosa Filguiera, Amrey Krause, Malcolm Atkinson, Iraklis Klampanos, and Alexander Moreno. 2017. dispel4py: a Python framework for
data-intensive scientific computing. The International Journal of High Performance Computing Applications 31, 4 (2017), 316–334.

Wai-Tat Fu and Wei Dong. 2012. Collabor. indexing and knowledge explor.: A social learn. model. IEEE Intelligent Systems 27, 1 (2012), 39–46.
Gacto et al. 2010. Integration of an index to preserve the semantic interpretability in the multiobjective evolutionary rule selection and tuning

of linguistic fuzzy systems. IEEE Transactions on Fuzzy Systems 18, 3 (2010), 515–531.
Gani et al. 2016. A survey on indexing techniques for big data: taxonomy and performance evaluation. Knowledge and Information Systems

46, 2 (2016), 241–284.
Garg et al. 2018. Orchestration Tools for Big Data. Springer International Publishing, 1–9.
Gerlach et al. 2014. Skyport: container-based execution environment management for multi-cloud scientific workflows. In 5th International

Workshop on Data-Intensive Computing in the Clouds. IEEE Press, 25–32.
George M Giaglis. 2001. A taxonomy of business process modeling and information systems modeling techniques. International Journal of

Flexible Manufacturing Systems 13, 2 (2001), 209–228.
Glavic et al. 2011. The Case for Fine-Grained Stream Provenance. In BTW Workshops, Vol. 11.
Glavic et al. 2014. Efficient stream provenance via operator instrumentation. ACM Transactions on Internet Technology (TOIT) 14, 1 (2014), 7.
Boris Glavic. 2014. Big data provenance: Challenges and implications for benchmarking. In Specifying big data benchmarks. Springer, 72–80.
Gomes et al. 2018. Enabling rootless Linux Containers in multi-user envin.: the udocker tool. Computer Physics Communications (2018).
Gonidis et al. 2013. Cloud application portability: an initial view. In 6th Balkan Conference in Informatics. ACM.
Hassan et al. 2017. Networks of the Future: Architectures, Technologies, and Implementations. Chapman and Hall/CRC.
He et al. 2016. Efficient and anonymous mobile user authentication protocol using self-certified public key cryptography for multi-server

architectures. IEEE Transactions on Information Forensics and Security 11, 9 (2016), 2052–2064.
He et al. 2018. A provably-secure cross-domain handshake scheme with symptoms-matching for mobile healthcare social network. IEEE

Transactions on Dependable and Secure Computing 15, 4 (2018), 633–645.
Hirzel et al. 2013. IBM streams processing language: Analyzing big data in motion. IBM Journal of Research and Development 57, 3/4 (2013).
Hu et al. 2014. Toward scalable systems for big data analytics: A technology tutorial. IEEE access 2 (2014), 652–687.
Hu et al. 2016. Flutter: Scheduling tasks closer to data across geo-distributed datacenters. In 35th Annual IEEE INFOCOM. 1–9.
Hung et al. 2015. Scheduling jobs across geo-distributed datacenters. In 6th Symposium on Cloud Computing. ACM, 111–124.
Huq et al. 2011. Inferring fine-grained data provenance in stream data processing: reduced storage cost, high accuracy. In International

Conference on Database and Expert Systems Applications. Springer.
Interlandi et al. 2017. Adding data provenance support to Apache Spark. The VLDB Journal (2017), 1–21.
Matteo Interlandi and Tyson Condie. 2018. Supporting Data Provenance in Data-Intensive Scalable Comp. Sys. Data Engg. (2018), 63.
Michael Isard and Martín Abadi. 2015. Falkirk wheel: Rollback recovery for dataflow systems. arXiv preprint arXiv:1503.08877 (2015).
Jin et al. 2016. Workload-aware scheduling across geo-distributed data centers. In Trustcom/BigDataSE/IâĂŃ SPA. IEEE, 1455–1462.
Todd Jr et al. 2017. Data analytics computing resource provisioning based on computed cost and time parameters for proposed computing

resource configurations. (June 20 2017). US Patent 9,684,866.
Jrad et al. 2012. SLA based Service Brokering in Intercloud Environments. CLOSER 2012 (2012), 76–81.
Jrad et al. 2013. A broker-based framework for multi-cloud workflows. In intern. workshop on Multi-cloud applications and federated clouds.
Andrey Kashlev and Shiyong Lu. 2014. A system architecture for running big data workflows in the cloud. In International Conference on

Services Computing (SCC). IEEE, 51–58.
Kaur et al. 2017. Container-as-a-service at the edge: Trade-off between energy efficiency and service availability at fog nano data centers.

IEEE wireless communications 24, 3 (2017), 48–56.
Tyler Keenan. 2016. Streaming Data: Big Data at High Velocity. (2016). https://www.upwork.com/hiring/data/streaming-data-high-velocity/
Kiran et al. 2015. Lambda architecture for cost-effective batch and speed bigdata process. In International Conference on Big Data.
Komkhao et al. 2013. Incremental collaborative filtering based on Mahalanobis distance and fuzzy membership for recommender systems.

International Journal of General Systems 42, 1 (2013), 41–66.
Kurtzer et al. 2017. Singularity: Scientific containers for mobility of compute. PloS one 12, 5 (2017), e0177459.
Palden Lama and Xiaobo Zhou. 2012. Aroma: Automated resource allocation and configuration of mapreduce environment in the cloud. In

9th international conference on Autonomic computing. ACM, 63–72.
Li et al. 2017. Study on Fault Tolerance Method in Cloud Platform based on Workload Consolidation Model of Virtual Machine. Journal of

Engineering Science & Technology Review 10, 5 (2017).

ACM Computing Surveys, Vol. XX, No. XX, Article 00. Publication date: October 2018.

https://www.upwork.com/hiring/data/streaming-data-high-velocity/

00:36 • Barika et al.

Lin et al. 2016. StreamScope: Continuous Reliable Distributed Processing of Big Data Streams. In NSDI. 439–453.
Liu et al. 2014. Scientific workflow partitioning in multisite cloud. In European Conference on Parallel Processing. Springer, 105–116.
Liu et al. 2015. A survey of data-intensive scientific workflow management. Journal of Grid Computing 13, 4 (2015), 457–493.
Liu et al. 2016. Rethinking big data: A review on the data quality and usage issues. ISPRS Journal of PRS 115 (2016), 134–142.
Liu et al. 2018. A Survey of Scheduling Frameworks in Big Data Systems. International Journal of Cloud Computing (2018), 1–27.
Yang Liu and Wei Wei. 2015. A replication-based mechanism for fault tolerance in mapreduce framework. Mathematical Problems in

Engineering 2015 (2015).
Rache lKempf. 2017. Open Source Data Pipeline âĂŞ Luigi vs Azkaban vs Oozie vs Airflow. (2017). https://www.bizety.com/2017/06/05/

open-source-data-pipeline-luigi-vs-azkaban-vs-oozie-vs-airflow/
Lopez et al. 2016. A performance comparison of Open-Source stream processing platforms. InGlobal Communications Conference (GLOBECOM).
Dan Lynn. 2016. Apache Spark Cluster Managers: YARN, Mesos, or Standalone? (2016). http://www.agildata.com/

apache-spark-cluster-managers-yarn-mesos-or-standalone/
Ma et al. 2012. An efficient index for massive IOT data in cloud environment. In 21st international conference on IKM. 2129–2133.
Mace et al. 2011. The case for dynamic security solutions in public cloud workflow deployments. In IEEE/IFIP 41st International Conference on

Dependable Systems and Networks Workshops (DSN-W). 111–116.
Malik et al. 2010. Tracking and sketching distributed data provenance. In 6th International Conference on e-Science (e-Science. IEEE.
Mansouri et al. 2017. Data storage management in cloud envirn.: Taxonomy, survey, and future directions. ACM CSUR 50, 6 (2017), 91.
Di Martino et al. 2015. Cross-platform cloud APIs. In Cloud Portability and Interoperability. Springer, 45–57.
Ulf Mattsson. 2016. Data centric security key to cloud and digital business. (2016). https://www.helpnetsecurity.com/2016/03/22/

data-centric-security/
Mikami et al. 2011. Using the Gfarm File System as a POSIX compatible storage platform for Hadoop MapReduce applications. In 12th

IEEE/ACM International Conference on Grid Computing (GRID). IEEE, 181–189.
Mohan et al. 2016. A nosql data model for scalable big data workflow execution. In International Congress on Big Data (BigData Congress).
Mon et al. 2016. Clustering based on task dependency for data-intensive workflow scheduling optimization. In 9th Workshop on Many-Task

Computing on Clouds, Grids, and Supercomputers (MTAGS). IEEE, 20–25.
Nachiappan et al. 2017. Cloud storage reliability for Big Data applications: A state of the art survey. Journal of Network and Computer

Applications 97 (2017), 35–47.
Matri nd others. 2016. Tỳr: Efficient Transactional Storage for Data-Intensive Applications. Ph.D. Dissertation. Inria Rennes Bretagne Atlantique;

Universidad Politécnica de Madrid.
Suraj Pandey and Rajkumar Buyya. 2012. A survey of scheduling and management techniques for data-intensive application workflows. In

Data Intensive Distributed Computing: Challenges and Solutions for Large-scale Information Management. IGI Global, 156–176.
Park et al. 2011. Ramp: A system for capturing and tracing provenance in mapreduce workflows. (2011).
Pawluk et al. 2012. Introducing STRATOS: A cloud broker service. In 5th International Conference on Cloud Computing (CLOUD).
Peoples et al. 2013. The standardisation of cloud computing: Trends in the state-of-the-art and management issues for the next generation of

cloud. In Science and Information Conference (SAI). IEEE.
Poola et al. 2014. Fault-tolerant workflow scheduling using spot instances on clouds. Procedia Computer Science 29 (2014), 523–533.
Poola et al. 2016. Enhancing reliability of workflow execution using task replication and spot instances. ACM Transactions on Autonomous

and Adaptive Systems (TAAS) 10, 4 (2016), 30.
Qasha et al. 2016. Dynamic deployment of scientific workflows in the cloud using container virtualization. In International Conference on

Cloud Computing Technology and Science (CloudCom). IEEE, 269–276.
Rahman et al. 2011. A taxonomy and survey on autonomic management of applications in grid computing environments. Concurrency and

computation: practice and experience 23, 16 (2011), 1990–2019.
Ranjan et al. 2015. Cross-layer cloud resource configuration selection in the big data era. IEEE Cloud Computing 2, 3 (2015), 16–22.
Ranjan et al. 2017. Orchestrating BigData Analysis Workflows. IEEE Cloud Computing 4, 3 (2017), 20–28.
Rao et al. 2018. The big data system, components, tools, and technologies: a survey. Knowledge and Information Systems (2018), 1–81.
KHK Reddy and DS Roy. 2015. Dppacs: A novel data partitioning and placement aware computation scheduling scheme for data-intensive

cloud applications. Comput. J. 59, 1 (2015), 64–82.
Maria Alejandra Rodriguez and Rajkumar Buyya. 2017. A taxonomy and survey on scheduling algorithms for scientific workflows in IaaS

cloud computing environments. Concurrency and Computation: Practice and Experience 29, 8 (2017).
Rodríguez-García et al. 2014. Creating a semantically-enhanced cloud services environment through ontology evolution. Future Generation

Computer Systems 32 (2014), 295–306.
Sakr et al. 2011. A survey of large scale data management approaches in cloud envirns. IEEE Comms. Surveys & Tutorials 13, 3 (2011), 311–336.
Sakr et al. 2013. The family of mapreduce and large-scale data processing systems. ACM Computing Surveys (CSUR) 46, 1 (2013), 11.
Sansrimahachai et al. 2013. An on-the-fly provenance tracking mechanism for stream processing systems. In 12th International Conference on

Computer and Information Science (ICIS). IEEE, 475–481.

ACM Computing Surveys, Vol. XX, No. XX, Article 00. Publication date: October 2018.

https://www.bizety.com/2017/06/05/open-source-data-pipeline-luigi-vs-azkaban-vs-oozie-vs-airflow/
https://www.bizety.com/2017/06/05/open-source-data-pipeline-luigi-vs-azkaban-vs-oozie-vs-airflow/
http://www.agildata.com/apache-spark-cluster-managers-yarn-mesos-or-standalone/
http://www.agildata.com/apache-spark-cluster-managers-yarn-mesos-or-standalone/
https://www.helpnetsecurity.com/2016/03/22/data-centric-security/
https://www.helpnetsecurity.com/2016/03/22/data-centric-security/

Orchestrating Big Data Analysis Workflows in the Cloud: Research Challenges, Survey, and Future Directions
• 00:37

Seiger et al. 2018. Toward an execution system for self-healing workflows in cyber-physical systems. Software & Systems Modeling (2018),
1–22.

Shishido et al. 2018. (WIP) Tasks Selection Policies for Securing Sensitive Data on Workflow Scheduling in Clouds. In IEEE SCC.
Silva et al. 2018. DfAnalyzer: Runtime Dataflow Analysis of Scientific Applications using Provenance. VLDB Endowment 11, 12 (2018).
Souza et al. 2018. Hybrid Adaptive Checkpointing for VM Fault Tolerance. In International Conference on Cloud Engineering (IC2E).
Mesos Sphere. 2017. Apache Mesos. (2017). https://mesosphere.com/why-mesos/?utm_source=adwords&utm_medium=g&utm_campaign=

43843512431&utm_term=mesos&utm_content=190805957225&gclid=CLqw8o6J6dMCFdkGKgodYlsD_A
Sun et al. 2017. Building a fault tolerant framework with deadline guarantee in big data stream computing environments. J. Comput. System

Sci. 89 (2017), 4–23.
Sun et al. 2018. Rethinking elastic online scheduling of big data streaming applications over high-velocity continuous data streams. The

Journal of Supercomputing 74, 2 (2018), 615–636.
Dawei Sun and Rui Huang. 2016. A stable online scheduling strategy for real-time stream computing over fluctuating big data streams. IEEE

Access 4 (2016), 8593–8607.
Talbi et al. 2012. Multi-objective optimization using metaheuristics: non-standard algorithms. International Transactions in Operational

Research 19, 1-2 (2012), 283–305.
Tan et al. 2014. Diff-Index: Differentiated Index in Distributed Log-Structured Data Stores.. In EDBT. 700–711.
Toosi et al. 2018. Resource provisioning for data-intensive applications with deadline constraints on hybrid clouds using Aneka. Future

Generation Computer Systems 79 (2018), 765–775.
Tudoran et al. 2016. Overflow: Multi-site aware big data management for scientific workflows on clouds. IEEE TCC 4, 1 (2016), 76–89.
Ulmer et al. 2018. Faodel: Data Management for Next-Generation Application Workflows. In 9th Workshop on Scientific Cloud Computing.
Wil MP Van Der Aalst and Arthur HM Ter Hofstede. 2005. YAWL: yet another workflow language. Information systems 30, 4 (2005), 245–275.
Vavilapalli et al. 2013. Apache hadoop yarn: Yet another resource negotiator. In 4th Annual Symposium on Cloud Computing. ACM.
Venkataraman et al. 2017. Drizzle: Fast and adaptable stream processing at scale. In Proceedings of the 26th Symposium on Operating Systems

Principles. ACM, 374–389.
Nithya Vijayakumar and Beth Plale. 2007. Tracking stream provenance in complex event processing systems for workflow-driven computing.

In EDA-PS Workshop.
Vishwakarma et al. 2014. An eff. approach for inverted index pruning based on document relevance. In 4th International Conference on CSNT.
von Leon et al. 2019. A Lightweight Container Middleware for Edge Cloud Architectures. Fog and Edge Computing: Principles and Paradigms

(2019), 145–170.
Vrable et al. 2012. BlueSky: A cloud-backed file system for the enterprise. In 10th USENIX conference on File and Storage Technologies.
Wang et al. 2014. Optimizing load balancing and data-locality with data-aware scheduling. In International Conference on Big Data (Big Data).
Wang et al. 2015. WaFS: a workflow-aware file system for effective storage utilization in the cloud. IEEE Trans. Comput. 1 (2015), 1–1.
Wang et al. 2016. Load-balanced and locality-aware scheduling for data-intensive workloads at extreme scales. Concurrency and Computation:

Practice and Experience 28, 1 (2016), 70–94.
Wen et al. 2017. Cost effective, reliable and secure workflow deployment over federated clouds. IEEE TSC. 10, 6 (2017), 929–941.
Wu et al. 2010. Analyses of multi-level and component compressed bitmap indexes. ACM Transactions on Database Systems 35, 1 (2010), 2.
Wu et al. 2015. Workflow scheduling in cloud: a survey. The Journal of Supercomputing 71, 9 (2015), 3373–3418.
Xu et al. 2017. On fault tolerance for distributed iterative dataflow processing. IEEE Transactions on KDE 29, 8 (2017), 1709–1722.
Yıldırım et al. 2012. GRAIL: a scalable index for reachability queries in very large graphs. The VLDB Journal 21, 4 (2012), 509–534.
Yu et al. 2014. An efficient multidimension metadata index and search system for cloud data. In 6th International Conference on Cloud

Computing Technology and Science (CloudCom). IEEE, 499–504.
Jia Yu and Rajkumar Buyya. 2005. A taxonomy of scientific workflow systems for grid computing. ACM Sigmod Record 34, 3 (2005), 44–49.
Zhang et al. 2013. A survey on cloud interoperability: taxon., stand., and practice. ACM SIGMETRICS Perf. Eval. Review 40, 4 (2013), 13–22.
Zhao et al. 2014. Devising a cloud scientific workflow platform for big data. In World Congress on Services (SERVICES). IEEE.
Zhao et al. 2015a. A data placement strategy for data-intensive scientific workflows in cloud. In 15th IEEE/ACM CCGRID. 928–934.
Zhao et al. 2015b. Enabling scalable scientific workflow management in the Cloud. Future Generation Computer Systems 46 (2015), 3–16.
Zhao et al. 2015c. SLA-based resource scheduling for big data analytics as a service in cloud computing environments. In 44th International

Conference on Parallel Processing (ICPP). IEEE, 510–519.
Zhao et al. 2016a. Heuristic data placement for data-intensive applications in heterogeneous cloud. Journal of ECE (2016).
Zhao et al. 2016b. A new energy-aware task scheduling method for data-intensive applications in the cloud. JNCA 59 (2016), 14–27.
Charles Zheng and Douglas Thain. 2015. Integrating containers into workflows: A case study using makeflow, work queue, and docker. In

Proceedings of the 8th International Workshop on Virtualization Technologies in Distributed Computing. ACM, 31–38.
Chaochao Zhou and Saurabh Kumar Garg. 2015. Performance analysis of scheduling algorithms for dynamic workflow applications. In

International Congress on Big Data (BigData Congress). IEEE.

ACM Computing Surveys, Vol. XX, No. XX, Article 00. Publication date: October 2018.

https://mesosphere.com/why-mesos/?utm_source=adwords&utm_medium=g&utm_campaign=43843512431&utm_term=mesos&utm_content=190805957225&gclid=CLqw8o6J6dMCFdkGKgodYlsD_A
https://mesosphere.com/why-mesos/?utm_source=adwords&utm_medium=g&utm_campaign=43843512431&utm_term=mesos&utm_content=190805957225&gclid=CLqw8o6J6dMCFdkGKgodYlsD_A

00:38 • Barika et al.

Zhu et al. 2016. Fault-tolerant scheduling for real-time scientific workflows with elastic resource provisioning in virtualized clouds. IEEE
Transactions on Parallel and Distributed Systems 27, 12 (2016), 3501–3517.

Received XXX; revised XXX; accepted XXX

ACM Computing Surveys, Vol. XX, No. XX, Article 00. Publication date: October 2018.

	Abstract
	1 Introduction
	2 Related Work: Positioning versus Existing Taxonomies
	3 Big Data Workflow Orchestration
	3.1 Representative Example of a Big Data Workflow
	3.2 Workflow Level
	3.3 Big Data Programming Models/Frameworks Level
	3.4 Cloud and Edge Datacenters Level

	4 Requirements of Big Data Workflow in the Cloud
	5 Research Taxonomy for Orchestrating Big Data Workflow Applications
	5.1 Cloud-related Challenges
	5.2 Data-related Challenges
	5.3 Workflow-related Challenges

	6 Current Approaches and Techniques
	6.1 Cloud Platform Integration
	6.2 Cross-Cloud Workflow Migration
	6.3 Resource Provisioning
	6.4 Resource Volatility
	6.5 Data Storage
	6.6 Data Movement
	6.7 Data Provenance
	6.8 Data Indexing
	6.9 Workflow Specification Language
	6.10 Workflow Initialization
	6.11 Workflow Parallelization and Scheduling
	6.12 Workflow Fault-tolerance
	6.13 Workflow Security

	7 Systems With Big Data Workflow Support
	7.1 Scientific Workflow Systems with Big Data Extensions
	7.2 Big Data Application Orchestrator

	8 Open Issues
	9 Conclusion
	References

