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Abstract—With the emergence of the Internet-of-Things (IoT)
and seamless Internet connectivity, the need to process streaming
data on real-time basis has become essential. However, the
existing data stream management systems are not efficient in
analyzing the network log big data for real-time anomaly detec-
tion. In this context, the existing anomaly detection approaches
are not efficient because they cannot be applied to networks,
are computationally complex, and suffer from high false posi-
tives. Thus, in this paper a hybrid data processing model for
network anomaly detection is proposed that leverages Grey Wolf
Optimization (GWO) and Convolutional Neural Network (CNN).
To enhance the capabilities of the proposed model, GWO and
CNN learning approaches were: (i) enhanced with improved ex-
ploration, exploitation and initial population generation abilities
and (ii) revamped dropout functionality. These extended variants
are referred to as Improved-GWO (ImGWO) and Improved-
CNN (ImCNN), respectively. The proposed model works in two
phases for efficient network anomaly detection. In the first phase,
ImGWO is used for feature selection in order to obtain an optimal
trade-off between two objectives, i.e., reduced error rate and
feature-set minimization. In the second phase, ImCNN is used
for network anomaly classification. The efficacy of the proposed
model is validated on benchmark (DARPA’98 and KDD’99) and
synthetic datasets. The results obtained demonstrate that the
proposed cloud-based anomaly detection model is superior in
comparison to the other state-of-the-art models (used for network
anomaly detection), in terms of accuracy, detection rate, false
positive rate and F-score. In average, the proposed model exhibits
an overall improvement of 8.25%, 4.08% and 3.62% in terms of
detection rate, false positives, and accuracy, respectively; relative
to standard GWO with CNN.

Index Terms—Anomaly detection, Convolutional Neural Net-
work, Cloud Computing, Feature selection, and Grey Wolf
Optimization.

I. INTRODUCTION

THE need for increased computational power and on-
demand services as per the user’s requirements has paved

the way to one of the most powerful technologies of the
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modern era, Cloud Computing (CC). According to Gartner,
CC has been growing at a rate of 40% and will continue
to rise at a rate of more than 25% per year [1]. However,
transition from traditional client-server architectures to CC is
not straightforward and there are a number of operational and
security challenges induced due to its underlying virtualized
environment. These risks further aggravate with the emergence
of the Internet of Things (IoT) in which smart devices com-
municate with each other using an open channel, Internet.
Moreover, these connected devices, deployed across different
enterprises, generate large volumes of streaming data, ranging
from micro-blog feeds and financial information to complex
network monitoring logs [2].

Recent studies have shown that intruders have successfully
launched several attacks, which have caused unprecedented
levels of disruption in various CC-hosted application services.
Recent insights on Cloud Adoption and Security by Forbes
says that 49% of businesses are delaying cloud deployment
due to cybersecurity issues [3]. According to existing propos-
als and reports, more than 20% of enterprises in the world wit-
nessed at least one form of Denial of Service (DoS) attack on
their infrastructures. For instance, DoS attack on the Amazon
cloud infrastructure caused the BitBucket site to be unavailable
for a substantial amount of time [4]. Likewise, Dropbox was
rendered un-operational for more than 15 hours [5]. Apart
from this, researchers from Symantec have discovered that
the growing dependence on Cloud services has opened doors
for more severe forms of intrusions. Thus, in order to remain
resilient, the cloud needs to possess the ability to react not only
to the known threats, but also to new emerging threats which
may target its underlying networking infrastructure. To combat
these challenges, researchers have extensively used Intrusion
Detection Systems (IDSs) as a defensive strategy for cloud
security [6]. IDSs used in cloud environments include misuse
detection, anomaly detection, hypervisor introspection (HVI),
virtual machine introspection (VMI), and a combination of
these. Among all these techniques, anomaly detection with
respect to heterogeneous traffic flow data generated due to
diverse application types, is still in its infancy.

More recently, different variants of anomaly detection tech-
niques, amalgamated with IDSs, were proposed in the lit-
erature [7], [8]. For instance, Pandeeswari et al. [9] pro-
posed an IDS at the hypervisor layer to detect attacks in
cloud environments using Fuzzy C-Means clustering algorithm
along with Artificial Neural Network (FCM-ANN). Similarly,
Watson et al. [10] proposed an online cloud anomaly detec-
tion technique which uses one-class Support Vector Machine
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(SVM) algorithm to detect various types of malware and DoS
attacks in CC infrastructures. Further, Ye et al. [11] proposed
an anomaly detection framework based on Software-Defined
Networks (SDN) for cloud setups. Sha et al. [12] designed a
multi-order Markov chain based model for anomaly detection
using DARPA dataset. In [13], Tan et al. used Multivariate
Correlation Analysis (MCA) for accurate characterization of
known and unknown DoS attacks. Although competent in gen-
eral anomaly detection, most of these approaches suffer from
high false alarm rates and elevated computational complexity.
Hence, these schemes are not efficient particularly for network
anomaly detection in streaming data, which requires real-time
analysis [14].

Recently, another trend has grabbed the attention of
researchers for network anomaly detection, namely deep-
learning (DL). It is a widely-accepted machine learning ap-
proach that plays a significant role in detecting the most
relevant features from huge datasets using back propagation.
Ever since its inception, different architectures have been
proposed in the literature such as-Deep Neural Networks, Deep
Belief Networks, Recurrent Neural Networks and Convolu-
tional Neural Networks (CNN) [15]. Among these techniques,
CNNs are widely utilized for data classification due to their
inherent ability to be trained with minimum pre-processing
requirements; which makes them suitable for network anomaly
detection.

A. Motivation

It is evident from the above discussion that a number of
proposals have been suggested to detect anomalous behavior
in network traffic using a wide variety of techniques such as-
SVM, MCA, FCM-ANN, etc. However, these techniques are
inefficient because of their reduced accuracy and high false
positive alarms. Additionally, due to the heterogeneous and
diverse nature of cloud environments, existing techniques may
not be applicable to handle the challenges induced due to the
existence of virtualized environments and different types of
application workloads [16]. In order to tackle these exploding
security risks, an efficient anomaly detection technique for
streaming data needs to be designed. It should involve careful
examination of both historical and real-time data streams with
high accuracy and minimal computational complexity [17],
[18].

Hence, an anomaly detection model particularly for hetero-
geneous data in CC networking environments is designed in
this paper. Two important issues are explored in the proposed
hybrid model (see Fig. 1), i.e., relevant feature set selection
from the traffic stream repository and their classification into
benign and anomalous classes. In the proposed model, feature
extraction is achieved using Grey Wolf Optimization (GWO)
[19], a meta-heuristic approach based on evolutionary com-
putation which is widely accepted for its simplicity, flexibility
and ability to yield optimal results. On the other hand, anomaly
classification is done using CNN, a promising deep learning
approach. In addition to this, the proposed work also enhances
the capabilities of the proposed model with (i) improved explo-
ration, exploitation and initial population generation abilities

for GWO and (ii) revamped dropout functionality for CNN.
The improvised version of CNN with dropout functionality not
only helps avoid over-fitting but also increases the weights
of the most relevant features of the network. This in turn,
simultaneously enhances the accuracy of the architecture while
helping it converge faster.

GWO and CNN are powerful techniques that have been ex-
ploited by the research community in the networking domain
to address various problems. For instance, Yang and Zhou
[20] used GWO to design an effective IDS based on cloud
with improved exploration and exploitation capabilities. Mao
et al. [21] proposed the use of CNN for path prediction in
SDN by learning from the past experiences and pro-actively
updating the routing paths. Here, CNN was deployed at the
controller and was specifically used to overcome the issues
induced by fixed path routing decisions. In another work, Ji et
al. [22], [23] employed CNN for network fault prediction by
effectively analysing the log files. In this work, the log files
were treated as textual files for monitoring the realtime status
of the network and predicting any network faults using CNN.
Likewise, CNN has also been employed for network intrusion
detection in different forms.

B. Contributions

The major contributions of the proposed work are summa-
rized as follows:
• We design an efficient hybrid model using GWO and

CNN for efficient network anomaly detection in cloud
setups. GWO is used for multi-objective feature extrac-
tion, while CNN is used for anomaly classification.

• We propose an improvised version of GWO (ImGWO)
which enhances the exploration, exploitation, and initial
population generation abilities of the standard GWO on
streaming data.

• The capabilities of the standard CNN are improved by re-
vamping the functionality of dropout layer using uniform
distribution approach. The modified version of CNN is
referred as ImCNN.

• We provide qualitative and quantitative comparison of the
proposed hybrid model with the current state-of-the-art
models on benchmark and synthetic datasets for network
anomaly detection.

C. Organization

The rest of the paper is structured as follows. Section II
presents the system model followed by an illustrative descrip-
tion of ImGWO and ImCNN in Section III. The proposed
hybrid model for network anomaly detection is described in
Section IV. Simulation results are summarized in Section V
followed by conclusion and future directions in Section VI.

II. PROPOSED HYBRID MODEL

This section provides an overview of the proposed hybrid
model used for network anomaly detection in cloud setups
in the context of streaming network traffic data. The detailed
architectural diagram is depicted in Fig. 1. The individual



1932-4537 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2019.2927886, IEEE
Transactions on Network and Service Management

3

ImGWO:

I. Improved initial population 

generation.

II. Enhanced exploration & 
exploitation capability

3-FEATURE SELECTION 

USING ImGWO

TCP & UDP packets with 
relevant feature set

4-DATA OUTPUT

Individual TCP & UDP 
packet extraction

2-DATA 

PREPROCESSING

Network traffic log files

1-DATASET 

SELECTION

Conversion to RBG format 
(32x32x3)

5-DATA 

PREPROCESSING

STOP

6-DATA SPLITTING

TRAINING 
DATA

TESTING 
DATA

ImCNN:

I. Improved dropout layer functionality

7-ANOMALY DETECTION USING ImCNN

conv1 conv2

samp1

conv3 conv4

samp2

drop1

conn1

I/O

O/P

X

X

TRAINING PHASE

TRAINING PHASE

Unsatisfactory 
Detection Rate

Unsatisfactory 
Result

Fig. 1: Proposed hybrid model using ImGWO and ImCNN for network anomaly detection in cloud setup.

data processing phases are namely-1) dataset selection, 2) data
preprocessing, 3) feature selection using ImGWO followed by
4) data output, 5) data preprocessing, 6) data splitting, and 7)
anomaly detection using ImCNN. Their detailed description is
provided below.

Dataset selection is the first phase of the proposed hybrid
model. In this paper, three different datasets were utilized
which belong to two categories, i.e., benchmark and synthetic.
From these datasets, the tcpdump logs are extracted as they
predominantly contain the traffic information pertaining to CC
infrastructure. These logs comprise of TCP and UDP packets
which constitute almost 90% of the datacenter traffic and thus,
are used to represent the network traffic flow data. For these
reasons, the considered log files have been considered to detect
anomalies over the Internet traffic. During the second phase,
the proposed model processes the input data for ImGWO.
The individual TCP and UDP packets are extracted from the
tcpdump logs and are given as input to the ImGWO. Following
this, feature extraction phase is executed which is considered
as an important prerequisite in any classification problem
ranging from complex images and videos to textual and audio
contents. Hence, ImGWO is particularly used to extract the
relevant feature sets from the given input dataset such as-
source IP address and port number, destination IP address
and port number, etc. ImGWO is a multi-objective feature
extractor that helps to find the optimal number of features from
the available dataset with high classification performance. The
improvised packets with the relevant features are provided as
the output of this phase. Next, the output acquired from the
previous step is preprocessed and converted to RBG format
images (32× 32× 5). These images serve as the input to the
next phase. Finally, the dataset comprising of RBG images is
split in the ratio of 70:30; wherein 70% data is used during

the training phase, whereas the rest is utilized in the testing
phase of the ImCNN. In the former phase, the hybrid model
is trained to detect anomalous activities in the network traffic
data, while in the latter phase, it identifies the anomalous
activities by applying the underlying logic on the historical
data and current input data. Finally, during the anomaly
detection phase, ImCNN, a multi-class classifier is used to
classify the anomalies of the traffic streams. It is comprised
of 8 layers to achieve the desired level of classification. The
detailed description of the layers is provided in Section III-B.

III. EXTENSIONS TO GWO AND CNN

This section presents the detailed description of the im-
provements done to the standard GWO and CNN techniques
to accelerate convergence and maximize the accuracy. These
modifications are discussed as follows. Related symbols and
notations are defined in Table I.

A. Improved-GWO Variant

The existing GWO suffers from several problems like
random initial population generation and limited exploration
and exploitation capabilities which hamper the local search
capability of the algorithm and affect the convergence. The
improvements corresponding to these shortcomings are dis-
cussed herewith:

1) Improved Initial Population Generation: In traditional
GWO, the initial population is generated randomly over the
search space which may lead to lack of diversity of the pack
of wolves in the considered search space. Numerous studies
have suggested that the initial population plays a significant
role in the global convergence speed and the optimality of the
obtained solution. Motivated by this fact, this work generates
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TABLE I: List of symbols and their meanings.

NOMENCLATURE
xj
i Positions of the wolves generated using uniform distribution
µ Mean of the population
σ Standard deviation of the population
~A and ~C Coefficient vectors in GWO
Pm Non-linear function
t Present iteration in Pm

T Maximum number of iterations in Pm

r2 and r
′
2 Random variables generated using statistical distribution

rmax
2 Upper bound for r2
rmin
2 Lower bound for r2
l Hidden layer in dropout
i Hidden units in dropout
w

(l)
i Weights associated with underlying layer l

b
(l)
i Biases associated with underlying layer l
r(l) A vector of random numbers
ỹ(l) Thinned outputs
ỹ(l) Input to the next layer
f Activator function
L List of all the hidden layers (with weights ≤ 0.5)
m Number of hidden layers employed in dropout
D Dataset
F Feature set
F (.) Feature selection algorithm
Ade Decisive attribute
F

′
Number of selected features

E Error Rate
F Fitness function
α Grey wolf with maximum fitness
β Grey wolf with second maximum fitness
δ Grey wolf with third maximum fitness
γ Any constant value between [0,1]

EF
′

c Classification error rate involved in selecting the feature-set
EFc Error rate with all the actual feature set

an appropriate initial population using uniform distribution,
wherein the positions of the wolves (xji ) are likely to be
equally distributed [24]. The computation of xji is achieved
as follows:

xji = xjmin + U(µ, σ)× (xjmax − x
j
min) (1)

here, positions of wolves, xji are generated using the
uniform distribution with the mean and standard deviation of
population (µ and σ) respectively.

2) Improved Exploration and Exploitation Capability: The
existing coefficient vectors ~A and ~C in GWO are used for the
exploration and exploitation, respectively. Using ~A in every
iteration, population of wolves are segregated, wherein half of
the iterations are devoted to exploration (when |A|>1), while
half is dedicated to exploitation (when |A|<1). However, this
division of population may lead to faster convergence with
false pareto front. In order to resolve these problems, adaptive
mutation is applied to extend the exploration ability of GWO.
To control the probability and range of mutation on each wolf,
a non-linear function (Pm) is incorporated which is given as:

Pm = 0.5e−10∗t/T + 0.01 (2)

where t is the present iteration and T denotes the maximum
number of iterations. It can be seen from Eq. (2) that increasing
iterations causes Pm to increase exponentially. If it exceeds
a random number in the range of [0,1], the mutation is
performed as shown in Eq. (3) below; where N elements from

the pack of wolves are picked to control the mutation range
within the search space.

N = max

{
1,

⌈
D −

(
t

T

)γ
× Pm

⌉}
(3)

Further, ~C is not linearly related to ~A. This component
provides random weights to prey in order to stochastically
emphasize (C>1) or de-emphasize (C<1). Hence, to further
increase the randomness of ~C at all times, this paper suggests
the use of a statistical distribution as mentioned below [25]:

r2 = r
′

2 +

[
α×N(0, 1)3t

(rmax
2 − rmin

2 )

t

]
(4)

where, r2 is the random variable generated during the present
iteration and r

′

2 is the random number generated during the
previous iteration. The variables rmax2 and rmin2 are the upper
and lower bounds on r2 and the power of generating random
number using N(0, 1) is set to 3 based on extensive numerical
experimentation. This is helpful in avoiding the local optima
stagnation especially during the final iterations.

B. Improved-CNN Variant

CNNs are widely utilized in the domain of image classifica-
tion due to their limited pre-processing capability. This implies
that, in contrast to classical algorithms involving manual inter-
vention, a CNN evolves to learn the filters by itself analogous
to classical algorithms involving manual intervention. Hence,
this trait of CNN can be regarded as its major advantage
over the existing schemes in addition to its ability to provide
separation from the prior knowledge. However, the concept
of “Dropout” plays an essential role in deep CNN as well as
CNN in general. One of the serious issues with CNNs is over-
fitting, which is induced due to the large network logs (big
data). Such networks make it difficult for CNN deep learning
technique to learn the relevant features quickly. The main
ideology behind dropout is to randomly dropout a few units
and their respective connections from the network. This is
done during the training phase so that the units do not co-adapt
a lot. This is achieved by configuring the output of the hidden
layers (with probability=0.5) to zero. The dropped neurons are
thus eliminated from the process and do not contribute in back
propagation.

Mathematically, the conventional dropout scheme can be
understood using the below mentioned equations:

r(l) = Bernoulli(p)

ỹ(l) = r(l) ∗ y(l)

z
(l+1)
i = w

(l+1)
i ỹ(l) + b

(l+1)
i

y
(l+1)
i = f(z

(l+1)
i )

In the above equations, the indices l and i denote the hidden
layer and hidden units, respectively. Every layer l is associated
with a vector of inputs and outputs which are represented
using z

(l)
i and y

(l)
i , respectively. The symbols w(l)

i and b
(l)
i

refer to the weights and biases associated with underlying
layer l. In the conventional dropout approach, a vector of
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random numbers (r(l)) is initially generated using Bernoulli
distribution, which is then multiplied element-wise with y(l)i ,
to yield ỹ(l) (thinned outputs). The obtained value of ỹ(l) acts
as input to the next layer, and is used to compute the value
of z(l+1)

i . This process is repeated for all the layers using the
activator function f . It is worth noting here that the output of
Bernoulli distribution is either ’0’ or ’1’; which suggests that
a particular hidden unit is either completely dropped or taken
forward, respectively.

Unlike the conventional dropout, the proposed dropout
approach is based on the uniform distribution. It can be
viewed as the extension of the conventional dropout scheme
which focuses on enhancing the weights of the relevant feature
maps. In other words, the proposed dropout scheme not only
abandons some of the units and connections from the network
like conventional dropout, but also alters the weights of some
of the units (which have respective weights below 0.5). This
task not only helps avoid the over-fitting but also increases
the weights of the most relevant features of the network.
This in turn, simultaneously enhances the accuracy of the
architecture while helping it converge faster. Mathematically,
the overall scheme is presented by Algorithm 1. Initially, list
L is initialized for all the hidden layers with weights less than
or equal to 0.5 (Line 1). Then, vector rl is initialized with
the random numbers using the uniform distribution (Line 2).
Following this, thinned outputs are computed using pair-wise
multiplication of rl and yl, followed by zl+1

i ’s computation
(Line 3-4). Finally, the outputs of the next layer, i.e., (l + 1)
are estimated and the process is repeated for all the layers in
L (Line 5).

Algorithm 1 Modified dropout in ImCNN

1: Initialize List L = {l1, ...., lm};∀y(l) <= 0.5 . Initialize
the hidden layer list with weights ≤ 0.5

2: Compute r(l) ∈ [0, 1] using uniform distribution .
A vector of random numbers is computed using uniform
distribution

3: Compute ỹ(l) = r(l) × y(l);∀li ∈ L . Thinned output
computation for the lth hidden layer

4: Compute z(l+1)
i = w

(l+1)
i ỹ(l) + b

(l+1)
i ;∀li ∈ L . Input

computation for the next (l + 1)th hidden layer
5: Compute y(l+1)

i = f(z
(l+1)
i );∀li ∈ L . Output

computation for the next (l + 1)th hidden layer

1) Complexity Analysis: The overall complexity of the
algorithm is O(m); wherein m denotes the number of hidden
layers employed in dropout.

IV. A ROBUST HYBRID MODEL FOR ANOMALY
DETECTION

The hybrid model for network-wide anomaly detection
works in two phases and the their detailed operation is
provided in what follows.

A. Feature Selection using ImGWO

Since the performance of the classifier highly depends on
the number of features (such as-source IP address and port

number, destination IP address and port number, etc.), the
problem consists of finding the most relevant features to
maximize its performance. Let, D = {x1, x2, · · · , xn} be
a given dataset with n objects and F = {f1, f2, · · · , fm}
be the feature set with m number of features. Now, the
feature selection process can be considered as a mapping
of S(D,F,Ade) → F

′
, where F (.) is the feature selection

algorithm, Ade is the decisive attribute that represents class
labels and F

′ ⊂ F , where |F ′ | = k (k<m) are the number
of selected features. The aim of the proposed feature selection
technique is to compute F

′
which are highly relevant to the

dataset D as well as less related to each other.
In the proposed model, ImGWO is used to formulate the

multi-objective feature selection problem; wherein the best
solution for each wolf is to be determined from a set of
potential non-dominated solutions. In this context, the fitness
function of the participating wolf swarm is mathematically
described below.

1) Fitness Function of Wolf Swarm: Feature selection in the
context of network anomaly detection typically suffers from
two major conflicting objectives: to minimize the number of
features and to reduce the error rate of classification. Due to
the presence of trade-offs between two or more conflicting
objectives, optimal decisions becomes difficult. Thus, a single
objective problem with several constraints may not be able to
adequately represent this problem. In this case, it is mandatory
to use multi-objective optimization which operates under a
certain set of constraints in order to minimize or maximize
the set of objective functions.

The proposed technique aims to compute a subset of fea-
tures that yields the lowest Error Rate (E) for the classifier.
Several methods have been adopted to determine the classifier
performance such as-Hamming loss, ranking loss, accuracy,
etc. In order to evaluate the classification error rate of a grey
wolf, this paper uses accuracy as an evaluation metric. The
fitness function to minimize (E) is given in Eq. (5). During
the evolutionary training process, this function tests each
possible subset of features to find the one which minimizes
the classification error involved in feature selection.

E = (FP + FN)/(TP + TN + FP + FN) (5)

where FP, FN, TP and TN denote the False Positive, False
Negative, True Positive and True Negative rates, respectively.
These are typically real valued numbers in the range of [0,
100].

This is the basic fitness function which only considers the
classification performance but does not take number of features
into consideration. Thus, a multi-objective fitness function
(F) is used; where the first objective function (F1) aims
to minimize the classification error rate, whereas the second
objective function (F2) tends to minimize the number of
features. This function is defined as [26]:

F =

Error Rate(E) (F1)

γ × #F
′

#F + (1− γ)× E
F

′

c

EFc
(F2)

(6)

The above defined fitness function is expected to ensure the
minimization of the number of features while maintaining a
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high classification performance. In the defined function, γ
is any constant value lying between [0,1], F

′
denotes the

number of selected features, F represents the total number of
available features, EF

′

c is the classification error rate involved
in selecting the feature-set and EFc represents the error rate
involved by using all the available features for classification.

The detailed operation of the ImGWO for feature selection
in the context of network anomaly detection is illustrated by
Algorithm 2. During Step 1, different parameters such as-
pop, T, F and pos are initialized (Lines 2-6). In Step 2, the
initial population is generated using uniform distribution as
discussed above. Along with this, the coefficient vectors ( ~A
and ~C) and the random vectors (~r1 and ~r2) are initialized
(Lines 7-11). Following this, fitness functions are calculated
for all the wolves to determine the optimal solution for the
considered problem. Based on the obtained fitness values, the
participating wolves are categorized into α, β and δ. The rest
of the wolves are marked as ω which follow α, β and δ
(Lines 14-16). Finally, the process of improved exploration
and exploitation capability as discussed above is repeated, till
an optimal solution to the problem is reached (Lines 17-33).

2) Complexity Analysis: The overall complexity of the pro-
posed algorithm was found to be O(mnp); wherein variables m,
n and p refer to the number of iterations, population size and
number of features in the dataset, respectively. The proposed
ImGWO gives better convergence with improved exploration,
exploitation and initial population generation abilities than its
standard counterpart.

B. Anomaly Detection using ImCNN
The structure of the ImCNN used in the proposed model

for effective anomaly classification is described as under.
The logical structure of the proposed ImCNN is described

using Fig. 2. As shown in the figure, the ImCNN architecture
comprises of 8 layers, namely 4 convolutional layers (conv),
2 sub-sampling layers (samp), 1 dropout layer (drop) and 1
fully connected layer (conn). The sequence of the layers is
as under: conv1, conv2, samp1, conv3, conv4, samp2, drop1,
and conn1. The detailed operation of these layers is provided
in what follows.

The images acquired from streaming data traffic serve as
the input to the ImCNN with the size of 32× 32× 3; wherein
the spatial dimension are represented using 32×32 pixels and
the channel dimensions are fixed to 3. In the first layer, i.e.,
conv1 a 2D kernel of size 3×3 is applied to the input. Here, a
2D kernel is utilized to extract the relevant feature set. Since,
a single kernel is capable of extracting a single feature, thus a
total of 12 2D kernels are applied on the data set to generate a
holistic feature map of 12 size in the very first layer. Moreover,
a total of 6 2D kernel of dimensions 2× 2 are utilized as part
of the conv2 layer. Subsequently, with an aim to reduce the
spatial resolution, sub-sampling is carried out in the next layer,
i.e., samp1. This layer helps to enhance the robustness of even
the minute spatial distortions. Here, the sampling is performed
with the factor of 2 × 2 which doesn’t affect the size of the
feature map.

In order to generate a more optimized feature map, another
layer of convolution, i.e., conv3 is utilized with the 2D kernel

Algorithm 2 ImGWO: Proposed Feature Selection Technique
Input: Dataset D.
Output: Optimal feature subset F

′
.

1: procedure FUNCTION(ImGWO)
2: Step 1: Initializing Parameters

3: pop: size of population
4: T: maximum number of iterations
5: F: total number of features
6: pos: position of grey wolf
7: Step 2: Initial Population
Generation

8: Generate the initial population using uniform distribu-
tion

9: Initialize ~A
10: Compute r2 using Eq. (4)
11: Initialize ~C using r2
12: Step 3: Fitness Function Calculation

13: Calculate the fitness function (F) of grey wolves using
Eq. (6)

14: Set α=the grey wolf with maximum fitness
15: Set β=the grey wolf with second maximum fitness
16: Set δ=the grey wolf with third maximum fitness
17: while t<T do
18: for i = 1 to pop do
19: Update the pos of the current grey wolf
20: end for
21: for i = 1 to pop do
22: for j = 1 to F do
23: Compute Pm using Eq. (2)
24: if Pm>r1 then
25: Calculate N using Eq. (3)
26: Set F

′
= {f1, f2, · · · , fN }

27: for k = 1 to N do
28: Re-initialize the kth feature of the

grey wolf
29: end for
30: end if
31: end for
32: end for
33: end while
34: end procedure

(3× 3). This layer in turns generates a set of 3 feature maps.
Finally, another convolution layer (conv4) for deep feature
identification is employed next. Like the previous layer, the
same kernel is used in this layer producing a total of 3
feature maps. Subsequently, sub-sampling is performed on
the data as part of samp2 layer; without affecting the size
of the feature map. Finally, the modified dropout approach
as discussed in Section III-B is carried out as part of drop1
layer; wherein the ImCNN tends to learn the robust features
of the underlying network. In the next layer, the proposed
ImCNN tends to learn high-level features of the input datasets
using convolution in conn1. It is a fully-connected layer which
utilizes 3D kernel (size = 5 × 5 × 3), reducing the feature
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Fig. 2: The architecture of the ImCNN used for network anomaly detection for streaming data in cloud setup.

map to 1 × 1 × 5 size. The number of outputs of this layer
is 5 which corresponds to different classes of normal and
anomalous traffic streams namely-normal, DoS, U2R, R2L
and Probe. This output classifies the traffic stream into the
above classes with a definite probability which is chosen in
accordance with the benchmark datasets [27], [28].

V. NUMERICAL SIMULATION RESULTS

This section demonstrates the performance of the proposed
model compared to the current state-of-the-art schemes for
network anomaly identification. It is implemented using i3-
6100U CPU @ 2.30 GHz with 4 GB of RAM on MATLAB
R2016a. For the extensive evaluation of the proposed model,
three sets of case studies have been considered which measure
the performance of the proposed model on different datasets,
i.e., benchmark and synthetic datasets.

A. Evaluation metrics

In order to evaluate the performance of the proposed model,
the following parameters are used: Detection Rate (DR) or
recall, False Positive Rate (FPR), precision, accuracy and F-
score [7], [24]. The mathematical derivation of these parame-
ters is illustrated using the below equations.

DR (Recall) =
TP

TP + FN

FPR =
FP

FP + TN

Precision =
TP

TP + FP

Accuracy =
TP + TN

TP + TN + FP + FN

F-score = 2× Precision× Recall
Precision + Recall

In the above equations, the parameters TP, TN, FP and FN
refer to True Positive, True Negative, False Positive and

False Negative, respectively. TP refers to the case when the
considered class (network traffic in our case) is actually normal
and is classified as normal. On the similar lines, an anomalous
class classified as normal is referred to as FP. On the contrary,
a normal class may be classified as anomalous, while an
anomalous class may be predicted anomalous. These cases
are respectively ascribed as TN and FN.

TABLE II: Illustration of confusion matrix
hhhhhhhhhhhhhActual class

Predicated class
Anomaly class Normal class

Anomaly class TN FP
Normal class FN TP

B. Datasets Used

1) Benchmark dataset-DARPA’98: The benchmark dataset
used for evaluation purpose is acquired from Defense Ad-
vanced Research Projects Agency (DARPA) comprising of
58 features [27]. This benchmark dataset is widely accepted
and is used for network anomaly detection. It comprises of 4
set of files namely-tcpdump files, tcpdump list files, Solaris
BSM audit data files, and ps monitoring data files. These
files contain the network traffic log information, however,
amongst these files only the tcpdump files contain the traffic
log information pertaining to cloud environment. Hence, the
tcpdump files are used for evaluating the performance of the
proposed hybrid model. Moreover, this raw data (in the form
of bytes/packets from tcp dump file) is converted into images
for evaluation purposes during the preprocessing phase as
explained in Section IV.

2) Benchmark dataset-KDD’99: KDD Cup 1990 is a
benchmark data that is acquired from UCI machine learning
repository for Case study-II [28]. It comprises of nearly 5
million records and a total of 41 features. Like DARPA’98
dataset, the traffic in this dataset can also be classified into 5
classes namely-normal, DoS, U2R, R2L and Probe.
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3) Synthetic dataset: In oder to perform a more compre-
hensive evaluation of the proposed model, a simulated envi-
ronment has been set up to generate synthetic network traffic
streams. For this purpose, two machines were setup, wherein
the first machine was a typical Windows PC, while the other
was a dummy server. On the former machine, different kinds
of malicious files were executed to generate the anomalous
traffic, while on the later machine INetSim2 was used to set an
imitation of Internet. The main advantage of using INetSim2 is
that it can be used to generate common Internet services data
(HTTP, SMTP, DNS, FTP, etc.). Subsequently, the generated
data from the Windows PC is sent to the server, to which
the server responds back with the appropriate queries. The
communication between the two machines carries both the
anomalous and benign traffic and the same has been employed
for the performance evaluation of the proposed model. The
anomalous traffic was injected into the traffic stream for
following attack vectors: DoS, Generic, Shell code and CLET
[29]. Hence, the generated synthetic traffic streams can be
classified into 2 classes, i.e., normal and anomalous.

C. Results & Comparisons
For the extensive evaluation of the proposed model, three

case studies were taken into account. These case studies
evaluate the performance of the model on different datasets,
i.e., Case study-I on DARPA’98 dataset, Case study-II on
KDD’99 dataset and Case study-III on synthetic dataset. The
results obtained are highlighted in Figs. 3 and 4 respectively.

For the sake of clarity, the obtained results are illustrated in
two parts namely-for ImGWO and for proposed hybrid model
(ImGWO+ImCNN). The relative comparison of the former was
carried out against the standard GWO; while the latter was
compared with the hybrid combination of GWO and CNN
(GWO+CNN). Their detailed description is as follows.

1) For ImGWO: ImGWO was used for the optimal feature
set selection from dataset. In the considered case studies,
ImGWO was able to attain optimal results as shown in Fig. 3.
The trade-off between the competing functions, i.e., number
of features and error rate is depicted in the figure. It is
evident from the figure that ImGWO leads to improved feature
set selection while minimizing the error rate relative to the
standard GWO. A total of 37, 34 and 21 features were selected
out of 58, 41 and 35 in Case study-I, II and III, respectively, by
ImGWO. For instance, important features like the duration of
the connection, the number of bytes transferred from sources
to destination, the number of bytes transferred from destination
to sources, the number of failed logins, protocol type, the
status of connection, the number of failed login attempts,
the number of compromised conditions, etc. were selected by
ImGWO.

2) For proposed hybrid model (ImGWO+ImCNN): The
performance evaluation of the proposed hybrid model for
network anomaly detection across the considered case studies
is discussed as under. In total, 6 parameters have been used for
the evaluation purpose of the ImCNN architecture for anomaly
detection.

The obtained results in terms of Case study-I are detailed as
under. Fig. 4a depicts the high DR achieved by the proposed
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(a) Pareto front for the feature selection phase

Fig. 3: Performance evaluation of the proposed ImGWO on
benchmark & synthetic datasets.

hybrid model corresponding to normal and anomalous classes
(DoS, U2R, R2L and Probe attacks) on DARPA’98 benchmark
dataset. The FPR corresponding to the considered set of
classes is depicted in Fig. 4b. It is evident from the figure
that the proposed model yields FPR values as low as 4.167,
3.448, 3.846, 3.846, 2.703 with respect to different classes.
Fig. 4c indicates the proposed model’s precision in achieving
the desired results. It achieves high precision in detecting both
normal (99.98) and anomalous classes (99.98, 99.93, 99.93,
99.98). Similarly, evaluation results with respect to accuracy,
F-score and ROC curves are shown in Figs. 4d, 4e and 4f,
respectively. The results clearly indicate good performance of
the proposed model across all the parameters relative to its
existing counterpart, i.e., GWO+CNN.

Next, we illustrate the performance of the ImCNN architec-
ture on KDD’99 dataset for Case study-II. The obtained results
are also depicted in Fig. 4. The proposed model is found to be
effective enough to achieve higher DR, precision and accuracy
in comparison with Case study I and the same is evident
from the results depicted in Figs. 4a, 4c and 4d respectively.
Moreover, the proposed model achieves FPR values as low
as 2.70, 2.20, 2.10, 1.80 and 2.30 in detecting normal, DoS,
U2R, R2L and probe attack classes. Figs. 4e and 4f depict the
F-score and ROC curves which clearly indicate the capability
of the model of achieving satisfactory performance. Overall,
the proposed model is found to perform better on KDD’99
dataset relative to the DARPA’98 dataset. Further, during this
case study as well, the proposed scheme performs better than
the combination of GWO+CNN as indicative from the results
(shown in Fig. 4).

The evaluation results for Case study-III are depicted in
Figs. 5a and 5b. The results clearly indicate that the proposed
scheme achieves quality results even in case of the synthetic
dataset. High DR, precision, accuracy and F-score with low
FPR are an indicative of the performance of the proposed
scheme on synthetic dataset. The related results are highlighted
in Fig. 5a. The corresponding ROC evaluation for this case
study are summarized in Fig. 5b. The obtained results imply
that the proposed model is efficient enough to be implemented
in real-time.

In addition to this, the timing analysis of the proposed
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Fig. 4: Performance evaluation of the proposed hybrid model on benchmark datasets.

scheme across all the datasets is depicted in Fig. 6. The
obtained results indicate that the proposed model executes
in a reasonable amount of time across all the case studies
considered. The obtained results are indicative of the fact
that the proposed approach is reasonably fast and its perfor-
mance doesn’t fluctuate much with the change in datasets.
Contrastingly, the existing scheme based on the amalgamation
of conventional GWO and CNN, requires greater execution
time. Additionally, the choice of the dataset also affects its
execution time adversely. On average, the proposed model
exhibits an overall improvement of 8.25%, 4.08% and 3.62%
in terms of DR, FPR, and accuracy, respectively.

3) Comparison with the existing schemes: The detailed
comparison of the proposed model with the current state-of-
the-art techniques [9], [30], [31], [32], [33], [34] is depicted
in Table-III. As evident from the table, the results obtained by
the proposed model show an indicative improvement over the
existing schemes. For instance, the proposed model performs
far better than the existing schemes in terms of FPR, accuracy,
and F-score for DARPA’98 dataset, and in terms of DR and
F-score for KDD’99 dataset.

VI. CONCLUSION

This work presents a robust hybrid model for network
anomaly detection in cloud environments, particularly for
streaming data. The model leverages the advantages of multi-
objective optimization and deep learning, particularly for fea-
ture extraction and anomaly detection on real-time network
traffic streams. For this purpose, two computationally efficient

TABLE III: Performance comparison of the proposed model
with the state-of-the-art techniques.

DARPA’98 Dataset
Technique DR(%) FPR(%) Accuracy(%) F-score(%)
Elfeshawy et al. [30] 98.43 4.6 95.39 –
Ahmed et al. [31] 99.23 – 92.82 96
David & Thomas [33] 98 – 99.5 –
Proposed Model 98.62 3.60 97.92 98.92

KDD’99 Dataset
Technique DR(%) FPR(%) Accuracy(%) F-score(%)
Sharma et al. [32] 93.41 0.275 99.05 93
Pandeeshwari et al. [9] 98 3.05 – 83.20
Guo et al. [34] 91.86 0.78 93.29 –
Proposed Model 98.72 2.22 98.42 99.07

techniques were employed namely-GWO and CNN. The amal-
gamation of these techniques is further improved by revamping
their respective standard strategies. For instance, GWO is
improvised with respect to enhance initial population, explo-
ration and exploitation capabilities, while CNN is modified in
terms of dropout layer functionality. Additionally, the proposed
hybrid model was extensively evaluated on benchmark and
synthetic datasets. The results obtained clearly indicate the
supremacy of the proposed model relative to the existing
models.

In the future, we will extend the present work for malware
detection, particularly for cloud environments. The inherent
complexity in the cloud environment is induced due to the
heterogeneity of incoming traffic and underlying hardware;
which makes the task of anomaly detection more cumbersome.
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Fig. 5: Performance evaluation of the proposed hybrid model
on synthetic dataset.
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