
SmartMonit: Real-time Big Data Monitoring System

Umit Demirbaga∗†, Ayman Noor∗‡, Zhenyu Wen∗, Philip James∗, Karan Mitra§, Rajiv Ranjan∗
∗Newcastle University, †Bartin University, ‡Taibah University, §Luleå University of Technology

Abstract—Modern big data processing systems are becoming
very complex in terms of large-scale, high-concurrency and multi-
ple talents. Thus, many failures and performance reductions only
happen at run-time and are very difficult to capture. Moreover,
some issues may only be triggered when some components are
executed. To analyze the root cause of these types of issues, we
have to capture the dependencies of each component in real-time.

In this paper, we propose SmartMonit, a real-time big data
monitoring system, which collects infrastructure information
such as the process status of each task. At the same time,
we develop a real-time stream processing framework to analyze
the coordination among the tasks and the infrastructures. This
coordination information is essential for troubleshooting the
reasons for failures and performance reduction, especially the
ones propagated from other causes.

Index Terms—Hadoop, MapReduce, Monitoring

I. INTRODUCTION

Big data systems, such as Hadoop and Spark typically run

in large-scale computer clusters. For example, Fuxi [1] is an

extended implementation of Yarn, which is deployed in a

cluster with over 5000 nodes and serves hundreds of millions

of customers at Alibaba. For these large-scale systems, there

are two key issues that cause performance reduction and

inefficient resource utilization. First is the task failures caused

by diverse sources of software and hardware faults, and the

second is applying unsuitable scheduling policies.

The fault detection in big data systems, however, is very

hard due to the considerable scale, the distributed environment

and the large number of concurrent jobs. State-of-the-art re-

search is not focused on detecting emergent failures. Emergent
failures happen when the errors exceed the propagation bound-

aries during the interaction among hardware and software

components, and can only be identified at run-time [2]. For

example, in the stragglers or tailing behavior in Hadoop

systems, the slower execution of a job may cause the late-time

failures for many other tasks, which have strict time constraints

related to service-level agreements (SLAs). Moreover, the

cluster scheduler uses some heuristics that prioritizes the

important jobs and fairly allocates the resources among the

jobs [3]. However, these methods ignore the information of

the job structure (or dependencies) and schedule the jobs to

the available resources without considering the job structure

at run-time [4].

In order to detect the emergent failures or underlying

reasons for the performance reduction, we need to have a

comprehensive and consistent monitoring plan to collect the

information from each individual process job, while storing,

maintaining and analyzing very large volumes of the monitor-

ing data [5]. The monitoring tools such as Google Cloud Mon-

itoring1, SPARKLINT2 and Datadog 3 aim to collect various

information such as CPU, memory, disk, available bandwidth

and execution status of each job. However, they are not able

to do a real-time multi-resolution analysis that narrows the

scope and increases the resolution, thereby pruning the non-

important information.

In this paper, we propose a real-time monitoring system that

efficiently collects the run-time system information including

computing resource utilization and job execution information

and then interacts the collected information with the Execution
Graph modeled as directed acyclic graphs (DAGs). For exam-

ple, our system is able to capture the job execution stages and

the dependencies of each job in real-time; at the same time,

the resource utilization of each job and its underlying host are

monitored as well. The main contributions are summarized as

follows.

• We develop a big data monitoring system, which can effi-

ciently collect the comprehensive monitoring information

from large-scale computer clusters in real-time.

• At the same time, we process these streaming data and

interact the processed data with the Execution Graph of

each task while visualizing the interaction in real-time.

To demonstrate the effectiveness of our system, we applied

our system to a small Hadoop cluster that is deployed on AWS.

The abovementioned monitoring information is collected in

real-time and visualized in a user-friendly interface. The

demonstration is available as a screen-cast video on YouTube

[6].

II. SMARTMONIT SYSTEM OVERVIEW

This section explains the architecture and implementation

details of SmartMonit.

A. System Architecture

Fig. 1 shows the three main components of our SmartMonit

including Information Collection, Computation and Storing
and Visualization.

Information Collection. Information Collection is used to

collect the job and task metrics and the resource utilization

of the nodes in a large-scale computer cluster in real time

via SmartAgent and Agent. The SmartAgent is deployed on

the master node and collects the specific information of tasks

(mappers and reducers), application (job details) and the clus-

ter information from the DataNodes through the TaskTrackers

1https://kubernetes.io/docs/tasks/debug-application-cluster/resource-usage-
monitoring/

2https://github.com/groupon/sparklint
3https://docs.datadoghq.com/

357

2019 38th Symposium on Reliable Distributed Systems (SRDS)

978-0-7695-6711-2/19/$31.00 ©2019 IEEE
DOI 10.1109/SRDS.2019.00049

NameNode

RS

RS

ASC - - - RS ASC

DataNode 1D t N d
HADOOP CLUSTER Information Collection

SWSA

TT TT

Computation and Storing Visualization

SmartAgent (SA)

Agent (A)

Resources (RS)

TaskTracker (TT)

SmartCollector (SC)

RabbitMQ

SmartWriter (SW)

InfluxDB

DataNode 2D t N d DataNode Nt N d

RS ASCTT

Fig. 1. The framework of monitoring Hadoop cluster in real-time.

using Yarn APIs. Also, the SIGAR library is plugged into the

SmartAgent to monitor the utilization of the resources in the

master node, including CPU, memory and network bandwidth.

The SmartCollector obtains the process information that can

be used to build the Execution Graph (the details are discussed

in §II-B). All monitoring information is streamed to the

Computation and Storing module. Moreover, in the Slave

nodes, the Agent collects the process information by using

SmartCollector and the resource utilization of its host node via

the SIGAR library. The obtained information is sent directly

to Computation and Storing.

Computation and Storing. A RabbitMQ Server is used to

collect the monitoring information sent from the cluster; the

RabbitMQ Server is an open source message broker system,

which provides high throughput, low latency and reliable

communication among applications. Then the SmartWriter
analyzes the collected information pulled from the RabbitMQ
Server in real-time and writes the processed results into

InfluxDB, which is an open-source time series database. This

database provides high-availability storage and the retrieval of

time series data, such as operations monitoring data, sensor

data and application metrics.

Visualization. The Visualization includes two parts: query en-
gine and user interface. The query engine queries the database

in a pre-defined time interval to build the Execution Graph (see

§II-B). The Execution Graph and other collected monitoring

information are visualised to enable rapid understanding and

diagnostics from human operators.

B. Building Execution Graph

We have developed a real-time stream process module

to capture the Execution Graph of an application whilst

it is running. This module consists of SmartCollector and

SmartWriter. The SmartCollector collects the size of each key-

value pair generated from each node and sends the collected

information to RabbitMQ server. Then, the SmartWriter ana-

lyzes the streaming data and computes the data transfer size

among the mappers and reducers. The following describes the

implementation details of this module and Fig 2 illustrates the

logic of the algorithm via a WordCount application.

In the map phase, each mapper is assigned more than one

key and each key has one value, which is equal to 1. Therefore,

we use a 4-tuple to record the information of each key-
value pair, i.e., Map id, key, key-value size, App id as shown

in Fig 2, Step 1 and the recorded tuples are forwarded to

RabbitMQ server when they are obtained. In the reduce phase

(see Step 2), we apply a similar method, but using a 3-tuple
to record the information of each reducer, i.e., Reduce id, key,
App id. Finally, in Step 3 we use Key and App id to match

the dependencies among the mappers and the reducers from

the same application in SmartWriter. For example, The second

and third tuple in Step 1 have the same key (“Science”), and

the key (“Science”) is shuffled to Reduce2 (see the second

tuple in Step 2). As a result, we are able to compute the size

of the data that is shuffled from mappers to reducers according

to the table shown in Step 3.

III. DEMONSTRATION

This section demonstrates the execution workflow of our

SmartMonit by interacting it with a micro-benchmark.

A. Experiment setup

Micro-benchmark. We used Hadoop 3.2.0 and deployed it

over 3 AWS virtual machines (VMs). All nodes have 2 CPU

cores and 8 GB memory. Moreover, we deployed the compu-
tation and storing module on a VM with the same instance

type outside the Hadoop cluster. The Agent and SmartAgent

358

Map_id Key
Key-Value

_size
(in bytes)

App_id

Map1 Computer 8 1608406701350_0001
Map1 Science 7 1608406701350_0001
Map2 Science 7 1608406701350_0001
Map2 Newcastle 9 1608406701350_0001
Map3 Newcastle 9 1608406701350_0001
Map3 University 10 1608406701350_0001

Reduce_id Key App_id
Reduce1 Computer 1608406701350_0001
Reduce2 Science 1608406701350_0001
Reduce1 Newcastle 1608406701350_0001
Reduce2 University 1608406701350_0001

--- Step 1 ---

--- Step 2 ---

Map_id
Key-Value

_size
(in bytes)

Reduce_id App_id

Map1 8 Reduce1 1608406701350_0001
Map1 7 Reduce2 1608406701350_0001
Map2 7 Reduce2 1608406701350_0001
Map2 9 Reduce1 1608406701350_0001
Map3 9 Reduce1 1608406701350_0001
Map3 10 Reduce2 1608406701350_0001

--- Step 3 ---

the connection between them

Fig. 2. The algorithm of SmartWriter.

Fig. 3. Execution graph in a real-time monitoring system.

are deployed inside the cluster to collect the monitoring

information in real-time. The high-level deployment structure

is shown in Fig 1.

B. Real-time monitoring

After the experimental environment was set up, we ran

various configurations of the WordCount application, in terms

of input data size, number of mappers and number of reducers,

to evaluate our system.

Fig 3 is a screenshot that shows the real-time execution

status and resource utilization of running a configuration of

the WordCount application. In order to show the full picture

of our design, the screenshot was taken when all map jobs

and reduce jobs are completed. For more details, please see

our screen-cast video on [6].

In the map phase, Figure 3 indicates that all mappers are

scheduled to slave1 and their execution status and the resource

usage of the entire cluster are monitored by the Agents and

SmartAgent, displayed in the user interface in real-time (see

cycles in the button).

In the shuffle phase, the dependencies between mappers and

reducers are obtained by analyzing the collected information

through our real-time stream process algorithm discussed on

§II-B. Notably, the algorithm also computes the input data

size of each reducer (see the numbers above the dependencies)

in real-time during the shuffle phase. With this information,

we can diagnose the non-salient reasons that cause the per-

formance reduction in the hadoop cluster. For example, if

most of the reducers are not running on the nodes containing

their input data, the data shuffling will reduce the performance

significantly.

The reduce phase is very similar to the map phase, we

collect the execution status of reducers and resource usage

of their hosts (see Fig 3). The right-hand side summarizes the

collected monitoring information of the entire hadoop cluster.

IV. CONCLUSIONS

In this paper, we proposed a novel tool that efficiently

monitors big data systems. The proposed system collects the

run-time system information including computing resource

utilization and job execution information. Importantly, it is

able to process the collected information to build a dynamic

Execution Graph for each application while visualizing the

graph in real-time.

V. ACKNOWLEDGEMENTS

This research was partly supported by Engineering and

Physical Sciences Research Council, UK under grant EPSRC

- EP/R033293/1.

REFERENCES

[1] Z. Zhang, C. Li, Y. Tao, R. Yang, H. Tang, and J. Xu, “Fuxi: A
fault-tolerant resource management and job scheduling system at internet
scale,” Proc. VLDB Endow., vol. 7, no. 13, pp. 1393–1404, Aug. 2014.
[Online]. Available: http://dx.doi.org/10.14778/2733004.2733012

[2] P. Garraghan, R. Yang, Z. Wen, A. Romanovsky, J. Xu, R. Buyya, and
R. Ranjan, “Emergent failures: Rethinking cloud reliability at scale,”
IEEE Cloud Computing, vol. 5, no. 5, pp. 12–21, Sep. 2018.

[3] X. Sun, C. Hu, R. Yang, P. Garraghan, T. Wo, J. Xu, J. Zhu, and C. Li,
“Rose: Cluster resource scheduling via speculative over-subscription,”
in 2018 IEEE 38th International Conference on Distributed Computing
Systems (ICDCS), July 2018, pp. 949–960.

[4] H. Mao, M. Schwarzkopf, S. B. Venkatakrishnan, Z. Meng, and M. Al-
izadeh, “Learning scheduling algorithms for data processing clusters,”
arXiv preprint arXiv:1810.01963, 2018.

[5] A. Noor, K. Mitra, E. Solaiman, A. Souza, D. N. Jha, U. Demirbaga,
P. P. Jayaraman, N. Cacho, and R. Ranjan, “Cyber-physical application
monitoring across multiple clouds,” Computers & Electrical Engineering,
vol. 77, pp. 314–324, 2019.

[6] Demonstration. [Online]. Available: https://youtu.be/Ok0iJBbC5zA

359

