
0018-9340 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.2997051, IEEE
Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. XX, XXXX 2019 1

BaPa: A Novel Approach of Improving Load
Balance in Parallel Matrix Factorization for

Recommender Systems
Ruixin Guo, Feng Zhang, Lizhe Wang, Wusheng Zhang, Xinya Lei, Rajiv Ranjan, and Albert Y. Zomaya

Abstract—A simplified approach to accelerate matrix factorization of big data is to parallelize it. A commonly used method is to divide
the matrix into multiple non-intersecting blocks and concurrently calculate them. This operation causes the Load balance problem,
which significantly impacts parallel performance and is a big concern. A general belief is that the load balance across blocks is
impossible by balancing rows and columns separately. We challenge the belief by proposing an approach of “Balanced Partitioning
(BaPa)”. We demonstrate under what circumstance independently balancing rows and columns can lead to the balanced intersection
of rows and columns, why, and how. We formally prove the feasibility of BaPa by observing the variance of rating numbers across
blocks, and empirically validate its soundness by applying it to two standard parallel matrix factorization algorithms, DSGD and CCD++.
Besides, we establish a mathematical model of “Imbalance Degree” to explain further why BaPa works well. BaPa is applied to
synchronous parallel matrix factorization, but as a general load balance solution, it has significant application potential.

Index Terms—Matrix Factorization, Stochastic Gradient Descent, Recommender Systems, Parallel and Distributed Computing, Load
Balancing

F

1 INTRODUCTION

T HE recommender system is being widely applied in e-
commerce, social networks, location-based services, and

other fields with the development of the Internet. Matrix factoriza-
tion is a conventional method to implement collaborative filtering
recommender systems [1], [2]: the rating matrix is decomposed
into the product of two or more matrices, which are used to
predict the missing ratings in the original matrix. Typical matrix
decomposition algorithms include SGD (Stochastic Gradient De-
scent), CCD (Cyclic Coordinate Decent), ALS (Alternating Least
Squares), and so on. SGD [3], [4] is based on gradient descent,
CCD [5] is based on coordinate descent, and ALS [6] is easy to
be parallelized, but its efficiency and accuracy are lower than the
other two.

The sequential implementation of matrix decomposition be-
comes inefficient when the matrix grows to a massive scale. One
acceleration method is to parallelize it. The difficulty of paralleliz-
ing SGD and CCD is that they are data-dependent: the inputs to an
instruction depends on the outputs of the last instruction, rendering
them inherently sequential [7]. At present, the parallelization often
adopts the method of partitioning: the rating matrix is divided
into multiple non-intersecting blocks, which can be calculated in
parallel, and the outputs of different tasks are integrated through
transmitting [8], [9]. DSGD is a typical parallel SGD algorithm
based on partitioning [10], and CCD++ represents the parallel

• Ruixin Guo, Feng Zhang, Lizhe Wang, and Xinya Lei are with the School of
Computer Science, China University of Geosciences, Wuhan, P. R. China.
E-mail: jeff.f.zhang@gmail.com

• Wusheng Zhang is with the Department of Computer Science, Tsinghua
University, P. R. China.

• Rajiv Ranjan is with the School of Computing, University of Newcastle,
U.K.

• Albert Y. Zomaya is with the School of Computer Science, University of
Sydney, Australia.

Manuscript received June 14, 2019; revised XXXX XX, 2019.

CCD algorithm based on partitioning [11], [12], [13].
Synchronization and asynchronization are two strategies to

schedule parallel matrix factorization [14]. Synchronous paral-
lel matrix factorization algorithms include DSGD, CCD++, DS-
ADMM [15] and so on, and asynchronous algorithms cover
FPSGD [16], Hogwild [17], NOMAD [18], MGLF-MF [19], Asy-
GCD [20] and the like.

Load balance is a major factor influencing the efficiency
of parallel computing [21], [22], specifically for synchronous
computing. It is caused by the uneven workload of tasks [23].
For synchronous computing, tasks need to finish simultaneously
in each iteration. However, if tasks complete one after another, the
first finished must be blocked and idly wait for the last completed
[24]. These delays are primarily due to the uneven data distribution
across blocks, which is the primary reason causing the problem of
load imbalance [25]. Load imbalance is a critical challenge that
must be addressed in parallel computing.

The state-of-the-art approaches of improving load balance for
matrix factorization are approximately divided into three cate-
gories: dynamic assignment, random permutation, and different-
sized partitioning. Dynamic assignment [23] adjusts the workload
of each task dynamically and is usually adopted by asynchronous
algorithms such as Hogwild and NOMAD. But it is hard to be
implemented in a distributed memory environment due to the
complex scheduling and large communication cost [26]. Random
permutation [27] rearranges the matrix by permuting rows and
columns randomly and is adopted by FPSGD. However, a random
permutation is not applicable in distributed memory environments
due to its vast I/O cost [19]. Different-sized partitioning, known
as General Block Distribution (GBD) and Semi-general Block
Distribution (SBD) in [28], aims to adjust the size of blocks to
balance the ratings in each block. Communication scheduling in
SBD-based algorithms such as MGLF-MF is often complicated.
We believe that GBD is more applicable to the synchronous matrix

Authorized licensed use limited to: Newcastle University. Downloaded on February 17,2021 at 12:44:56 UTC from IEEE Xplore. Restrictions apply.

0018-9340 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.2997051, IEEE
Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. XX, XXXX 2019 2

factorization algorithm than SBD. Other partitioning methods such
as hypergraph partitioning [29], [30] and probabilistic modeling
[31], [32] may also achieve good load balance, but they are too
costly.

In this paper, we study synchronous parallel matrix factoriza-
tion and introduce two pieces of innovative work to demonstrate
why and how separately balancing rows and columns can lead to
load balance across blocks.

(1) We introduce the approach of Balanced Partitioning (BaPa)
to demonstrate under what circumstance, independently balancing
rows and columns can prompt ratings to be distributed evenly
across blocks, thereby improving load balance. We formally prove
its feasibility by observing the variance of rating counts across
blocks, and empirically demonstrate its high performance by
applying it to DSGD and CCD++.

(2) We further introduce an “Imbalance Degree” model to
explain why BaPa works well. Imbalance Degree measures how
imbalanced the rating distribution across blocks is. Based on the
Imbalance Degree model, we formally and empirically show that
a more imbalanced dataset may lead to more significant speedup
growth.

Last but not least, BaPa can be applied to a variety of block-
based, synchronous parallel matrix factorization algorithms.

The remainder of the paper is organized as follows. Section
2 contains some preliminary knowledge of matrix factorization,
DSGD, CCD++ and so on. Section 3 introduces the concept of
BaPa and formally and empirically validates its feasibility of
partitioning the ratings evenly across blocks. Section 4 demon-
strates the superior performance of BaPa in speedup growth and
introduces the Imbalance Degree model to explain why. Finally,
Section 5 concludes the paper and identifies future work.

2 PRELIMINARIES

This section introduces matrix decomposition (Section 2.1), SGD
and DSGD (Section 2.2), CCD++ (Section 2.3), and the challenges
in DSGD and CCD++ (Section 2.4).

2.1 Matrix factorization

Matrix factorization is a commonly-used technology to implement
collaborative filtering recommendation systems [1]. Rating matri-
ces are usually sparse because the number of user-item ratings is
small compared with a large number of users and items, and most
of the user-item cells are null.

Let R ∈ Ru×v be a rating matrix, in which u is the number
of users and v is the number of items. Matrix factorization is to
decompose R into a product of a user matrix Uu×k and an item
matrix V v×k, i.e., R ≈ R̂ = UV T . U and V are derived based
on R. Note that the ratings in R̂ but not in R are the predictions.

2.2 SGD-based matrix factorization

There are many methods to achieve matrix factorization. SGD is
one of them and is introduced by Koren et al. [3], [4]

2.2.1 SGD
Let rij be the rating of the i-th row, j-th column in R, uij and vij
be the values of the i-th row, j-th column in U and V respectively.
Let ui be the i-th row vector of U , i.e., ui = (ui1, ui2, ..., uik),
vj be the j-th row vector of V , i.e., vj = (vj1, vj2, ..., vjk).

Let the loss function of matrix factorization be formatted as
the following regularized least squares.

J(U, V) =
∑

rij∈R
[(rij − uivTj)2 + λ(||ui||2 + ||vj ||2)] (1)

where ||.||2 is the second order norm and λ(||ui||2 + ||vj ||2) is
the regularized parameter leveraged to avoid overfitting.

Then U and V can be obtained by solving the minimization
problem.

arg min
U,V

J(U, V) =

arg min
U,V

∑
rij∈R

[(rij − uivTj)2 + λ(||ui||2 + ||vj ||2)]
(2)

To solve the problem in Formula (2), we calculate the partial
derivatives of the function J(U, V) with respect to ui, vj respec-
tively, obtaining their updating formulas as follows:

ui ← ui + α(eijvj − λui) (3)

vj ← vj + α(eijui − λvj) (4)

where α is the learning rate, and eij = rij − uivTj .
Evaluating the Formulas (3) and (4) once using a rating, we

call it an update; after going through all the ratings, we call it
one iteration. Two criteria can be used to decide the algorithm’s
convergence: the elapsed time reaches the maximum; the accuracy
of the current iteration is worse than that of the previous one.
RMSE is used to define the accuracy of prediction, shown as
Formula (5).

RMSE =

√∑
ri,j∈R(ri,j − uivTj)2

sum
(5)

where sum is the number of actual ratings in R. A smaller
RMSE signifies a better factorization, leading to more accurate
predictions.

The above procedure shows how SGD is applied to matrix
factorization. Formulas (3) and (4) show ui and vj are interdepen-
dent, which renders SGD inherently sequential and not easy to be
parallelized.

2.2.2 DSGD

DSGD is used to implement synchronously parallel SGD by the
blocking technique [10].

DSGD decomposes Ru×v into n × n blocks, each with a
size of (u/n)× (v/n). Accordingly, Uu×k is decomposed into n
blocks, each with a size of (u/n)× k, and V v×k is decomposed
into n blocks, each with a size of (v/n)× k.

The blocking and scheduling strategy of DSGD is shown in
Fig. 1. The rating matrix is divided into n× n blocks. An update
of a block denotes utilizing all the ratings in the block to execute
the SGD updates (Formulas (3) and (4)) once. Each iteration needs
n rounds of updates. In each round of update, n tasks concurrently
compute n non-intersecting blocks, respectively. Updates need to
be synchronized: the next round of update should be started only
after the current round of update is finished.

Authorized licensed use limited to: Newcastle University. Downloaded on February 17,2021 at 12:44:56 UTC from IEEE Xplore. Restrictions apply.

0018-9340 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.2997051, IEEE
Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. XX, XXXX 2019 3

Fig. 1: The schedule of DSGD in one iteration.

2.3 CCD++-based matrix factorization

Based on the CCD algorithm, Hsiang-Fu Yu et al. propose
the CCD++ algorithm [11], [12], which is used both in shared
memory and distributed memory multi-core environments. Unlike
SGD, CCD++ is based on coordinate descent rather than gradient
descent.

Let Ωi be the set of all the ratings of the ith row in R, and Ω̄i

be the set of all the ratings of the jth column in R. Let ūq be the
qth column vector of U , i.e., ūq = (u1q, u2q, ..., uuq); let v̄q be
the qth column vector of V , i.e., v̄q = (v1q, v2q, ..., vvq). Let x
be a vector of length u and y be a vector of length v. For uiq , the
loss function of CCD++ is defined as follows:

f(xi) =
∑
j∈Ωi

[(rij − uivTj + uiqvjq − xiyj)2 + λ(||x||2 + ||y||2)]

(6)

f(yj) =
∑
i∈Ω̄j

[(rij − uivTj + uiqvjq − xiyj)2 + λ(||x||2 + ||y||2)]

(7)
Let eij = rij − uivTj , and all eij be maintained by a single

matrix Eu×v . RMSE can be directly calculated through Eu×v .
Our goal is to make f(xi) and f(yj) as small as possible, so that
RMSE can converge faster. To achieve this goal, CCD++ is solved
by the method of coordinate descent.

For Formula (6), taking the partial derivative with respect to
xi, we get ∑

j∈Ωi
(eij + uiqvjq)yj

λ+
∑

j∈Ωi
y2
j

(8)

then the update of uiq is denoted as

uiq ← xi (9)

Similarly, for Formula (7), taking the partial derivative with
respect to yi, we get∑

i∈Ω̄j
(eij + uiqvjq)xi

λ+
∑

i∈Ω̄j
x2
i

(10)

then the update of vjq can be denoted as

vjq ← yj (11)

The update of eij can be denoted as

eij ← eij + uiqvjq − xiyj (12)

In the CCD++ iteration, the updating order of U and V is:
ū1, v̄1, ū2, v̄2, ..., ūq, v̄q, ..., ūk, v̄k

The update of ūq is to utilize Formulas (8) and (9) to calculate
u1q, u2q, ..., uuq one by one; and the update of v̄q is to utilize
Formulas (10) and (11) to calculate v1q, v2q, ..., vuq one by one.
After updating each group (ūq, v̄q), we get eij by Formula (12).

Similar to DSGD, CCD++ is also implemented in parallel by
blocking technique. A partitioning example of CCD++ is shown
in Fig. 2. ūq and v̄q can be partitioned into sub-vectors by dividing
the indices equally [12]. Suppose that CCD++ is parallelized under
n tasks, ūq is equally partitioned into ū1

q, ū
2
q, ..., ū

n
q , and v̄q is

partitioned into v̄1
q , v̄

2
q , ..., v̄

n
q . The rating matrix R is partitioned

into n row blocks and n column blocks, respectively. The row
indices of the ith row block correspond to ūiq , and the column
indices of the ith column block correspond to v̄iq .

CCD++ is parallelized by updating each (ūq, v̄q) in parallel.
ūq and v̄q are updated in parallel by calculating ūiq and v̄iq with
the ith task, where i = 1, 2, ..., n. After each ūq or v̄q finishes
updating, we need to synchronize the tasks.

2.4 Challenges in DSGD and CCD++
DSGD and CCD++ are both confronted with load imbalance
challenge, but the causes are slightly different.

The update time of one block is determined by the number of
ratings it contains. If a group of blocks is updated in parallel, the
elapsed time needed to finish the update of all blocks is determined
by the block with most ratings. If the number of ratings varies
significantly between these blocks, load balance will become more
serious a problem.

Fig. 1 demonstrates that the load imbalance of DSGD is due to
the uneven distribution of ratings between sub-blocks, while Fig. 2
illustrates that the load imbalance of CCD++ is due to the uneven
distribution of ratings between row blocks and between column
blocks, respectively.

3 BALANCED PARTITIONING AND ITS APPLICA-
TIONS

To improve the load balance existing in algorithms like DSGD
and CCD++, we introduce a novel partitioning approach BaPa to
prompt ratings to be distributed as evenly as possible across row
blocks, across column blocks, and across sub-blocks, respectively.

This section introduces the approach in terms of algorithm and
definitions (Section 3.1), formal proof and empirical validation
(Section 3.2), and application in DSGD and CCD++ (Section 3.3).

3.1 Algorithm and definitions
We partition matrix R ∈ Ru×v into m × n blocks, i.e., m rows
and n columns, where m 6= n is allowed. Let U = {1, 2, ..., u}
be the set of row indices. Fixing columns, we divide U into m
disjoint subsets U1,U2, ...,Um sorted by index in ascending order,
i.e., U1 = {1, 2, ..., i},U2 = {i + 1, i + 2, ..., j}, and so on.
Let U∗ = {U1,U2, ...,Um} denote the set of subsets obtained
from U . Similarly, fixing rows, we divide the column index set
V = {1, 2, ..., v} into V∗ = {V1,V2, ...,Vn}.

Definition 1 (Row block, Column block and Sub-block). A block
is denoted by (X ,Y), where X represents the row index set of the
block while Y represents the column index set. Let i ∈ {1, ...,m}
and j ∈ {1, ..., n}. The ith row block is denoted as (Ui,V), the
jth column block is denoted as (U ,Vj), and the sub-block of the
ith row and the jth column is denoted as (Ui,Vj).

Authorized licensed use limited to: Newcastle University. Downloaded on February 17,2021 at 12:44:56 UTC from IEEE Xplore. Restrictions apply.

0018-9340 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.2997051, IEEE
Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. XX, XXXX 2019 4

Fig. 2: A partitioning example for CCD++.

Fig. 3: Equal-sized Partitioning vs Balanced Partitioning.

0 1 2 3 4 5 6

D(X) ×108

0

1

2

3

4

5

6

7

8

D
(T

)

×107 D(Y)=277614613.3333

infimum
supremum
true value

(a)

0 1 2 3 4 5 6

D(X) ×108

0

0.5

1

1.5

2

2.5

3

D
(T

)

×107 D(Y)=4405884.6667

infimum
supremum
true value

(b)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

D(X) ×108

0

0.5

1

1.5

2

2.5

D
(T

)

×107 D(Y)=1225

infimum
supremum
true value

(c)

Fig. 4: Changes of D(T) with D(X) and D(Y).

If not otherwise specified, we collectively refer to row block,
column block and sub-block as block in the following texts.

Definition 2 (Number of ratings in blocks). Let aij be the
number of ratings in sub-block (Ui,Vj).

We use 〈Ui,Vj〉 to represent the number of ratings in (Ui,Vj).

〈Ui,Vj〉 = aij (13)

The number of ratings in row block (Ui,V) is denoted as

〈Ui〉 =
n∑

j=1

aij (14)

The number of ratings in column block (U ,Vj) is denoted as

〈Vj〉 =
m∑
i=1

aij (15)

The original partitioning method of DSGD and CCD++ satis-
fies |U1| = |U2| = ...|Um| = u/m, |V1| = |V2| = ...|Vn| =
v/n. This method equally divides row (column) indices into
subsets of equal size, so we named it Equal-sized Partitioning
(EsPa). However, EsPa does not contribution to load balance,
because it does not consider the issue of even distribution of
ratings across blocks (equal size of blocks unnecessarily contain
the equal number of ratings).

Authorized licensed use limited to: Newcastle University. Downloaded on February 17,2021 at 12:44:56 UTC from IEEE Xplore. Restrictions apply.

0018-9340 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.2997051, IEEE
Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. XX, XXXX 2019 5

Algorithm 1: Balanced Partitioning (BaPa)
input : Rating Matrix Ru×v , sum, m, n
output: row blocks (Ui,V), column blocks (U ,Vj) and

sub-blocks (Ui,Vj) for ∀i ∈ {1, 2, ...,m} and
∀j ∈ {1, 2, ..., n}

1 begin
2 /* Part1: Scan all ratings in R to

compute |Ωi| and |Ω̄j | */
3 Set |Ωi|(i = 1, 2, ..., u) and |Ω̄j |(j = 1, 2, ..., v) to

0;
4 for each rij in R do
5 |Ωi| ← |Ωi|+ 1;
6 |Ω̄j | ← |Ω̄j |+ 1;
7 end
8 /* Part2: Partition rows via greedy

algorithm */
9 Set Ui(i = 1, 2, ...,m) to empty;

10 t← 1, s← 0;
11 for i← 1 to m− 1 do
12 while

|s+ |Ωt| − i ∗ (sum/m)| < |s− i ∗ (sum/m)|
do

13 Add t to Ui;
14 s← s+ |Ωt|;
15 t← t+ 1;
16 end
17 end
18 Add t, t+ 1, ..., u to Um;
19 /* Part3: Partition columns via

greedy algorithm */
20 Set Vj(j = 1, 2, ..., n) to empty;
21 t← 1, s← 0;
22 for j ← 1 to n− 1 do
23 while

|s+ |Ω̄t| − j ∗ (sum/n)| < |s− j ∗ (sum/n)|
do

24 Add t to Vj ;
25 s← s+ |Ω̄t|;
26 t← t+ 1;
27 end
28 end
29 Add t, t+ 1, ..., v to Vn;
30 /* Part4: Sub-block partitioning */
31 Partition R into sub-blocks according to U∗,V∗;
32 end

To improve load balance, our goal is to render each 〈Ui,Vj〉
to be as close as possible to its expectation sum/mn. To achieve
the goal, we propose an approach, BaPa, by partitioning U ,V
to prompt each 〈Ui〉 to be as close as possible to its expectation
sum/m, and each 〈Vi〉 to be as close as possible to its expectation
sum/n.

BaPa makes sense only when the load balance of sub-blocks
can be achieved by the load balance of row blocks and the
load balance of column blocks, respectively and independently.
Its rationale is formally proved and experimentally validated in
section 3.2. BaPa outperforms EsPa in terms of load balance. Fig.
3 shows the fundamental ideas about EsPa and BaPa.

Let |Ωi| be the number of ratings in the ith row, and |Ω̄j | be the

number of ratings in the jth column. Another approach to compute
〈Ui〉 and 〈Vj〉 is let 〈Ui〉 =

∑
t∈Ui |Ωt| and 〈Vj〉 =

∑
t∈Vj |Ω̄t|,

making BaPa easier to be implemented in a sparse matrix stored
by indices.

Algorithm 1 shows the BaPa procedure. We use a greedy
strategy to balance the ratings in row blocks (Part2) and column
blocks (Part3) individually. The greedy strategy is not the only
choice for 1D partitioning in Algorithm 1. The 1D partitioning
problem can be considered as a Chains-on-Chains Partitioning
Problem (CCPP) [33] or a Multiprocessor Scheduling Problem
(MSP), so any algorithm that solves either CCPP or MSP can
be used for 1D partitioning. We use a greedy algorithm here
because it is effective and inexpensive. Note that there are three
consecutive loops in the algorithm. The time complexity of the
first loop is O(sum) because it loops sum times. The complexity
of the second loop is O(u), and that of the third loop is O(v),
because in the worst case the operation t← t+ 1 runs u times in
the second loop and v times in the third loop, respectively. Thus,
the time complexity of Algorithm 1 is O(sum+ u+ v).

In Section (3.2), we formally prove that Algorithm 1 achieves
an even distribution of ratings in sub-blocks.

3.2 Rationale
We use variance to measure “the degree of balance”. A smaller
variance denotes a more uniform distribution of ratings across
blocks. Let the random variables X , Y and T represent the
number of ratings in row blocks, column blocks, and sub-blocks,
respectively, then we use D(X), D(Y) and D(T) to denote the
variances of X , Y and T , respectively.

D(X) =
1

m

m∑
i=1

(〈Ui〉 −
sum

m
)2 (16)

D(Y) =
1

n

n∑
i=1

(〈Vi〉 −
sum

n
)2 (17)

D(T) =
1

mn

m∑
i=1

n∑
j=1

(〈Ui,Vj〉 −
sum

mn
)2 (18)

The smaller D(X), D(Y), and D(T) indicate the more
uniform distribution of ratings across row blocks, across column
blocks, and across sub-blocks, respectively.

3.2.1 Formal proof
To validate the claims, “the load balance of sub-blocks can be
achieved by the load balance of row blocks and the load balance of
column blocks, respectively and independently”, we should prove
that: D(T) is reduced simultaneously by decreasing D(X) and
D(Y), respectively and independently. We indicate such a mission
as the following Theorem 1.

Theorem 1. Both the supremum and the infimum of D(T) are
related to D(X) and D(Y), which has the following guarantees:

inf{D(T)} ≤ D(T) ≤ sup{D(T)} (19)

where

inf{D(T)} = max{D(X)

n2
,
D(Y)

m2
}

sup{D(T)} = min{D(X)

n
+
sum2

m2n
,
D(Y)

m
+
sum2

mn2
} − sum2

m2n2

Authorized licensed use limited to: Newcastle University. Downloaded on February 17,2021 at 12:44:56 UTC from IEEE Xplore. Restrictions apply.

0018-9340 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.2997051, IEEE
Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. XX, XXXX 2019 6

TABLE 1: Datasets and Parameter Settings

Dataset name MovieLens 100K MovieLens 1M MovieLens 10M MovieLens 20M Netflix Netflix2

u 943 6040 69878 138493 480189 480189

v 1682 3952 10677 26744 17770 17770

sum 80000 1000209 10000054 20000263 100480507 100480507

k 5 5 5 5 5 5

λ 0.05 0.05 0.05 0.05 0.05 0.05

α 0.0005 0.00005 0.00001 0.000005 0.000001 0.000001

The proof of Theorem 1 is shown in appendix A.
Theorem 1 says that sup{D(T)} and inf{D(T)} decrease

with D(X) and D(Y) when m, n and sum remain unchanged.
The decreases of sup{D(T)} and inf{D(T)} narrow the range
of D(T) and reduce D(T), resulting in a more even rating
distribution across blocks.

Both the DSGD and CCD++ use n × n partition, i.e., the
number of row blocks is the same as column blocks. We consider
the m = n case of Theorem 1:

inf{D(T)} = max{D(X)

n2
,
D(Y)

n2
}

sup{D(T)} = min{D(X)

n
,
D(Y)

n
}+

sum2(n− 1)

n4

Note that even we achieveD(X) = 0 andD(Y) = 0, we may
not have D(T) = 0. We explain this in the following corollary:

Corollary 1. Consider the m = n case of Theorem 1. When
D(X) = 0 and D(Y) = 0, D(T) varies between 0 and
sum2(n−1)

n4 .
D(T) = 0 when the number of ratings in each sub-block is

the same and equals to sum/n2.
D(T) = sum2(n−1)

n4 when there are n sub-blocks, each of
them has sum/n ratings, and any two of them are not in the same
row or same column.

The proof of Corollary 1 is shown in Appendix B.
Corollary 1 says that whether D(T) is closer to inf{D(T)}

or sup{D(T)} depends on how the ratings distribute among sub-
blocks after partitioning. Hence, whether BaPa will achieve a
good balance or a bad one is unpredictable. Our experiment in
Section 3.2.2 shows that BaPa usually achieves a good balance in
recommendation datasets.

3.2.2 Empirical validation
To validate Theorem 1, we evaluate the impacts of D(X) and
D(Y) on D(T) by experiments. We run experiments on Movie-
Lens 100K dataset, dividing the rating matrix into a 6×6 partition.
We varyD(X) andD(Y) by manipulating the partitions of U and
V , respectively.

According to Theorem 1, D(X) and D(Y) affect the supre-
mum and infimum of D(T) independently. Fig. 4 shows the
changes of D(T) with D(X) under 4 different D(Y). Note that
the horizontal parts of the curves of supremum and infimum are
caused by the fixed D(Y).

The experimental results as follows confirm Theorem 1.
(1) The real value of D(T) is always between the supremum

and the infimum.
(2) For smaller D(X) with fixed D(Y), D(T) is closer to its

infimum, and the supremum is often loose.
(3) Reducing D(X) and D(Y) simultaneously, rather than

either D(X) or D(Y), is a more effective way to reduce D(T).

3.3 Balanced Partitioning on DSGD and CCD++
In this section, we introduce how to optimize DSGD and CCD++
with BaPa, respectively.

According to Section 2.4, the load imbalance of DSGD is
caused by uneven rating distribution across sub-blocks. Accord-
ingly, we improve the load balance of DSGD by reducing D(T)
to prompt ratings to be distributed across sub-blocks as evenly as
possible.

The load imbalance of CCD++ is caused by uneven rating
distribution across row blocks and across column blocks, respec-
tively. Similarly, we improve the load balance of CCD++ by
reducing D(X) and D(Y) to prompt ratings to be distributed
across row blocks and across column blocks as evenly as possible,
respectively.

Since both DSGD and CCD++ adopt the n × n partition, we
apply the m = n case of BaPa to DSGD and CCD++.

4 EXPERIMENTS

For the convenience of description, we use EsPa-DSGD and EsPa-
CCD++ to denote DSGD and CCD++ based on EsPa, respectively,
and use BaPa-DSGD and BaPa-CCD++ to denote DSGD and
CCD++ based on BaPa, respectively. We adopt EsPa-DSGD and
EsPa-CCD++ as our baselines. For each dataset, we verify the ef-
fectiveness of BaPa by comparing BaPa-DSGD and EsPa-DSGD,
BaPa-CCD++ and EsPa-CCD++, respectively. Our experiments
are designed to answer the following three questions:

(1) Can BaPa reduce variance more than EsPa? (Section 4.2)
(2) Can BaPa increase speedup more than EsPa? (Section 4.3)
(3) Can we build up a model to explain the above two

phenomena? (Section 4.4)

4.1 Environment and Parameter Settings
We run all experiments on an MPI-cluster of TianHe-21. Over
700 computing nodes are available in the cluster, each node with
two Intel(R) Xeon(R) E5-2692 v2 2.4GHz processors and 64GB
of RAM, and each processor with 12 cores and 24 threads. We
implement DSGD and CCD++ in C programs and use MPI for
parallelization. These programs are parallelized by up to 1535
tasks, each of which is executed by a single core. The hardware
architecture of the MPI-cluster is shown in Fig. 6, in which the
nodes are connected over a network, and they communicate with
each other via MPI.

We employ two methods to optimize our program: (1) Im-
plement MPI communication with blocking sending and non-
blocking receiving. More specifically, sending is performed
by MPI Send and receiving is performed by MPI Irecv and
MPI Wait. This method largely reduces communication time,

1. http://en.nscc-gz.cn/

Authorized licensed use limited to: Newcastle University. Downloaded on February 17,2021 at 12:44:56 UTC from IEEE Xplore. Restrictions apply.

0018-9340 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.2997051, IEEE
Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. XX, XXXX 2019 7

2 3 4 5 6 7 8 9 10 11 12 13 14

n

102

103

104

105

106

107

108

109

va
ria

nc
e

MovieLens 100K

D
E

(X)

D
E

(Y)

D
E

(T)

D
B

(X)

D
B

(Y)

D
B

(T)

(a)

2 3 4 5 6 7 8 9 10 11 12 13 14

n

102

104

106

108

1010

va
ria

nc
e

MovieLens 1M

D
E

(X)

D
E

(Y)

D
E

(T)

D
B

(X)

D
B

(Y)

D
B

(T)

(b)

2 3 4 5 6 7 8 9 10 11 12 13 14

n

100

102

104

106

108

1010

1012

1014

va
ria

nc
e

MovieLens 10M

D
E

(X)

D
E

(Y)

D
E

(T)

D
B

(X)

D
B

(Y)

D
B

(T)

(c)

2 3 4 5 6 7 8 9 10 11 12 13 14

n

102

104

106

108

1010

1012

1014

va
ria

nc
e

MovieLens 20M

D
E

(X)

D
E

(Y)

D
E

(T)

D
B

(X)

D
B

(Y)

D
B

(T)

(d)

2 3 4 5 6 7 8 9 10 11 12 13 14

n

102

104

106

108

1010

1012

1014

va
ria

nc
e

Netflix

D
E

(X)

D
E

(Y)

D
E

(T)

D
B

(X)

D
B

(Y)

D
B

(T)

(e)

2 3 4 5 6 7 8 9 10 11 12 13 14

n

102

104

106

108

1010

1012

1014

1016

va
ria

nc
e

Netflix2

D
E

(X)

D
E

(Y)

D
E

(T)

D
B

(X)

D
B

(Y)

D
B

(T)

(f)

Fig. 5: D(X), D(Y) ,D(T): Equal-sized Partitioning vs Balanced Partitioning.

Fig. 6: Hardware architecture of the MPI-cluster of TianHe-2.

especially for the cases of hundreds or thousands of tasks. (2)
Distribute the tasks to as many nodes as possible. Although one
node has 24 cores and can run at most 24 tasks, we found that the
more tasks running on the same node, the higher run time it causes.
We are allowed to use up to 64 nodes on TianHe-2. Therefore,
when the number of tasks does not exceed 64, we assign each
task to a separate node; when the number of tasks exceeds 64, we
distribute them evenly to 64 nodes.

We run our experiments on five publicly available datasets:
MovieLens2 100K, 1M, 10M, 20M and Netflix3, and a dataset
Netflix2 transformed from Netflix. Netflix 2 is obtained by reshuf-
fling the rows of Netflix to make it be a dataset with a more uneven
distribution of ratings across rows. In later experiments, it will be
clear that Netflix2 is used to compare with Netflix to see how the
rating distribution plays a role in the speedup performance.

2. https://grouplens.org/datasets/movielens/
3. https://www.kaggle.com/netflix-inc/netflix-prize-data

Details of these datasets and relevant parameters are shown in
Table 1. Note that λ is used for both DSGD and CCD++ while α
is used for DSGD only. For DSGD, we initialize each entry of U
and V with 1. For CCD++, we initialize each entry of U with 0,
and each entry of V with 1.

4.2 Variance: Equal-sized Partitioning vs Balanced Par-
titioning
In this section, we want to verify that BaPa achieves smaller
variance than EsPa by empirically comparing D(X), D(Y),
D(T) between EsPa and BaPa.

For each of the datasets in Table 1, we apply EsPa and BaPa
to perform the n × n partitioning, respectively, varying n from 2
to 13. For each partition, we calculate D(X), D(Y) and D(T)
by Formulas (16), (17) and (18), respectively. For the calculation
based on EsPa, we record D(X), D(Y), D(T) as DE(X),
DE(Y), DE(T). For the calculation based on BaPa, we record
D(X), D(Y), D(T) as DB(X), DB(Y), DB(T).

Authorized licensed use limited to: Newcastle University. Downloaded on February 17,2021 at 12:44:56 UTC from IEEE Xplore. Restrictions apply.

0018-9340 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.2997051, IEEE
Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. XX, XXXX 2019 8

TABLE 2: Convergence: BaPa vs EsPa for DSGD and CCD++

Dataset name Partitioning
DSGD CCD++

Iterations Elapsed time (R(12)/ms) RMSE Iterations Elapsed time (R(12)/ms) RMSE

MovleLens 100K
EsPa 7389 0.3597 0.9145 1588 0.9927 0.7632
BaPa 7327 0.2978 0.9145 1588 0.7684 0.7632

MovleLens 1M
EsPa 10000 2.3756 0.9036 3637 7.7842 0.8104
BaPa 10000 1.6787 0.9036 3637 5.8323 0.8104

MovleLens 10M
EsPa 6447 39.4432 0.8615 5778 212.3144 0.7692
BaPa 6447 16.4276 0.8615 5778 93.1716 0.7692

MovleLens 20M
EsPa 10000 137.2029 0.8553 3535 753.6797 0.7625
BaPa 10000 39.8841 0.8553 3535 212.3136 0.7625

Netflix
EsPa 10000 267.9529 0.9216 2735 1101.9628 0.8333
BaPa 10000 259.8416 0.9216 2735 1063.0161 0.8333

Netflix2
EsPa 10000 520.3908 1.0099 10000 2182.4294 0.9930
BaPa 10000 163.3855 1.0099 10000 812.2552 0.9930

Fig. 5 illustrates the comparisons between DE(X) and
DB(X), DE(Y) and DB(Y), DE(T) and DB(T) for all
datasets. We see that DB(X), DB(Y), DB(T) are several
orders of magnitude smaller than DE(X), DE(Y), DE(T),
respectively. In conclusion, BaPa outperforms EsPa in terms of
achieving smaller D(X), D(Y) and D(T).

4.3 Performance of Balanced Partitioning

In this section, we compare the performance between BaPa and
EsPa based on DSGD and CCD++ from two aspects: convergence
(Section 4.3.1) and speedup (Section 4.3.2).

4.3.1 Convergence
We run experiments under 12 tasks. The iteration stops when
either of the following conditions is met: (1) RMSE of current
iteration becomes bigger than the previous; (2) The number of
iterations reaches the pre-defined maximum 10000.

Table 2 shows the convergence performance of DSGD and
CCD++ after BaPa and EsPa under various datasets. In the table,
RMSE denotes the final predicated accuracy after convergence.
For all datasets, the elapsed time of BaPa is shorter than that
of EsPa when convergence occurs, which suggests that BaPa
accelerates convergence without impairing accuracy. The major
reason is that BaPa leads to a more uniform distribution of ratings
across blocks.

Theoretically, the update order of ratings may slightly affect
the RMSE of DSGD, for it affects the results of U and V in
each iteration. As shown in Table 2, BaPa and EsPa reaches the
same RMSE with different iterations for DSGD under MovieLens
100K. It is because BaPa changes the update order of some ratings
and affects RMSE. However, the impact is trivial. BaPa does not
affect the RMSE of CCD++, because the update order of each uiq
in ūq and each viq in v̄q is independent from U and V at each
iteration.

4.3.2 Speedup
We define R(n) as the average elapsed time of an iteration:

R(n) =

(
elapsed time of the program

number of iterations

)
under n tasks

(20)

where “elapsed time of the program” and “number of iterations”
are measured by experiments. The elapsed time includes two parts:

the time of block computation and the time of MPI communi-
cation. BaPa prompts the balance of ratings across blocks, so it
mainly reduces the time of block computation, not the time of MPI
communication. Indeed, the communication time is usually far less
than computation time except that the number of tasks becomes
too large. For the synchronous algorithm, we need to calculate
RMSE once after each iteration, so the number of iterations is
equal to the number of RMSE calculations.

We evaluate the speed of a program by R(n). R(n) takes the
average of multiple tests.

Let Speedup(n) be the speedup of the program under n tasks,
i.e.,

Speedup(n) =
R(1)

R(n)
(21)

Fig. 7 shows Speedup(n)s of BaPa and EsPa for both DSGD
and CCD++ under all datasets, varying n from 1 to 13. Note that
n tasks correspond to the n× n partitioning of the rating matrix.
Further, we use more tasks to test the scalability of BaPa. We test
the speedups under 16, 32, 64, 96, 128, 192, 256, 384, 512, 1024,
and 1535 tasks, respectively, and the results are shown in Fig. 8.

According to Fig. 7 and Fig. 8, we have the following three
judgments.

(1) In most cases, BaPa performs higher speedup than EsPa
for both DSGD and CCD++ under all datasets. The reason is that
BaPa achieves a more even rating distribution across blocks than
EsPa.

(2) BaPa has good scalability: it outperforms EsPa under tens
to hundreds of tasks. Fig. 8 shows that, in most cases, EsPa’s
speedups are smaller than the peak speedups of BaPa, which is
the advantage of BaPa. As the number of tasks increases, BaPa’s
speedup performance may decline or even be smaller than EsPa in
some cases. The main reason is that when the number of tasks
is too large, BaPa costs more communication time than EsPa,
because blocks of the former are more unbalanced. However, in
no case can EsPa surpass the peak of BaPa, which demonstrates
the higher scalability performance of BaPa.

(3) The speedup growth is significant in MovieLens 10M,
MovieLens 20M, and Netflix2, trivial in MovieLens 1M and
Netflix, but divided in MovieLens 100K. The reason leading to
the results seems divided, but we give it a consistent explanation
by introducing the Imbalance Degree Model.

Authorized licensed use limited to: Newcastle University. Downloaded on February 17,2021 at 12:44:56 UTC from IEEE Xplore. Restrictions apply.

0018-9340 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.2997051, IEEE
Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. XX, XXXX 2019 9

1 2 3 4 5 6 7 8 9 10 11 12 13

n

0

1

2

3

4

5

6

7

8

9

10

11

12

13

S
pe

ed
up

(n
)

MovieLens 100K

EsPa-DSGD
BaPa-DSGD
EsPa-CCD++
BaPa-CCD++

(a)

1 2 3 4 5 6 7 8 9 10 11 12 13

n

0

1

2

3

4

5

6

7

8

9

10

11

12

13

S
pe

ed
up

(n
)

MovieLens 1M

EsPa-DSGD
BaPa-DSGD
EsPa-CCD++
BaPa-CCD++

(b)

1 2 3 4 5 6 7 8 9 10 11 12 13

n

0

1

2

3

4

5

6

7

8

9

10

11

12

13

S
pe

ed
up

(n
)

MovieLens 10M

EsPa-DSGD
BaPa-DSGD
EsPa-CCD++
BaPa-CCD++

(c)

1 2 3 4 5 6 7 8 9 10 11 12 13

n

0

1

2

3

4

5

6

7

8

9

10

11

12

13

S
pe

ed
up

(n
)

MovieLens 20M

EsPa-DSGD
BaPa-DSGD
EsPa-CCD++
BaPa-CCD++

(d)

1 2 3 4 5 6 7 8 9 10 11 12 13

n

0

1

2

3

4

5

6

7

8

9

10

11

12

13

S
pe

ed
up

(n
)

Netflix

EsPa-DSGD
BaPa-DSGD
EsPa-CCD++
BaPa-CCD++

(e)

1 2 3 4 5 6 7 8 9 10 11 12 13

n

0

1

2

3

4

5

6

7

8

9

10

11

12

13

S
pe

ed
up

(n
)

Netflix2

EsPa-DSGD
BaPa-DSGD
EsPa-CCD++
BaPa-CCD++

(f)

Fig. 7: Speedup of 1-13 tasks: EsPa-DSGD vs BaPa-DSGD, EsPa-CCD++ vs BaPa-CCD++.

4.4 Imbalance Degree model

The following Theorem 2 shows the Imbalance Degree model and
its essential properties, which indicate how the rating distribution
across blocks is used to estimate the speedup growth and explain
why BaPa significantly impacts on some datasets but trivially on
others.

Theorem 2 (Imbalance Degree Model). Let sum be the number
of ratings in the matrix, and n be the number of tasks (equivalent
to n × n partition). We use P to represent Imbalance Degree
(IbD).

Specifically, PD is for DSGD,

PD = θ · n
2

sum

√
DE(T) (22)

and PC is for CCD++,

PC = θ · n

2 · sum
(
√
DE(X) +

√
DE(Y)) (23)

where θ = Φ−1(n
√

0.5) and Φ is the cumulative distribution
function of the standard normal distribution.

Let SpeedupB(n) be the Speedup(n) of BaPa and
SpeedupE(n) be the Speedup(n) of EsPa. We define the
speedup growth S as follows:

S =
SpeedupB(n)

SpeedupE(n)
(24)

The following Formula indicates the relationship between S
with P :

S ≈ 1 + P (25)

The proof of Theorem 2 is shown in appendix C.

According to Formulas (22) and (23), P is determined by
variances DE(X), DE(Y) and DE(T), as well as sum and n.
P is positively correlated to the variances and n, and is negatively
correlated to sum.

A large S, as well as a large P , indicates the speedup growth
is significant. In addition, a larger P indicates a more imbalanced
rating distribution across blocks. We conduct experiments to
obtain S and calculate P by Formulas (22) and (23). The results
are illustrated in Fig. 9, which demonstrates that the relationship
between S and P coincides with Formula (25).

More importantly, Fig. 9 explains further the Judgment (3) in
Section (4.3.2). In the figure, SD is the S for DSGD and SC is
the S for CCD++.

(1) The reason why the speedup growth of MovieLens 10M,
MovieLens 20M, and Netflix2 are significant is the P values of
these datasets are big; while the reason why the speedup growth
of MovieLens 1M and Netflix are trivial is the P values of these
datasets are small.

(2) The speedup growth of MovieLens 100K seems divided.
When n is small, the above rule still satisfies. When n is big
enough (bigger than 5 in the experiment), it is no longer possible
to enhance speedup only by increasing n since MovieLens 100K
is a dataset of small size.

Imbalance Degree model matches well with the experiment
results in Section (4.2) and Section (4.3). It explains under what
conditions BaPa performs well, and can be used to predict the
potential speedup from applying BaPa.

4.5 Summary
We summarize the above experimental results as follows, which
answer the three questions raised at the beginning of Section 4:

(1) BaPa reduces the variances D(X), D(Y), D(T) by sev-
eral orders of magnitude more than EsPa.

Authorized licensed use limited to: Newcastle University. Downloaded on February 17,2021 at 12:44:56 UTC from IEEE Xplore. Restrictions apply.

0018-9340 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.2997051, IEEE
Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. XX, XXXX 2019 10

1 16 32 64

n

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

S
p

e
e

d
u

p
(n

)

MovieLens 100K

EsPa-DSGD

BaPa-DSGD

EsPa-CCD++

BaPa-CCD++

(a)

1 16 32 64 96 128 192 256

n

0

5

10

15

20

25

30

S
p

e
e

d
u

p
(n

)

MovieLens 1M

EsPa-DSGD

BaPa-DSGD

EsPa-CCD++

BaPa-CCD++

(b)

1 16 32 64 96 128 192 256 384 512

n

0

10

20

30

40

50

60

70

80

S
p

e
e

d
u

p
(n

)

MovieLens 10M

EsPa-DSGD

BaPa-DSGD

EsPa-CCD++

BaPa-CCD++

(c)

1 16 32 64 96 128 192 256 384 512 1024 1535

n

0

10

20

30

40

50

60

70

80

S
p

e
e

d
u

p
(n

)

MovieLens 20M

EsPa-DSGD

BaPa-DSGD

EsPa-CCD++

BaPa-CCD++

(d)

1 16 32 64 96 128 192 256 384 512 1024 1535

n

0

10

20

30

40

50

60

70

80

90

100

S
p
e
e
d
u
p
(n

)

Netflix

EsPa-DSGD

BaPa-DSGD

EsPa-CCD++

BaPa-CCD++

(e)

1 16 32 64 96 128 192 256 384 512 1024 1535

n

0

10

20

30

40

50

60

70

80

S
p

e
e

d
u

p
(n

)

Netflix2

EsPa-DSGD

BaPa-DSGD

EsPa-CCD++

BaPa-CCD++

(f)

Fig. 8: Speedup of 1-1535 tasks: EsPa-DSGD vs BaPa-DSGD, EsPa-CCD++ vs BaPa-CCD++.

(2) BaPa outperforms EsPa in terms of speedup in all cases,
and it performs better in more imbalanced datasets.

(3) Imbalance Degree model explains why BaPa outperforms
EsPa.

5 CONCLUSIONS AND FUTURE WORK

BaPa seems simple, but it challenges the common belief that
the balancing of sub-blocks cannot be achieved by independently
balancing rows and columns. The contributions rest in the formal
proofs and the experimental results. We formally show why and
how BaPa works through Theorem 1 and empirically demonstrate
its soundness; then we establish an Imbalance Degree model
(Theorem 2) to reveal its working mechanism further.

Based on all the efforts and evidence, we believe that BaPa is a
piece of significant work. Although it is merely applied to DSGD
and CCD++ in our current study, it can be similarly applied to
other matrix factorization algorithms since it is a general blocking
model.

Although BaPa and Imbalance Degree work effectively, they
merely provide a rough partitioning of sub-blocks and a rough
estimate of speedup growth. We notice that the ideal row block
partitioning and the ideal column block partitioning are an NP-
hard problem [12]. Therefore, we believe that an ideal sub-block
partitioning (the variance of ratings in sub-blocks reaches the
minimum) is also NP-hard and requires a new idea to achieve it.
Besides, an accurate estimate of speedup growth is hard to achieve,
because it involves many other factors such as communication
latency and memory discontinuity. In addition, the heterogeneous
system is a system in which processor and coprocessor cooperate
to process computing tasks. The processor is CPU, and the
coprocessor can be GPU, MIC, FPGA, etc. The coprocessor has
a hardware architecture different from the processor; it is usually

used for parallel computing and carries the main computational
load. We believe BaPa can benefit from these promising systems.
We identify the following three as our future work.

(1) To establish an ideal sub-block partitioning approach and
its NP-hard proof.

(2) To establish a more accurate model to estimate speedup
growth.

(3) To apply the heterogeneous system to optimize BaPa.

6 ACKNOWLEDGMENT

The study is supported by the National Science Foundation of
China (No. U1711266 and No. 41925007).

Authorized licensed use limited to: Newcastle University. Downloaded on February 17,2021 at 12:44:56 UTC from IEEE Xplore. Restrictions apply.

0018-9340 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.2997051, IEEE
Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. XX, XXXX 2019 11

2 3 4 5 6 7 8 9 10 11 12 13

n

0

0.5

1

1.5

2

2.5

3

3.5

4

va
lu

e

MovieLens 100K

S
D

P
D

S
C

P
C interval with

sound speedup growth

(a)

2 3 4 5 6 7 8 9 10 11 12 13

n

0

0.5

1

1.5

2

2.5

3

3.5

4

va
lu

e

MovieLens 1M

S
D

P
D

S
C

P
C

(b)

2 3 4 5 6 7 8 9 10 11 12 13

n

0

0.5

1

1.5

2

2.5

3

3.5

4

va
lu

e

MovieLens 10M

S
D

P
D

S
C

P
C

(c)

2 3 4 5 6 7 8 9 10 11 12 13

n

0

0.5

1

1.5

2

2.5

3

3.5

4

va
lu

e

MovieLens 20M

S
D

P
D

S
C

P
C

(d)

2 3 4 5 6 7 8 9 10 11 12 13

n

0

0.5

1

1.5

2

2.5

3

3.5

4

va
lu

e

Netflix

S
D

P
D

S
C

P
C

(e)

2 3 4 5 6 7 8 9 10 11 12 13

n

0

0.5

1

1.5

2

2.5

3

3.5

4

va
lu

e

Netflix2

S
D

P
D

S
C

P
C

(f)

Fig. 9: S and P Values of DSGD and CCD++.

APPENDIX A
PROOF OF THEOREM 1

Lemma 1. Consider n non-negative rational a1, a2, ..., an sub-
jecting to

∑n
i=1 ai = t, where t is a non-negative variable. Let

s =
∑n

i=1 a
2
i , then the relationship between s and t can be

formulated as t2

n ≤ s ≤ t
2, which is equivalent to

1

n
(

n∑
i=1

ai)
2 ≤

n∑
i=1

a2
i ≤ (

n∑
i=1

ai)
2 (26)

Proof. Formula (26) can be deduced with Lagrange multiplier
method. smin = t2

n if and only if a1 = a2 = ... = an = t
n .

smax = t2 when ai = t and for each j 6= i, aj = 0.

We consider the effects of either D(X) or D(Y) on D(T)
individually. And we discuss D(X) on D(T) first. In Formula
(16), D(X) and D(T) can be reduced to

D(X) =
1

m
[
m∑
i=1

(
n∑

j=1

aij)
2 − sum2

m
]

D(T) =
1

mn
[
m∑
i=1

n∑
j=1

a2
ij −

sum2

mn
]

(27)

We define L(X) and L(T) as follows

L(X) = mD(X) +
sum2

m
=

m∑
i=1

(
n∑

j=1

aij)
2

L(T) = mnD(T) +
sum2

mn
=

m∑
i=1

n∑
j=1

a2
ij

(28)

From Lemma 1, we can derive that

1

n

m∑
i=1

(
n∑

j=1

aij)
2 ≤

m∑
i=1

n∑
j=1

a2
ij ≤

m∑
i=1

(
n∑

j=1

aij)
2 (29)

which is equivalent to

L(X)

n
≤ L(T) ≤ L(X) (30)

By substituting Formula (28) into Formula (30), we have

D(X)

n2
≤ D(T) ≤ D(X)

n
+
sum2

m2n
− sum2

m2n2
(31)

Similar to Formula (31), the relationship between D(Y) and
D(T) can be formulated as

D(Y)

m2
≤ D(T) ≤ D(Y)

m
+
sum2

mn2
− sum2

m2n2
(32)

Combining Formula (31) and Formula (32), we have

max{D(X)

n2
,
D(Y)

m2
} ≤ D(T) ≤

min{D(X)

n
+
sum2

m2n
,
D(Y)

m
+
sum2

mn2
} − sum2

m2n2

(33)

Formula (33) is what presented in Theorem 1.

APPENDIX B
PROOF OF COROLLARY 1
D(X) = 0 means that the number of ratings in each row block is
the same, i.e.,

n∑
j=1

aij =
sum

n
for each 1 ≤ i ≤ n (34)

Authorized licensed use limited to: Newcastle University. Downloaded on February 17,2021 at 12:44:56 UTC from IEEE Xplore. Restrictions apply.

0018-9340 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.2997051, IEEE
Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. XX, XXXX 2019 12

D(Y) = 0 means that the number of ratings in each column
block is the same, i.e.,

n∑
i=1

aij =
sum

n
for each 1 ≤ j ≤ n (35)

From Lemma 1, D(T) = inf{D(T)} when smin is met, and
D(T) = sup{D(T)} when smax is met.

Formula (34) meets smin when

ai1 = ai2 = ... = ain =
sum

n2
for each 1 ≤ i ≤ n (36)

Formula (35) meets smin when

a1j = a2j = ... = anj =
sum

n2
for each 1 ≤ j ≤ n (37)

Formula (36) and (37) show that D(T) = inf{D(T)} when
aij = sum/n2 for each 1 ≤ i ≤ n and each 1 ≤ j ≤ n.

Formula (34) meets smax when

aij =
sum

n
and aik = 0(k 6= j) for each 1 ≤ i ≤ n (38)

Formula (35) meets smax when

aij =
sum

n
and akj = 0(k 6= i) for each 1 ≤ j ≤ n (39)

Formula (38) and (39) show that D(T) = sup{D(T)} when
there is only one sub-block having sum/n ratings in each row
and each column. That is, there are n sub-blocks, each of them
has sum/n ratings and any two of them are not in the same row
or same column, while other n(n− 1) sub-blocks has no ratings.

APPENDIX C
PROOF OF THEOREM 2
Lemma 2. Let Xt i.i.d. N(µ, σ2), where t = 1, 2, ..., n. Then
we have

Pr[max{X1, X2, ..., Xn} > µ+ θ · σ]

= 1−
n∏

t=1

(Pr[Xt < µ+ θ · σ])
(40)

where Φ(x) is the cumulative distribution function of N(0, 1) and
θ is a variable.

For either algorithm, let R(n) be the average runtime of
one iteration with n processes, and each iteration consists of s
rounds of synchronous updating (s = n for DSGD, s = 2k for
CCD++). In each round, we update n blocks in parallel (sub-
blocks for DSGD, row or column blocks for CCD++). Let Xt be
the number of ratings of the tth block, where t = 1, 2, ..., n, and
we define M(n) = max{X1, X2, ..., Xn}. For simplicity, we
suppose M(n) is identical for each round. Then, the runtime of
each round can be denoted as c ·M(n), and R(n) ≈ c · s ·M(n),
where c is a constant. Therefore, S is derived as

S =
SpeedupB(n)

SpeedupE(n)
=
RB(1)/RB(n)

RE(1)/RE(n)
=
RE(n)

RB(n)

≈ c · s ·ME(n)

c · s ·MB(n)
=
ME(n)

MB(n)

(41)

TABLE 3: The mapping of n→ θ

n Φ(θ) = n
√

0.5 θ = Φ−1(n
√

0.5)

2 0.7071 0.55

3 0.7937 0.82

4 0.8409 1.00

5 0.8706 1.13

6 0.8909 1.23

7 0.9057 1.32

8 0.9170 1.39

9 0.9259 1.45

10 0.9330 1.50

11 0.9389 1.55

12 0.9439 1.59

13 0.9481 1.63

Formula (41) shows S can be indirectly calculated by estimat-
ing ME(n) and MB(n).

Let’s consider the situation of DSGD first. We establish an
interval estimation for M(n). Suppose Xt i.i.d. N(µ, σ2), where
µ = sum/n2 and σ2 = D(T). Let sum/n2 + θ

√
D(T) be

the estimated value of M(n), where θ is a variable. According to
lemma 2, for any θ ∈ R,

Pr[M(n) >
sum

n2
+ θ
√
D(T)]

= Pr[max{X1, X2, ..., Xn} >
sum

n2
+ θ
√
D(T)]

= 1− [Φ(θ)]n

(42)

Note that the probability is related to θ and n, but independent
of µ and σ. To make a reasonable estimation, we keep the
probability identical for any θ and n by adjusting θ according
to n. The identity value of probability is optional, we set 0.5 as
the default, i.e., 1 − [Φ(θ)]n = 0.5. Then the mapping n → θ is
denoted as

θ = Φ−1(
n
√

0.5) (43)

In the formula above, Φ−1 can be easily solved by referring a
standard normal table. We list the mapping for n = 2, 3, ..., 13 in
Table 3. It is obvious that θ is a positive correlation with n.

With θ following Formula (43), ME(n) and MB(n) is de-
noted as:

ME(n) ≈ sum

n2
+ θ
√
DE(T)

MB(n) ≈ sum

n2
+ θ
√
DB(T)

(44)

By substituting Formula (44) into Formula (41), we derive S
as

S ≈
sum
n2 + θ

√
DE(T)

sum
n2 + θ

√
DB(T)

≈ 1 + θ · n
2

sum

√
DE(T) (45)

By referring data in Fig. 5, we find sum/n2 � θ
√
DB(T),

so we omit DB(T) in the formula above. Formula (45) is our
result, which is equivalent to Formula (25) and validates Theorem
2 for DSGD.

Now we discuss the situation of CCD++. CCD++ updates
row blocks or column blocks alternatively in each iteration. We

Authorized licensed use limited to: Newcastle University. Downloaded on February 17,2021 at 12:44:56 UTC from IEEE Xplore. Restrictions apply.

0018-9340 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.2997051, IEEE
Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. XX, XXXX 2019 13

calculate the M(n) of row blocks and column blocks respec-
tively, and evaluate the final M(n) by taking their average.
Let Mr(n) and Mc(n) be the M(n) of row blocks and col-
umn blocks respectively, i.e., Mr(n) ≈ sum/n + θ

√
D(X),

Mc(n) ≈ sum/n+θ
√
D(Y). The average M(n) of each round

is denoted as M(n) = (Mr(n) +Mc(n))/2, and we have

ME(n) ≈ 1

2
(2 · sum

n
+ θ
√
DE(X) + θ

√
DE(Y))

MB(n) ≈ 1

2
(2 · sum

n
+ θ
√
DB(X) + θ

√
DB(Y))

(46)

After substituting Formula (46) into Formula (41), we derive
S as

S ≈
1
2 (2 · sumn + θ

√
DE(X) + θ

√
DE(Y))

1
2 (2 · sumn + θ

√
DB(X) + θ

√
DB(Y))

≈ 1 + θ · n

2 · sum
(
√
DE(X) +

√
DE(Y))

(47)

Similarly to DSGD, we omit DB(X) and DB(Y) in the
formula above. Formula (47) is our result, which is equivalent
to Formula (25) and validates Theorem 2 for CCD++.

REFERENCES

[1] C. C. Aggarwal, Recommender systems. Springer, 2016.
[2] A. Ramlatchan, M. Yang, Q. Liu, M. Li, J. Wang, and Y. Li, “A survey

of matrix completion methods for recommendation systems,” Big Data
Mining and Analytics, vol. 1, no. 4, pp. 308–323, 2018.

[3] Y. Koren, “Factorization meets the neighborhood: a multifaceted col-
laborative filtering model,” in Proceedings of the 14th ACM SIGKDD
international conference on Knowledge discovery and data mining.
ACM, 2008, pp. 426–434.

[4] Y. Koren, R. Bell, and C. Volinsky, “Matrix factorization techniques for
recommender systems,” Computer, no. 8, pp. 30–37, 2009.

[5] S. J. Wright, “Coordinate descent algorithms,” Mathematical Program-
ming, vol. 151, no. 1, pp. 3–34, 2015.

[6] I. Pilászy, D. Zibriczky, and D. Tikk, “Fast als-based matrix factorization
for explicit and implicit feedback datasets,” in Proceedings of the fourth
ACM conference on Recommender systems. ACM, 2010, pp. 71–78.

[7] Z. Wu, Y. Luo, K. Lu, and X. Wang, “Parallelizing stochastic gradient
descent with hardware transactional memory for matrix factorization,” in
2018 3rd International Conference on Information Systems Engineering
(ICISE). IEEE, 2018, pp. 118–121.

[8] O. Kaya, R. Kannan, and G. Ballard, “Partitioning and communication
strategies for sparse non-negative matrix factorization,” in 47th Interna-
tional Conference on Parallel Processing. IEEE, 2018.

[9] H. Li, K. Li, J. An, and K. Li, “Msgd: a novel matrix factorization
approach for large-scale collaborative filtering recommender systems on
gpus,” IEEE Transactions on Parallel and Distributed Systems, vol. 29,
no. 7, pp. 1530–1544, 2018.

[10] R. Gemulla, E. Nijkamp, P. J. Haas, and Y. Sismanis, “Large-scale matrix
factorization with distributed stochastic gradient descent,” in Proceedings
of the 17th ACM SIGKDD international conference on Knowledge
discovery and data mining. ACM, 2011, pp. 69–77.

[11] H.-F. Yu, C.-J. Hsieh, S. Si, and I. Dhillon, “Scalable coordinate descent
approaches to parallel matrix factorization for recommender systems,” in
2012 IEEE 12th International Conference on Data Mining. IEEE, 2012,
pp. 765–774.

[12] H.-F. Yu, C.-J. Hsieh, S. Si, and I. S. Dhillon, “Parallel matrix factor-
ization for recommender systems,” Knowledge and Information Systems,
vol. 41, no. 3, pp. 793–819, 2014.

[13] I. Nisa, A. Sukumaran-Rajam, R. Kunchum, and P. Sadayappan, “Parallel
ccd++ on gpu for matrix factorization,” in Proceedings of the General
Purpose GPUs. ACM, 2017, pp. 73–83.

[14] B. Joshi, F. Iutzeler, and M.-R. Amini, “Large-scale asynchronous dis-
tributed learning based on parameter exchanges,” International Journal
of Data Science and Analytics, vol. 5, no. 4, pp. 223–232, 2018.

[15] Z.-Q. Yu, X.-J. Shi, L. Yan, and W.-J. Li, “Distributed stochastic admm
for matrix factorization,” in Proceedings of the 23rd ACM International
Conference on Conference on Information and Knowledge Management.
ACM, 2014, pp. 1259–1268.

[16] W.-S. Chin, Y. Zhuang, Y.-C. Juan, and C.-J. Lin, “A fast parallel
stochastic gradient method for matrix factorization in shared memory
systems,” ACM Transactions on Intelligent Systems and Technology
(TIST), vol. 6, no. 1, p. 2, 2015.

[17] B. Recht, C. Re, S. Wright, and F. Niu, “Hogwild: A lock-free approach
to parallelizing stochastic gradient descent,” in Advances in Neural
Information Processing Systems. MIT Press, 2011, pp. 693–701.

[18] H. Yun, H.-F. Yu, C.-J. Hsieh, S. Vishwanathan, and I. Dhillon, “Nomad:
Non-locking, stochastic multi-machine algorithm for asynchronous and
decentralized matrix completion,” Proceedings of the VLDB Endowment,
vol. 7, no. 11, pp. 975–986, 2014.

[19] J. Oh, W.-S. Han, H. Yu, and X. Jiang, “Fast and robust parallel
sgd matrix factorization,” in Proceedings of the 21th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining.
ACM, 2015, pp. 865–874.

[20] F. Pedregosa, R. Leblond, and S. Lacoste-Julien, “Breaking the nons-
mooth barrier: A scalable parallel method for composite optimization,”
in Advances in Neural Information Processing Systems. MIT Press,
2017, pp. 56–65.

[21] Z. Tang, X. Zhang, K. Li, and K. Li, “An intermediate data placement
algorithm for load balancing in spark computing environment,” Future
Generation Computer Systems, vol. 78, pp. 287–301, 2018.

[22] J. Zhang, H. Guo, F. Hong, X. Yuan, and T. Peterka, “Dynamic load
balancing based on constrained kd tree decomposition for parallel particle
tracing,” IEEE transactions on visualization and computer graphics,
vol. 24, no. 1, pp. 954–963, 2018.

[23] E. Wang, Q. Zhang, B. Shen, G. Zhang, X. Lu, Q. Wu, and Y. Wang,
High-Performance Computing on the Intel R© Xeon PhiTM: How to Fully
Exploit MIC Architectures. Springer, 2014.

[24] Q. Ho, J. Cipar, H. Cui, S. Lee, J. K. Kim, P. B. Gibbons, G. A.
Gibson, G. Ganger, and E. P. Xing, “More effective distributed ml via
a stale synchronous parallel parameter server,” in Advances in Neural
Information Processing Systems. MIT Press, 2013, pp. 1223–1231.

[25] A. Beutel, M. Weimer, V. Narayanan, and Y. T. Minka, “Elastic dis-
tributed bayesian collaborative filtering,” in NIPS workshop on Dis-
tributed Machine Learning and Matrix Computations. MIT Press, 2014.

[26] A. Das, I. Upadhyaya, X. Meng, and A. Talwalkar, “Collaborative
filtering as a case-study for model parallelism on bulk synchronous
systems,” in Proceedings of the 2017 ACM on Conference on Information
and Knowledge Management. ACM, 2017, pp. 969–977.

[27] A. Buluç and J. R. Gilbert, “Parallel sparse matrix-matrix multiplica-
tion and indexing: Implementation and experiments,” SIAM Journal on
Scientific Computing, vol. 34, no. 4, pp. C170–C191, 2012.

[28] F. Manne and T. Sørevik, “Partitioning an array onto a mesh of pro-
cessors,” in International Workshop on Applied Parallel Computing.
Springer, 1996, pp. 467–477.

[29] Ü. i. t. V. Çatalyürek, C. Aykanat, and B. Uçar, “On two-dimensional
sparse matrix partitioning: Models, methods, and a recipe,” SIAM Journal
on Scientific Computing, vol. 32, no. 2, pp. 656–683, 2010.

[30] E. G. Boman, K. D. Devine, and S. Rajamanickam, “Scalable matrix
computations on large scale-free graphs using 2d graph partitioning,”
in Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis, 2013, pp. 1–12.

[31] K. Li, W. Yang, and K. Li, “Performance analysis and optimization
for spmv on gpu using probabilistic modeling,” IEEE Transactions on
Parallel and Distributed Systems, vol. 26, no. 1, pp. 196–205, 2014.

[32] W. Yang, K. Li, Z. Mo, and K. Li, “Performance optimization using
partitioned spmv on gpus and multicore cpus,” IEEE Transactions on
Computers, vol. 64, no. 9, pp. 2623–2636, 2014.

[33] A. Pınar and C. Aykanat, “Fast optimal load balancing algorithms for
1d partitioning,” Journal of Parallel and Distributed Computing, vol. 64,
no. 8, pp. 974–996, 2004.

Authorized licensed use limited to: Newcastle University. Downloaded on February 17,2021 at 12:44:56 UTC from IEEE Xplore. Restrictions apply.

