
Future Generation Computer Systems 112 (2020) 348–361

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Cost effective streamworkflow scheduling to handle application
structural changes
Mutaz Barika a,∗, Saurabh Garg a, Rajiv Ranjan b

a Discipline of ICT — School of Technology, Environments and Design (TED), University of Tasmania, Hobart, Tasmania, Australia
b School of Computing, Newcastle University, Newcastle upon Tyne, United Kingdom

a r t i c l e i n f o

Article history:
Received 21 January 2020
Received in revised form 10 April 2020
Accepted 20 May 2020
Available online 22 May 2020

MSC:
00-01
99-00

Keywords:
IoT
Stream workflow
Dynamic scheduling
Pluggable technique
Cloud computing

a b s t r a c t

Stream workflow is a network of big data streaming applications that acts as key enabler for real-
time analysis from Internet of Things data. Smart traffic management and smart grid are examples
of stream workflow. The focus of existing work is on streaming operator graphs which differs from
stream workflow and handling data fluctuations without significant consideration of different dynamic
forms that could happen in the structure of data pipelines. This paper investigates the scheduling
problem of stream workflow to support runtime alterations of stream workflow deployment, so
that scheduling plans will be revised to handle stream workflow applications with continuously
changing characteristics. It proposes a pluggable dynamic scheduling technique that accepts user-
defined algorithms to handle stream workflow runtime changes. It also presents three different plug-in
algorithms and methods to enable auto-scaling of this workflow in a Multicloud environment. The
experimental results of the quality of the solution showed that the proposed plug-in optimisation
technique is more efficient than baseline and dynamic fair-share techniques to handle runtime changes.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

The current advances in the Internet of Things (IoT) ecosys-
tem [1,2] increase the interest in developing applications and
services that aim to analyse data generated from IoT devices to
obtain real-time analytics. In addition to the need for stream pro-
cessing, integrating multiple analytical components into a data
analysis pipeline forming a workflow is necessary for future smart
applications [3] such as smart retail [4] and smart transportation.
In stream processing, an operator graph is provided to represent
a data pipeline that contains a set of operators on data streams,
where the whole graph has one feeding source and one end op-
erator. This graph can be generated by several streaming systems
such as Apache Flink and Storm, to extract fresh data analytics
from an infinite data sequence. However, a more complex data
pipeline that is highly dynamic in nature involves analytical com-
ponents that have different user and infrastructure requirements,
has multiple data sources that feed their data into any analytical
components and has multiple outputs. This type of workflow is
called a stream workflow application.

With stream workflow, the fluctuation of data velocity is not
the whole story of dynamism. This adaptive workflow is gradually

∗ Corresponding author.
E-mail addresses: mutaz.barika@utas.edu.au (M. Barika),

saurabh.garg@utas.edu.au (S. Garg), raj.ranjan@ncl.ac.uk (R. Ranjan).

more complex as its active analytical components can be adjusted
over time according to the changes in a user-specific scenario and
runtime environment. For instance, when vehicle environment or
traffic conditions are changed in a smart traffic control service, a
new analytical component may be added to the in-progress work-
flow, or an existing analytical component might be changed or
deleted, to respond to the changes. Therefore, it is clear that these
kinds of runtime changes are causing structural amendments in
workflow application and even data velocity change.

The focus of existing research works in the literature (such
as Liu et al. [5], Liu and Buyya [6], Kombi et al. [7], Sun and
Huang [8] and Sun et al. [9]) is on streaming operator graphs and
these works mainly handle the fluctuation of data stream velocity
and adjust resources to meet the needs of data processing. Also,
some of these works consider the availability of computational
resources or guaranteeing makespan while others offer big data
orchestrators (Apache YARN [10] and Apache Mesos [11]) that
do not need to deal with the dynamism of stream workflow
applications and meet real-time user requirements. However,
the existing research gap in this field of study is to support
the dynamic-nature of analytical components involved in stream
workflow and deliver dynamic scaling to improve performance
under structural and non-structural changes of this workflow.

The aforementioned research gap drives us to investigate the
dynamic scheduling of a complex stream workflow for tackling
its dynamic aspects at runtime, so that the stability of this appli-
cation is maintained and achieved over time. To fill this gap, we

https://doi.org/10.1016/j.future.2020.05.036
0167-739X/© 2020 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.future.2020.05.036
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2020.05.036&domain=pdf
mailto:mutaz.barika@utas.edu.au
mailto:saurabh.garg@utas.edu.au
mailto:raj.ranjan@ncl.ac.uk
https://doi.org/10.1016/j.future.2020.05.036

M. Barika, S. Garg and R. Ranjan / Future Generation Computer Systems 112 (2020) 348–361 349

propose a fully-pluggable dynamic scheduling and provisioning
technique that supports dynamic scaling by managing computing
resources at runtime to respond to structural and non-structural
changes of stream workflows in order to maintain real-time data
analysis requirements. It amends the current scheduling plan
according to runtime changes by using the plugged-in algorithms
and methods that users define to always maintain application sta-
bility. This proposed technique is considered as a future schedul-
ing module in stream workflow management systems, where its
significance comes from the flexibility provided to handle both
structural and non-structural changes of in-progress workflows.
In summary, our contributions are:

• Structural change model for stream workflow.
• Pluggable dynamic scheduling technique that incorporates

user-defined algorithms to handle stream workflow run-
time changes. It provides a hassle-free way to have an
elastic scheduling technique to handle different dynamic
forms of stream workflow by simply implementing heuristic
decisions.
• Three heuristic methods that can be plugged in separately

into the pluggable dynamic scheduling technique to pro-
duce three different elastic scheduling techniques to handle
dynamic forms of stream workflow.

2. Related work

IoT and cloud computing technologies are interrelated and
complement each other. The former enables connected real-
world objects (also referred to as IoT devices) to exchange real-
time data with other connected objects over the Internet, while
the latter provides a distributed, dynamic and on-demand en-
vironment to store, process and manage the data generated
from IoT devices over the Internet. The related works can be
categorised into two parts. The first part generally focuses on IoT
and cloud computing technologies including their applications
and services as well as the relevant IT trends. The second part
specifically focuses on big data processing.

For IoT, research works such as Liu et al. [12], Al-Fuqaha
et al. [13] and Li et al. [14] survey the landscape of IoT technology,
while other works investigates specific integrated techniques like
Li et al. [15] focusing on 5G networks into IoT and Sharma
et al. [16] focusing on the integration of communication technolo-
gies (i.e. energy harvesting wireless sensor network and hybrid
LiFi/WiFi). Also, Zhang and Chen [17] presented the state-of-the-
art survey for IoT and other emerging technologies (Industry 4.0,
blockchain and business analytics), while Kim [18] explored the
Cyber–Physical System (CPS) technologies and their relevance to
different emerging IT trends such as IoT, Industry 4.0, big data and
cloud computing. By considering the importance of on-demand
delivery of unlimited resources in a distributed and dynamic
manner, IoT is coupled with cloud computing. This integration al-
lows building of cloud-based IoT applications and services, which
can be implemented in different sectors and industries. In the
manufacturing sector, for example, Wang et al. [19] discussed
the influence of IoT and cloud computing technologies in this
sector from the perspective of assembly planning for complex
products and then proposed an automated assembly modelling
system. In the same sector but from a resource sharing perspec-
tive, Xie et al. [20] proposed a semantic resource service model
for sharing data-oriented manufacturing resources in the cloud.
Also, Bi and Cochran [21] discussed big data analytics applica-
tions in cloud manufacturing in order to emphasise the need
for intelligent manufacturing systems. For storing IoT data that
is huge in volume, rapid in generation rate and heterogeneous
in types, Jiang et al. [22] proposed a new data management
framework. This framework enables the storing and accessing of

such data efficiently in cloud computing environments. In the
context of Quality of Service (QoS) and Service Level Agreement
(SLA), Zheng et al. [23] investigated QoS for general cloud services
and proposed a new quality model consists of different quality
dimensions (i.e. usability, availability, reliability, responsiveness,
security, and elasticity), while Zheng et al. [24] discussed SLA
negotiation for these services and proposed a new mixed negoti-
ation mechanism that utilises concession and tradeoff strategies
in order to balance utility and success rates.

With the focus on big data processing, this processing can
be divided into two main categories, which are batch processing
(to process complex and high volumes of data at once to gain
insights) [25] and stream processing (to process infinite data
as they arrive and produce incremental insights) [26,27]. As we
investigate the efficient execution of dynamic stream workflow
applications, the scope of this paper is on stream (real-time)
processing. To deploy streaming big data workflow applications,
a scheduling problem is raised. Scheduling methods or tech-
niques can be divided into two based on scheduling time and
the availability of information, i.e. static (at deployment time) and
dynamic (at runtime).

With a static scheduling problem, resource provisioning and
scheduling plan is generated at deployment time as all infor-
mation is known prior to the execution of workflow applica-
tion beginning. Cardellini [28] presented an optimal replication
and placement scheduler for data stream processing applications
that takes into consideration the heterogeneity of application
requirements and computing resources. Barika et al. [29] pre-
sented two static scheduling algorithms for stream workflow,
which are greedy and genetic algorithms. These algorithms take
into account user-defined QoS requirements and different cloud
resources offered by multiple clouds at different costs while
minimising the total execution cost including provisioning and
data transfer costs.

With a dynamic scheduling problem, the scheduling decisions
are made at runtime as the information is updated according
to the occurrence of dynamic changes. Liu et al. [5] proposed a
runtime-aware dynamic scheduling technique that considers the
fluctuation of input data rate and the variation in the availability
of computational resource for a streaming operator graph. This
technique redistributes the operator’s tasks at runtime to min-
imise latency requirements including operator processing latency
and the latency difference between different worker nodes. Liu
and Buyya [6] proposed a dynamic resource-aware scheduling
algorithm for stream applications and validated its efficiency by
implementing a prototype scheduler named D-Storm on top of
Apache Storm. This scheduler adjusts a scheduling plan under
various sizes of inputs. Kombi et al. [7] proposed DABS-Storm, a
data-aware approach that handles the fluctuations of input data
streams (in terms of data volume and distribution) in a streaming
operator graph and adjusts resources to meet the needs of data
processing. However, the aforementioned research works con-
sider streaming operator graphs, which is different from stream
workflow as well as they lack the ability to handle application-
level changes that may occur at runtime. Additionally, in our
previous work [30], we proposed a dynamic scheduling technique
for stream workflow, but the runtime change that is handled by
this technique is limited to data fluctuations.

In the same context of dynamic scheduling problem but with
considering a single cloud infrastructure as an execution envi-
ronment, Sun and Huang [8] proposed a Stable Online Schedul-
ing Strategy (SOMG). This strategy addresses the problem of
system stability for real-time data processing over stream flow
fluctuations while guaranteeing makespan. Sun et al. [9] pro-
posed an elastic online scheduling method that aims to achieve
fairness scheduling of multiple big data streaming applications

350 M. Barika, S. Garg and R. Ranjan / Future Generation Computer Systems 112 (2020) 348–361

while guaranteeing makespan. However, these research works do
not take into consideration that stream workflow is a workflow
of workflows and its structure could be changed at runtime
(i.e. various application structural changes may occur during the
execution of this workflow).

For scheduling methods in big data application orchestrators
(i.e. Apache YARN [10] and Apache Mesos [11]), these methods
implemented a fair-share model. In Apache YARN, the default
fair scheduling method equally shares cluster resources among
applications over time. In Apache Mesos, the default scheduling
decision used by the master process to determine how resources
will be assigned to each framework is the Dominant Resource
Fairness algorithm (fair-share model to multiple resource types).
However, these scheduling methods do not take into considera-
tion user-defined real-time requirements and different dynamic
forms at application-level that may occur at runtime as well as
the unpredictable performance of such workflow applications.

Accordingly, the aforementioned scheduling techniques do not
consider that stream workflow has different dynamic forms at
application-level, so that its structure could be changed at run-
time. Also, they do not utilise the capability of ‘cloud of clouds’
as a dynamic and heterogeneous execution environment.

3. Problem definition and modelling

Since road traffic is under strain with the continued increase
of the number of vehicles and population, smart road traffic
monitoring as a service of smart city services can utilise the true
power of connected vehicles in addition to roadside infrastruc-
ture (e.g. traffic lights, cameras). Collecting and analysing the
streaming data generated by these vehicles allows us to create
a real-time view of road traffic and incidents, and recommend
runtime adjustments based on live traffic events and road con-
ditions (e.g. average running speed, traffic density [31]). Fig. 1
shows an exemplar workflow of this real use case, which is more
comprehensive than the one presented in our previous work [30].
The description and requirements of dynamic stream workflow
are provided in our previous work [30].

This instant feedback use case shows the growing importance
and value of real-time analytical insights in the future of smart
city services (here road traffic monitoring service as a real-world
application). Such service application is a real-world dynamic
big data pipeline that uses sensor data from connected vehicles,
uploads such data to cloud datacenters for analysis, and produces
a real-time view of road traffic as continuous insights. From
this application use case, we can outline the following forms of
dynamism:

• Velocity of Streaming Data − As smart city is a dynamic
environment, the speed of streaming data changes greatly
based on time or traffic alert. As an example of the varia-
tion, during peak hour traffic, a large number of connected
vehicles operate on the road transmitting their data, whilst
at night time, few vehicles operate [31]. Therefore, Dynamic
Form 1 is a runtime action to change the velocity of stream-
ing data, either increase or decrease as a consequence of
the change happening via external source (i.e. data rate is
changed) or parent service (i.e. the velocity of output data
is changed).
• Real-time Data Processing Requirement of Connected Vehi-

cle − The data processing requirement for analytical com-
ponents may change overtime, reflecting the complexity of
computations that will be carried out on data (from sim-
ple to complex aggregation functions and vice versa). This
will affect the computing power needed according to the
changes in data processing requirement. Therefore, Dynamic
Form 2 is a runtime action to change the existing service by
amending either its data processing requirements (Case 1)
or the velocity of output stream (Case 2).

• Structure of Application − In smart city, the analysis re-
quirements of an application change over time to reflect
new amendments to control and/or data flows. Thus, active
connected vehicles and/or existing nodes may be connected
to the nodes being added or their communications may be
cut off from the nodes being deleted. According to the afore-
mentioned changes, the structure of this application be-
comes dynamic which means the requirements of resources
will vary as application structure changes. Accordingly, we
have two dynamic forms for the structure of application.
Dynamic Form 3 is a runtime action to amend the structure
of application by adding a new service. With this action,
there are five cases that will be discussed in this section.
Dynamic Form 4 is an runtime action to amend the structure
of application by deleting an existing service. With this
action, there are two cases that will be discussed in this
section.

Accordingly, the execution of a stream workflow application
is crucial. The dynamic scaling of stream workflow application
should be treated carefully to tackle these changes while achiev-
ing real-time performance requirements. For our problem mod-
elling here, we consider single service change at any instant of
time. In other words, we assume that only one runtime change
can be made at any instant of time and such a change request
requires one response action. We present here a structural change
model that is an extension to our previous problem modelling
presented in [30].

3.1. Dynamic Form 1: Change the streaming data velocity

In our previous work [30], we proposed a two-phase adaptive
scheduling technique to efficiently reschedule dynamic workflow
application in cloud infrastructures to respond to changes in the
velocity of data at runtime. The details of this technique and how
it was used to handle such dynamic forms are provided in that
paper.

3.2. Dynamic Form 2: Change of existing service

Considering stream application as an adaptive workflow, any
service (analytical component) may be changed over time. This
kind of dynamic form occurs as a change in data processing
requirement for a service MISn or velocity of output data stream
for a service outStream(Sn) (i.e. as a consequence of changing
output proportion γ Sn).

Case 1: Change data processing requirement of existing
service. This change happens in the real world when a new
version of existing service is available and is deployed in place
of the current version. For instance, in the presented Fig. 1, the
new release of traffic analysis service is available. With this case,
the user-provided input and impact are as follows:
User input: The service Sn selected, and the new value for MISn
denoted as nMISn .
Impact: The MISn and pro(Sn) are updated as follows:

MISn = nMISn

pro(Sn) =

⎧⎨⎩pro(Sn)+ exVM(Sn), if MISn increases

pro(Sn)− rmVM(Sn), otherwise

where MIPSv ≥ unitDPRate ∗MISn | v ∈ pro(Sn)

and data processing constraint is maintained (Eq. 4 in [30]).

(1)

Case 2: Change output stream velocity of existing service.
This change happens in the real world when a new release of ser-
vice is deployed in place of the current version, which produces

M. Barika, S. Garg and R. Ranjan / Future Generation Computer Systems 112 (2020) 348–361 351

Fig. 1. Exemplar workflow for real-time view of road traffic and incidents.

less or more output data from the processed input data based on
the new processing logic. For instance, in Fig. 1, the new release
of traffic analysis service is being deployed that changes the
velocity of output stream sp that it either increases or decreases,
so that downstream services (density and traffic congestion mon-
itoring, traffic management controller, traffic modelling, traffic
event alerts and traffic accident risks predication services) receive
more or less streaming data. With this case, the following are
user-provided input and impact:
User input: The service Sn selected, and the new value for γ Sn

denoted as nSn
γ .

Impact: The γ Sn and pro(Sn) are updated as follows:

ϑSn =

⎧⎨⎩(n_γ Sn − γ Sn) ∗ inStream(Sn), if γ Sn increases

(γ Sn − n_γ Sn) ∗ inStream(Sn), otherwise

ϑSn = ⌈ϑSn/minDPUnit⌉ ∗minDPUnit

γ Sn = n_γ Sn

outStream(Sn) = γ Sn ∗ inStream(Sn)

For each downstream service affected from this runtime change,

perform Eq. 6 and Eq. 7 in [30].

(2)

3.3. Dynamic Form 3: Add a new service

Adding a new service to a stream workflow application at
runtime means performing a change in the structure of the appli-
cation. This change can be in various forms depending on where

a new service is being added to the stream workflow, what is/are
the input link(s) for such new services and where the output
stream of this new service is being routed. Considering these
aspects, we support five different cases under this dynamic form,
where each one of them has its own input requirements and
consequences. Nevertheless, the common impact of all cases is
the creation of a new service S∗ with its type, data processing re-
quirement MIS

∗

, placement cloud cS
∗

g and output data proportion
γ S∗ , and the update of S set as follows:

S∗ = (MIS
∗

, 0, γ S∗)
S = S∗ ∪ S (3)

Case 1: Add a new service with input from service and
output to sink. This change happens when there is a need to
process the output of a parent service further, and provides new
analytical insight or performs verification on the result by repeat-
ing the processing. For instance, in the presented Fig. 1, traffic
optimisation or weather prediction service can be added based
on the additional processing of input streaming data from a traffic
management controller service. With this case, the following are
user-provided input and impact:
User input: A new service S∗ as well as the input link from parent
service Sn to new service S∗.
Impact: The S∗ and em+1 are created, and S and E sets are updated
as follows:
Eq. (3) is applied
em+1 = (Sn, S∗, 100%)
E = em+1 ∪ E

(4)

Case 2: Add a new service with input from two or more
sources (external source and/or parent service) and output

352 M. Barika, S. Garg and R. Ranjan / Future Generation Computer Systems 112 (2020) 348–361

to sink. This change happens when a new service is needed
to process streaming data combined from several sources and
produces new analytical insight. For example, in the presented
Fig. 1, traffic prediction service that is based on inputs from traffic
management controller (dynamic flows) and traffic modelling
(static flows) can be added. With this case, the following are
user-provided input and impact:
User input: A new service S∗ as well as SS(S∗) denotes a set of J
input sources for S∗, which is a subset of sets EX and S, SS(S∗) ⊆
EX ∪ S. Thus, each source xj of set SS(S∗) for j = 1, 2, . . . , n is
either external source xj ∈ EX or parent service xj ∈ S.
Impact: The S∗ is created, and S and E sets are updated as follows:

Eq. (3) is applied
∀xj ∈ SS(S∗), em+j = (xj, S∗, 100%)

E = em+j ∪ E
(5)

Case 3: Add a new service with input from external source
and output to one service. This change happens when streaming
data from external sources can be processed with different logics
to provide additional analytics that improve the data analysis
performed by an existing service. It also could happen when
data preprocessing analytical component/service is required for
streaming data coming from an existing external source prior to
carrying out data analysis processing on such data by an existing
service. For example, in Fig. 1, a road weather data preprocessing
service is needed to perform major data preprocessing steps on
road weather sensor data before road weather analysis in order
to significantly reduce data processing time and cost. With this
case, the following are user-provided input and impact:
User input: A new service S∗ as well as one of the existing ser-
vices is selected as a destination service Sn such that this service
has input from an external source and output to one service. Let
EXp be the input source for Sn where em = (EXp, Sn, 100%) exists.
Impact: The S∗ and two new edges em+1&em+2 are created, em is
deleted, and S and E sets are updated as follows:

Eq. (3) is applied

E = E − em
em+1 = (EXp, S∗, 100%)

em+2 = (S∗, Sn, 100%)

E = em+1 ∪ em+2 ∪ E

∀x ∈ S where x is affected by this change, inStream(x),

outStream(x) and pro(x) are updated according to

Eq. 6 and Eq. 7 in [30].

(6)

Case 4: Add a new service with input from service and
output to one service. This change happens when input stream-
ing data of an existing service should be preprocessed before
carrying out data analysis processing at this service, so that a
new data preprocessing analytical component/service before the
existing service is needed. For example, in Fig. 1, a new service
to transform streaming data from the vehicle detection service
is needed prior to being classified and aggregated by the ve-
hicle classification and aggregation service. With this case, the
following are user-provided input and impact:
User input: A new service S∗ as well as one of the existing
services is selected as a destination service Sn such that this
service has input from one service and output to one or more
services. Let Sn−1 be the input source (parent service) for Sn where
em = (Sn−1, Sn, 100%) exists.

Impact: The S∗ and two new edges em+1&em+2 are created, em is
deleted, and S and E sets are updated as follows:

Eq. (3) is applied

E = E − em
em+1 = (Sn−1, S∗, 100%)

em+2 = (S∗, Sn, 100%)

E = em+1 ∪ em+2 ∪ E

∀x ∈ S where x is affected by this change, inStream(x),

outStream(x) and pro(x) are updated according to

Eq. 6 and Eq. 7 in [30].

(7)

Case 5: Add a new service with input from two or more
sources and output to one service. This change happens when
input streaming data of an existing service needs to be prepro-
cessed and then enriched with additional stream output sources,
so that data analysis processing at this service will be carried-
out on the analytical result instead of the original streams. To
apply this change, a new data analytical component/service be-
fore the existing service is necessary. For example, in Fig. 1,
input data regarding vehicle velocity classification and aggrega-
tion service from vehicle detection service is preprocessed and
enriched with roadside cameras by using a new service. This
new service performs filtering and error correction on such data,
where the output stream of this service will then be injected into
the velocity classification and aggregation service instead of the
original stream from the vehicle detection service. With this case,
the following are user-provided input and impact:

User input: A new service S∗, one of the existing services is
selected as a destination service such that this service has input
from one service and output to one or more services, and SS(S∗)
denotes a set of J input sources for S∗, which is a subset of sets
EX and S excluding Sn and Sn−1, SS(S∗) ⊆ EX∪S−{Sn, Sn−1}. Thus,
each source xj of set SS(S∗) for j = 1, 2, . . . , n is either external
source xj ∈ EX or parent service xj ∈ S. Let Sn−1 be the input
source (parent service) for Sn where em = (Sn−1, Sn, 100%) exists.
Impact: The S∗ and new edges em+1...(m+|SS(S∗)|) are created, em is
deleted, and S and E sets are updated as follows:

Eq. (3) is applied

E = E − em
SS(S∗) = SS(S∗) ∪ Sn−1
∀xj ∈ SS(S∗), em+j = (xj, S∗, 100%)

E = em+j ∪ E

em+1 = (S∗, Sn, 100%)

∀x ∈ S where x is affected by this change, inStream(x),

outStream(x) and pro(x) are updated according to

Eq. 6 and Eq. 7 in [30].

(8)

3.4. Dynamic Form 4: Delete an existing service

Like adding a new service to a workflow application, deleting
an existing service also changes the structure of this application.
However, the deletion of service varies in cases depending on
the output link(s) of this service, where in case of the output
link(s) is not to sink, the sub-tree of this service will be impacted.
Under this dynamic form, we support two cases for performing
application structure change by means of deleting an existing
service.

Case 1: Delete a service with output to sink. This case hap-
pens in the real world when one of the ending services in the

M. Barika, S. Garg and R. Ranjan / Future Generation Computer Systems 112 (2020) 348–361 353

stream workflow application as an analytical component is no
longer required in the data analysis pipeline. For instance, the
traffic accident risks predication service in Fig. 1 is no longer
wanted. With this case, the following are user-provided input and
impact:
User input: Existing service Sn selected. Let SS(Sn) denote a set of
J input sources for Sn, which is subset of sets EX and S excluding
Sn, SS(Sn) ⊆ EX ∪ S − Sn.
Impact: The Sn is deleted, and S and E sets are updated as follows:

∀xj ∈ SS(Sn), E = E − (xj, Sn, 100%)
pro(Sn) = ∅

S = S − Sn
(9)

Case 2: Delete service with output link(s) to one or more
services − This change happens when the analytical processing
carried out by existing service and all subsequent analysis per-
formed by services in the sub-tree of this service are not needed.
For example, the traffic modelling service and its sub-tree in
Fig. 1 may not be required as analytical components in the data
pipeline. With this case, the following are user-provided input
and impact:
User input: Existing service Sn selected. Let SS(Sn) denote a set of
J input sources for Sn, which is subset of sets EX and S excluding
Sn, SS(Sn) ⊆ EX ∪ S − Sn, and ST (Sn) denote a set of services in
the sub-tree of Sn, where each child service Sj of set ST (Sn) for
j = 1, 2, . . . , n is a descendant of the current tree service Sn.
Impact: The Sn is deleted, and S and E sets are updated as follows:

∀xj ∈ SS(Sn), E = E − (xj, Sn, 100%)
pro(Sn) = ∅

∀Sj ∈ ST (Sn), S = S − Sj
(10)

Figs. 2 to 4 show the illustrative case examples of Dynamic
Forms 2, 3 and 4 respectively.

4. Proposed pluggable scheduling technique

For adaptive workflows like stream workflows, finding an
optimal or near-optimal solution at deployment time is not the
whole story. This is because the dynamic nature of these work-
flows cause different types of changes to occur at runtime. The
problem of handling runtime changes of in-progress streamwork-
flows needs to be investigated. In this paper, our problem is to
reschedule stream workflow applications in cloud infrastructures
to respond to different dynamic forms that occur at runtime. The
revised scheduling plan should be generated as quickly as pos-
sible, be cost-effective, and maintain performance requirements.
In other words, maintaining the quality of the revised scheduling
solution is what matters here.

Considering various dynamic forms of stream workflows, each
one of them requires a different type of response and this re-
sponse should be efficient. Consequently, we propose a pluggable
dynamic scheduling technique that supports runtime changes
of in-progress stream workflows. It handles application-level
changes during the execution of this workflow to always guaran-
tee user-defined performance requirements while minimising the
execution cost. The proposed technique copes with four dynamic
forms with their different cases as described in our structural
change modelling (see Section 3). The pseudocode of the pro-
posed technique is presented in Algorithm 1. This algorithm at
the beginning calls the plugged-in scheduling method to generate
a scheduling plan for deploying the given stream workflow ap-
plication and then waiting for the occurrence of runtime change.
When such change happens, it calls the appropriate method to
handle this change.

Fig. 2. Illustration of Dynamic Form 2 with their cases after applying each case
on Fig. 1.

Algorithm 2 presents the pseudocode of the handling method
that is used with Dynamic Form 2. This algorithm firstly checks
whether the change event is an increase or decrease change.
Then, it retrieves the service to be changed Sn and calculates the
change value based on the change percent from original value.
After that, it checks the dynamic case, updates the original value
and calls the plugged-in algorithm to amend the scheduling plan
based on the dynamic case. It is worth noting that with increased
change of data processing requirement for an existing service,
the plugin algorithm must evaluate the computing power of the
provisioned VM(s) if they are able to maintain the minimum data
processing based on the updated data processing requirement for
this service. This is because the absence of this check may lead to
violating real-time data processing requirements for that service.

Algorithm 3 presents the pseudocode of the handling method
that is used with Dynamic Form 3 Case 1 and Case 2, while Algo-
rithm 4 presents the pseudocode of the handling method for the
rest of Dynamic Form 3 cases (i.e. Case 3, Case 4 and Case 5). Both
algorithms create a new service S∗ with its type, data processing
requirement, placement cloud and output data proportion. But,
the main difference between these algorithms is that the former
adds a sink service, while the latter adds a non-sink service which
has impact on downstream services. Thus, Algorithm 3 retrieves
the input data sources selected for the service to be added,
adds these input data sources based on the dynamic case to this
service and updates parent–child relationships. It then adds the
output stream and calls handleNewServiceChange method with
only one affected service (i.e. the service to be added) in order
to deploy it. Algorithm 4 firstly retrieves the destination service
Sn, where the new service S∗ will be added before that service.
Based on the dynamic case, this algorithm retrieves the input
data sources selected for the service to be added and adds these
input data sources to this service. Then, it updates the stream

354 M. Barika, S. Garg and R. Ranjan / Future Generation Computer Systems 112 (2020) 348–361

Fig. 3. Illustration of Dynamic Form 3 with their cases after applying each case
on Fig. 1.

Fig. 4. Illustration of Dynamic Form 4 with their cases after applying each case
on Fig. 1.

dependencies and parent–child relationships for input source of
destination service Sn−1, new service S∗ and destination service
Sn. After that, it retrieves the list of downstream services that
will be affected by the addition of a new service. Lastly, it calls
handleNewServiceChange method with this list to amend the
scheduling plan.

Algorithm 5 presents the pseudocode of the method that is
used to handle all cases of Dynamic Form 3. This algorithm first
retrieves the service to be added S∗ and deploys this service using
the plugged-in algorithm. Then, it calls the plugged-in algorithm
with each service affected from runtime change to amend the
provisioning plan of this service. After that, it retrieves those
VMs that will be deprovisioned and those VMs that will be
provisioned. Lastly, it performs provisioning and deprovisioning
requests.

Algorithm 6 presents the pseudocode of the handling method
that is used with Dynamic Form 4 Case 1. For Dynamic Form 4
Case 2, the handling method is presented in Algorithm 7. Both
algorithms delete an existing service Sn, but the main difference
between these algorithms is that the former removes a sink
service which has impact on the parent service that could become
a sink service, while the latter removes a non-sink service in
which the sub-tree of this service should be removed. Algorithm
6 first retrieves the existing service to be deleted Sn. Then, it
removes stream dependencies of this service and updates the
child relationships of input data sources of this service. After
that, it deprovisions VM(s) allocated to that service and lastly
deletes the service. Similarly, Algorithm 7 performs the same
actions, and in addition to the need to retrieve the sub-tree of
Sn, it deletes those services in this sub-tree by deprovisioning
their VMs, removing their stream dependencies and parent–child
relationships.

M. Barika, S. Garg and R. Ranjan / Future Generation Computer Systems 112 (2020) 348–361 355

Algorithm 1 Pluggable Dynamic Scheduling Technique
1: call Scheduling Algorithm for deployment of stream workflow {a plu-

gin algorithm that finds resource selection and scheduling solution
at deployment time for executing stream workflow}

2: for each runtime change that occurs do
3: appChangeType← get dynamic form
4: appChangeCase← get dynamic case in this dynamic form
5: if appChangeType == 1 then
6: call Velocity Change Response Algorithm {a plugin algorithm to

revise the current scheduling plan to cope with data velocity
changes}

7: else if appChangeType == 2 then
8: call processExistingServiceChange(appChangeCase);
9: else if appChangeType == 3 then
10: if appChangeCase == 1 or appChangeCase == 2 then
11: call newServiceChange_Case1&2(appChangeCase);
12: else if appChangeCase == 3 or appChangeCase == 4 or

appChangeCase == 5 then
13: call newServiceChange_Case3&4&5(appChangeCase);
14: end if
15: else if appChangeType == 4 then
16: if appChangeCase == 1 then
17: deleteService_Case1();
18: else if appChangeCase == 2 then
19: deleteService_Case2();
20: end if
21: end if
22: end for

Algorithm 2 processExistingServiceChange(appChangeCase)
1: changeEvent ← get change event type {increase or decrease}
2: Sn ← get the existing service that is selected
3: get provisioned VMs for a service
4: changePercent ← get increase/decrease percent from original value
5: value← changePercent/100
6: if appChangeCase == 1 then
7: if changeEvent == ‘increase’ then
8: MISn = MISn + (MISn ∗ value)
9: else
10: MISn = MISn ∗ value {0.01 < value < 0.99}
11: end if
12: call Data Processing Requirement Change Response Algorithm

with given service Sn {a plugin algorithm that assesses each
provisioned VM as still satisfying minimum data processing based
on the updated MISn and provisioning more computing power if
needed in case of increase event or deprovisioning the provisioned
VMs that are not required to achieve the updated MISn in case of
decrease event}

13: end if
14: if appChangeCase == 2 then
15: if changeEvent == ‘increase’ then
16: γ Sn = γ Sn + γ Sn ∗ value)
17: call Velocity Change Response Algorithm with increase event

{a plugin algorithm to amend scheduling plan to handle data
velocity changes}

18: else
19: γ Sn = γ Sn ∗ value {0.01 < value < 0.99}
20: call Velocity Change Response Algorithm with decrease event

{a plugin algorithm to revise scheduling plan to handle data
velocity changes}

21: end if
22: end if

Algorithm 3 newServiceChange_Case1&2(appChangeCase)
1: Create service S∗
2: InputSources = φ

3: Add input source(s) selected to S∗ in InputSources {Case 1: one input
source, Case 2: two or more input sources; selection constraints are
applied}

4: for each input source in InputSources do
5: Add input dependency to S∗ from this source
6: end for
7: Update parent and child relationships for input source(s) and S∗
8: Add output stream for S∗ based on input stream dependency
9: Add S∗ to affectedSIDs
10: call handleNewServiceChange(affectedSIDs)

Algorithm 4 newServiceChange_Case3&4&5(appChangeCase)
1: Create service S∗
2: Sn ← get one of the existing services as a destination service

{selection constraint is applied according to dynamic case}
3: InputSources = φ

4: if appChangeCase == 3 or appChangeCase == 4 then
5: Add input source of Sn (i.e. Sn−1) in InputSources
6: else
7: Add input source(s) selected to S∗ in InputSources {input source

of Sn (i.e. Sn−1) + other input sources that are selected}
8: end if
9: for each input source in InputSources do
10: Add input dependency to S∗ from this source
11: end for
12: Remove the dependency link of Sn
13: Add output stream for S∗ based on input stream dependency
14: Add dependency link for Sn {source: S∗}
15: Update parent and child relationships between service(s) in

InputSources and S∗, and between S∗ and Sn
16: affectedSIDs = get ids of services affected by adding request starting

from S∗
17: call handleNewServiceChange(affectedSIDs)

Algorithm 5 handleNewServiceChange(affectedSIDs)
1: S∗ ← get and remove the new service from affectedSIDs
2: call Resource Selection Algorithm for S∗ {a plugin algorithm that

finds near-optimal resource selection solution for given service}
3: if affectedSIDs is not empty then
4: call Velocity Change Response Algorithm with the list of affected

services (affectedSIDs) {a plugin algorithm to revise the current
scheduling plan to cope with data velocity changes for the list of
services provided}

5: end if
6: BeProVMs← get VMs that need to be provisioned S∗
7: BeDeproVMs← get VMs that need to be deprovisioned S∗
8: if BeProVMs is not empty then
9: provision VMs in the list
10: else
11: if BeDeproVMs is not empty then
12: deprovision VMs in the list
13: end if
14: end if

5. Experiment setup and configuration

The aim of our experiments is to assess the quality of the
response solution that is generated when a dynamic change hap-
pens at runtime. For this purpose, we simulate a Multicloud envi-
ronment with the proposed pluggable dynamic scheduling tech-
nique using our simulator named IoTSim-Stream [32], which en-
ables the execution of stream workflow applications in this envi-
ronment. This simulation environment facilitates our evaluations

356 M. Barika, S. Garg and R. Ranjan / Future Generation Computer Systems 112 (2020) 348–361

Algorithm 6 deleteService_Case1()
1: Sn ← get existing service that will be deleted {selection constraint

is applied}
2: InputSources← get input sources of Sn
3: Remove dependency link(s) to Sn from those sources in InputSources

4: Update child relationships for those sources in InputSources
5: Deprovision the provisioned VM(s) of Sn
6: Delete Sn

Algorithm 7 deleteService_Case2()
1: Sn ← get existing service that will be deleted
2: subtree← get services in sub-tree of Sn
3: for for each service in subtree do
4: Deprovision the provisioned VM(s) of this service
5: Remove this service with its dependency link(s) and parent-child

relationships
6: end for
7: InputSources← get input sources of Sn
8: Remove dependency link(s) to Sn from those sources in InputSources

9: Update child relationships for those sources in InputSources
10: Deprovision the provisioned VM(s) of Sn
11: Delete Sn

as we can compare experimental results obtained from different
scheduling algorithms under the same environment conditions.

5.1. Workflow application and simulation environment

Prior to setting up a simulation environment, we need to look
at different real structures for workflow applications to simulate
stream workflows. Similar to our previous work [29], we use
stream workflow applications modelled using common workflow
structures (Montage, Inspiral, Epigenomics and CyberShake). For
the execution environment, the modelled Multicloud environ-
ment presented in our previous work [29] is used. This Multicloud
environment is made up of three different clouds, where each
cloud offers different VM configurations. Additionally, a set of
parameters for both workflow application and simulator should
be configured to run our experiments. These parameters and their
values are fixed for all scenarios and listed in Table 1 (more
information in [29] and [30]).

5.2. Configuration changes in service data processing requirement

To model the amount of increase or decrease in service data
processing requirement, we not only consider the percentage
increase of the original value up to 100%, but we also add 50% as
an additional margin to make it 150%. With the highest increase
percentage (i.e. up to 150%), the data processing requirement for
simple or medium aggregation function will be transformed to
represent complex aggregation function. Thus, it is valuable to
take into consideration the additional margin to increase the data
processing requirement. We also need to note that the updated
value of the data processing requirement after the increase re-
quest is capped at 4000 MI/MB, which is the maximum value
of data processing requirement as listed in [29]. For decreasing
data processing requirements, we model the decrease percentage
of up to 75%, where 25% is considered as additional margin to
transform data processing requirement of complex aggregation
function into a simple aggregate function. Accordingly for in-
crease requests, low range is from 10% to 40%, medium range
is from 60% to 90% and high range is from 110% to 150%. For
decrease requests, low range is from 5% to 25%, medium range
is from 35% to 55% and high range is from 65% to 75%.

Table 1
Workflow and simulation parameters.
Parameter Value

External Source Data Rate Range [5, 10] MB/s considering 5
MB/s as the minimum and 10
MB/s as the maximum based on
[30]

Ingress Network Bandwidth Range [615, 926] MB/s
Ingress Network Latency Range [0.00064, 0.00086] s
Egress Network Bandwidth Range [122, 218] MB/s
Egress Network Latency Range [0.021, 0.031] s
Data transfer cost Ingress traffic: 0

Egress traffic: Range [0.013–0.019]
cents/MB

Type of service 50% unmovable services 50%
movable services

Service Data Processing Requirement Range [1348, 2674] MI/MB
Service Data Processing Rate System-calculated rate based on

input stream(s)
Data mode type Replica
Service Output Data Rate Range [1, 50] % of input rate
Minimum Data Processing Unit 1 MB
Minimum Data Processing Rate 1 MB/s
GA - Population Size 50
GA - Generation Limit 50
GA - Elitism 1
GA - Crossover Probability 0.8
GA - Mutation Probability 0.3
GA - Number of Random Immigrants 5
Number of Velocity Change Events 2
Delay between velocity change events 10 s
Simulation time 180 s (3 min)

5.3. Configuration changes in service output data rate

Considering Rizou et al.’s research work [33], the selectivity
of the operator is the percentage of output data to input data
and this selectivity varies between 0 and 1. Selectivity close
to 1 means that the operator generates output data rate equal
to the input data rate, while selectivity close to 0 means that
the operator generates very low output data rate and acts as
high selective filter in the network. In this research work, the
output data rate is up to 100% of input data rate and the data
rate unit is kilobit per second. The advancements of networking
and IoT technologies lead to increase in the speed of data being
exchanged. For example, in Fischer and Bernstein [34], the size
of tuple used in experiments varies from bytes to KB to MB, so
that the data rate unit in megabit/megabyte per second is being
considered. These advancements are continuing, which means
the data rate will continue to increase. Therefore, it is valuable
to consider additional 50% beyond 100% as the future margin of
increase. Accordingly, the output data rate is considered to be up
to 150% of input data rate as defined in [29].

Considering output data rate is up to 150% of input data rate
(including 50% additional margin), we consider the percentage
change in increasing service output data rate is up to 100% (low
range [10–30%], medium range [50–70%] and high range [90–
100%]). While for decreasing service output data rate is up to
75% (low range [5–15%], medium range [25–35%] and high range
[45–50%]).

5.4. Experimental scenarios

To evaluate the quality of response solution for revising the
scheduling plan at runtime when application-level change hap-
pens, we examine different experiment scenarios for different
dynamic forms. All these experiments are with regard to cost,
change and time. The cost is the solution cost after the change is
applied. This cost includes data provisioning cost and data trans-
fer cost. Regarding change, we consider the number of changes

M. Barika, S. Garg and R. Ranjan / Future Generation Computer Systems 112 (2020) 348–361 357

applied to the current scheduling plan in terms of compute re-
sources in order to respond to any runtime change. In other
words, it is a number of VM provisioning and/or deprovisioning
changes that are made to revise the current scheduling plan.
For time, we consider the request execution time (computational
time) required to process and complete this request. This time is
a sum of the request’s processing time, algorithm running time
and highest boot time among the VMs provisioned.

For each dynamic case, we conduct an experiment to study the
quality of solutions being generated in response to this dynamic
change. Thus, we will perform 11 experiments as follows: two
experiments (one for increase request and the other for decrease
request) for each case in Dynamic Form 2 (with a total of four
experiments), one experiment for each case in dynamic 3 (with a
total of five experiments) and one experiment for each case in
dynamic 4 (with a total of two experiments). Then, we record
experimental results of the quality of solution and compare these
results to examine the scale of performance quality.

The aforementioned experiment scenarios are used to exam-
ine and evaluate the performance and service quality of three
different techniques under different application-level changes.

Baseline Technique (BT): our pluggable dynamic scheduling
technique with proposed realistic and straightforward algorithm
(i.e. baseline algorithm) that does not need to use any compli-
cated heuristic. This algorithm handles different dynamic changes
by merely provisioning the VM with the highest computing
power and achieving service minimum data processing unit when
a new service is deployed or more computing power is needed,
and deprovisioning some of the VMs available when existing
service is deleted or less computing power is needed. It worth
noting that this technique can, if possible, deprovision part of
VMs available based on the amount of computing power being
decreased.

Dynamic Fair-Share Technique (DFST): Fair sharing model,
to one resource type or multiple resource types, is a default
scheduling decision used by Apache YARN and Mesos to equally
share the resources of a cluster among applications over time.
This default scheduler cannot handle dynamic forms of stream
workflows by managing the resources at runtime. Therefore, we
have extended and implemented this model to support elasticity
and adjust scheduling plan at runtime to cope with stream work-
flows and its dynamic forms. Accordingly, DFST is our pluggable
dynamic scheduling technique with the proposed dynamic fair-
ness heuristic method. This technique provisions the same type
of VM (with high-medium computing power) when a new service
is deployed or there is a need for more computing power, and
deprovisions any available VM when less computing power is
needed or releases all available VM(s) when the service is deleted.

Optimisation Technique (OT): our pluggable dynamic schedul-
ing technique with proposed plugin algorithms and methods
presented in Section 5.5.

By comparing the quality of solution being generated by our
techniques (BT, DFST and OT) in response to various dynamic
changes, we can evaluate the efficiency of each technique in
respect to the others and find the most efficient technique that
produces the best response solution. The comparison between OT
and BT is aimed at figuring out whether the complex heuristic-
based method is necessary to improve the quality of solution
being generated to respond to application-level runtime change.
The comparison between OT and DFST is aimed at evaluating the
quality of solution generated by the dynamic version of fair-share
scheduling decision since a fair share model is used in big data
application orchestrators (i.e. Apache YARN and Mesos).

Note that we will not conduct an experiment for Dynamic
Form 1 (change the streaming data velocity) as we have inves-
tigated this form in detail in our previous work [30].

5.5. Plugin scheduling algorithms and techniques

As the proposed technique is a pluggable method to dynami-
cally schedule stream workflow at runtime, customisable or plu-
gin scheduling algorithms are needed to make scheduling de-
cisions. To run our experiments, different types of plugin algo-
rithms/methods are used with different techniques to perform
quality of solution evaluations according to the aforementioned
experimental scenarios.

With OT, we used our previous scheduling algorithm and
techniques presented in [29,30].

For scheduling stream workflow at deployment time, the pro-
posed algorithms in [29] or GA with Random Immigrants Scheme
in [30] can be used as plugin algorithms. GA with Random Im-
migrants Scheme is the advanced version of traditional GA and
performed better even with dynamic scheduling according to
the results presented in [30]. Thus, we use GA with Random
Immigrants Scheme as plugin algorithm in Line 1 of Algorithm
1.

For adaptive scheduling with Dynamic Form 1 and 2, Two-
level Greedy Algorithm [30] is used as a plugin algorithm. For
Dynamic Form 1, this algorithm is used in Line 6 of Algorithm 1
to dynamically respond to the data velocity changes for services
by finding the best resource selection solution for those services
affected by such changes. For Dynamic Form 2, it is used in Line
17 and 20 of Algorithm 2 to revise the scheduling plan with
both data velocity events. With a velocity increase event, this
algorithm calls for provisioning more computing power while
with velocity decrease events, it finds those VMs that are not
needed any more to deprovision them. In Line 12 of Algorithm 2,
a new heuristic technique is proposed as a plugin algorithm (see
Algorithm 8). It assesses all provisioned VMs of a given service
to ensure they still achieve minimum data processing based on
the updated data processing requirement. Then, it provisions
more computing power if needed in the case of increase events
or deprovisioning those provisioned VMs that are not needed
to achieve the updated data processing requirement in cases of
decrease events.

For adaptive scheduling with Dynamic Form 3, two algorithms
are used as plugin algorithms. Greedy Selection algorithm [29]
is used in Line 2 of Algorithm 5 to find computing resources
(resource selection solution) for the new service. Note that this
algorithm originally works on all services, but for our purpose
here, we made a minor modification to make it run only with a
given service (i.e. new service). Moreover, in Line 4 of Algorithm
5, Two-level Greedy Algorithm [30] is used as a pluggable algo-
rithm to revise the scheduling plan based on the list of services
affected by dynamic change.

With BT, the proposed technique is plugged in with a simple
schedule model to provision the highest VM when more comput-
ing power is needed and deprovision VM(s) if applicable when
the provisioned VM(s) is unnecessary. With DFST, the proposed
technique is plugged in with the extended fair-share model to
support dynamic scheduling. If more computing power is needed
(such as adding new service or modifying the existing service
with increase requests), it provisions the same type of VM, while
deprovisioning VM(s) if applicable when the provisioned VM(s)
is unnecessary. For both BT and DFST, if changes occur in the ex-
isting service, they provision and/or deprovision VM(s) according
to whether the change is an increase request or decrease request
after checking the current computing power for this service.

6. Experimental results

The use of a real environment to conduct our experiments
would produce inconsistent evaluation results as the parameters

358 M. Barika, S. Garg and R. Ranjan / Future Generation Computer Systems 112 (2020) 348–361

Fig. 5. Quality of solution for different workflow structures under Dynamic Form 2 Case 2 Increase (medium range).

Fig. 6. Quality of solution for different workflow structures under Dynamic Form 2 Case 2 Decrease (medium range).

Fig. 7. Quality of solution for different workflow structures under Dynamic Form 3 Case 1.

Fig. 8. Quality of solution for different workflow structures under Dynamic Form 3 Case 4.

M. Barika, S. Garg and R. Ranjan / Future Generation Computer Systems 112 (2020) 348–361 359

Fig. 9. Quality of solution for different workflow structures under Dynamic Form 4 Case 1.

Algorithm 8 ResourceSelection_DPReqChange(Service)

1: unitMIPS ← MISn ∗ unitDPRate
2: reqUnits← get number of units required based on updated MISn
3: changeEvent ← get velocity change event {increase or decrease}
4: Sn ← get the existing service that is selected
5: pro(Sn)← provisioned VMs for a service
6: for each vm in pro(Sn) do
7: if MIPSvm >= unitMIPS then
8: if reqUnits > 0 then
9: reqUnits = reqUnits− ⌊(MIPSvm/unitMIPS)⌋
10: else
11: add vm in rmVM(Sn) {deprovision vm}
12: end if
13: else
14: add vm in rmVM(Sn)
15: end if
16: end for
17: while reqUnits > 0 do
18: selectedVM, VMList = φ

19: VMOffers← VM offers of Sn placement cloud order by comp. power

20: for each vm_offer in VMOffers do
21: achievedUnits = ⌊(MIPSvm_offer/unitMIPS)⌋
22: if achievedUnits >= reqUnits or vm_offer is last offer then
23: selectedVM = vm_offer
24: break
25: end if
26: end for
27: VMList = VMList ∪ selectedVM
28: reqUnits = reqUnits− ⌊(MIPSselectedVM/unitMIPS)⌋
29: end while

of this environment cannot be controlled and they continue to
change with every workflow execution. The use of simulation
environment approach is a visible solution. Therefore, we conduct
our experiments using IoTSim-Stream [32], a validated simula-
tor for modelling and executing stream workflow in Multicloud
environments. It provides a controllable real-world simulation
environment to conduct and repeat experiments for evaluating
scheduling algorithms and techniques. By using this simulator,
large-scale simulation experiments can be conducted to assess
the quality of solution produced by different scheduling tech-
niques to respond to application-level changes. These simulations
are so close to reality the obtained results are valid in real-life.
In addition, conducting these simulations on simulation envi-
ronments is cost-effective, effortless and various conditions are
reproducible to reproduce the results.

To perform our experiments, IoTSim-Stream [32] is used on
a Nectar Cloud virtual machine with 8 vCPUs, 32 GB of RAM
memory and running Ubuntu 16.04.1 LTS, and the results of these

experiments are collected. For OT, each experimental scenario
runs 10 times since random-based immigrants genetic algorithm
is used in this technique, and then the average value of the
obtained results is taken and used in the representation of ex-
perimental results. Moreover, for the quality of solution results,
we present the average value for both the cost of solution and
number of changes as two runtime changes are made during
simulation time. Regarding the results of Dynamic Form 2 sce-
narios, we only present medium-range results as these results are
sufficient to reach the conclusion.

We have examined the experimental results looking for key
results that allow us to reach the conclusion. We found that the
results of experiment scenarios for Dynamic Form 2 Case 2 (with
increase change), Dynamic Form 2 Case 2 (with decrease change),
Dynamic Form 3 Case 1, Dynamic Form 3 Case 4 and Dynamic
Form 4 Case 1 are enough for our discussion. Figs. 5 to 9 depict the
quality of solution result for the aforementioned dynamic forms
and cases. From these results, our analysis and findings are:

• In terms of solution cost, OT achieved the best results in
comparison with BT ad DFST. This is because OT applied
genetic algorithm at deployment time to find the best plan
to place services over multiple cloud infrastructure to min-
imise not only provisioning cost but also data transfer by
utilising data locality. With an efficient service placement
and scheduling plan, OT is able to maintain the lowest cost
when handling all dynamic changes during the execution
of workflow. On the other hand, BT and DFST do not have
that capability, so they cannot minimise the solution cost
after handling dynamic changes. In addition, the highest
cost saving is achieved by Epigenomics workflow structure.
This is because such workflow processes a lower amount
of data compared with other workflow structures, so that
less than average computing power is needed. Based on this,
provisioning VM with high-medium or highest computing
power does not lead to achieving the best execution cost.
Instead finding a near-optimal scheduling plan at deploy-
ment allows maximisation of savings in this step and later
when amending the scheduling plan.
• Based on the scheduling decision of BT and DFST, the conclu-

sion from Fig. 5b is that these techniques did not make any
VM changes as over-provisioning is sufficient to cope with
the increased need for computing power in the changed
service and downstream services. OT needs to make some
VM changes as it needs to provision VM(s) with suitable
computing power to handle the change request efficiently
while maintain minimal execution cost.
• From Fig. 6b, Both BT and DFST are unable to deprovision

VM(s) with decrease change request. This is because the

360 M. Barika, S. Garg and R. Ranjan / Future Generation Computer Systems 112 (2020) 348–361

scheduling decision of these techniques is based on provi-
sioning VMs with high-medium to high computing power,
so that when there is no substantial decrease in data speed
or MIPS value, they cannot avoid over-provisioning and thus
additional computing resources are wasted. Moreover, it
is worth noting that by having various VM types in the
generated scheduling plan as an OT does, the opportunity
becomes very high to find suitable VM(s) to deprovision
when any change happens in output stream velocity, lead-
ing to avoidance of over-provisioning and reduce the total
execution cost.
• From Fig. 7b, it is clear that the results of OT are close

to BT and DFST in most cases. This is because adding a
new service that outputs to sink has no effect on the other
services and it only requires provisioning VM(s) to deploy
this service. Thus, OT is able to provision suitable VM(s)
while maintaining minimal number of changes. On the other
hand, when the runtime change has effect on the other ser-
vices (i.e. downstream services), OT needs to make more VM
changes in comparison with BT and DFST (see Fig. 8b) in or-
der to maintain lower execution cost. Moreover, OT in some
cases (such as with Epigenomics_24, CyberShake_30 and Cy-
berShake_100) achieved results similar to those achieved by
BT and DFST, as the marginal over-provisioning is sufficient
to handle the consequence of adding a new service on the
downstream services.
• From Fig. 9b, the straightforward conclusion is that OT de-

provisions more VMs when the service is deleted as it gener-
ally provisioned more VMs at deployment time to maintain
execution cost to be as low as possible by finding near-
optimal/optimal scheduling plan. Moreover, we can notice
that the highest number of changes is achieved with Inspi-
ral_50 as this workflow processes a large amount of data
streams and then requires large computation power, so that
OT at deployment time provisioned more VMs to achieve the
required computing powers and deprovision them when the
service is deleted.
• In terms of request execution time, this time includes com-

putational time required by scheduling techniques to amend
the current scheduling plan, VM boot time when more com-
puting power is needed and the time for performing the
updates such as updating services, stream dependencies
and parent–child relationships. For computational time, all
techniques achieved negligible time to amend the current
scheduling plan since their scheduling decisions were made
using a heuristic approach. Also, the time required for per-
forming the update is also negligible. Based on that, the
request execution time will remain negligible when the
technique only needs to deprovision VM(s) to respond to
runtime change (such as Dynamic Form 4 Case 1). Request
execution time will be increased when there is a need to
provision new VMs. This time is mainly determined by the
maximum VM boot time among the provisioned VMs. DFST
incurred constant time (approx. 35 simulation time) since
this technique provisions the same type of VM all the time.
BT incurred on average 36 simulation time, while OT in-
curred on average 40 simulation time. Accordingly, there is
no significant difference in request execution time between
those techniques.

7. Conclusion and future work

In this paper we investigated dynamic scheduling problems
of stream workflow in the cloud under different dynamic forms
including fluctuations of input data rate, the change of workflow

structure and the change of real-time data processing require-
ment. To enable the full dynamic support for in-progress work-
flow, we proposed a scalable and pluggable dynamic scheduling
technique that allows the user to plug her/his algorithms and
methods in place to respond to runtime changes with the focus
on scheduling decisions rather than the complexity of dealing
with these changes. We also presented three different plug-in
techniques that can be used to handle the aforementioned run-
time changes, so the user can use these built-in techniques. These
techniques vary based on their complexity, from simple heuristic
to multi-heuristic algorithm to tackle different dynamic forms
of stream workflow. The quality of solutions generated by those
techniques are evaluated to determine the most efficient tech-
nique. The experimental results showed that OT outperformed BT
and DFST in quality of solution evaluations.

For future studies, we would like to extend our pluggable
scheduling technique with resource fault tolerance capability. We
are also interested in extending our proposed technique with
intelligence capability by integrating multiple plug-in algorithms
and methods, so that the improved technique can make intelli-
gent decisions about choosing and changing the plug-in algorithm
on the fly based on application monitoring and change analysis.

CRediT authorship contribution statement

Mutaz Barika: Conceptualization, Methodology, Software, In-
vestigation, Writing - review & editing. Saurabh Garg: Supervi-
sion, Writing - review & editing. Rajiv Ranjan: Writing - review
& editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgement

This research is supported by an Australian Government Re-
search Training Program (RTP) Scholarship.

References

[1] I. Lee, The internet of things for enterprises: An ecosystem, architecture,
and iot service business model, Internet Things (2019) 100078.

[2] R. Woodhead, et al., Digital construction: From point solutions to iot
ecosystem, Autom. Constr. 93 (2018) 35–46.

[3] C. Alexopoulos, et al., A taxonomy of smart cities initiatives, in: 12th
International Conference on Theory and Practice of Electronic Governance,
ACM, 2019, pp. 281–290.

[4] F. Caro, R. Sadr, The internet of things (iot) in retail: Bridging supply and
demand, Bus. Horiz. 62 (1) (2019) 47–54.

[5] Y. Liu, et al., Runtime-aware adaptive scheduling in stream processing,
Concurr. Comput.: Pract. Exper. 28 (14) (2016) 3830–3843.

[6] X. Liu, R. Buyya, D-storm: Dynamic resource-efficient scheduling of stream
processing applications, in: 2017 IEEE 23rd International Conference on
Parallel and Distributed Systems (ICPADS), IEEE, 2017, pp. 485–492.

[7] R. Kombi, et al., DABS-storm: A data-aware approach for elastic stream
processing, in: Transactions on Large-Scale Data-and Knowledge-Centered
Systems XL, Springer, 2019, pp. 58–93.

[8] D. Sun, R. Huang, A stable online scheduling strategy for real-time
stream computing over fluctuating big data streams, IEEE Access 4 (2016)
8593–8607.

[9] D. Sun, et al., Rethinking elastic online scheduling of big data streaming
applications over high-velocity continuous data streams, J. Supercomput.
74 (2) (2018) 615–636.

[10] V. Vavilapall, et al., Apache hadoop yarn: Yet another resource negotiator,
in: 4th Annual Symposium on Cloud Computing, ACM, 2013, pp. 1–16.

[11] B. Hindman, et al., Mesos: A platform for fine-grained resource sharing in
the data center, in: NSDI, Vol. 11.

http://refhub.elsevier.com/S0167-739X(20)30278-8/sb1
http://refhub.elsevier.com/S0167-739X(20)30278-8/sb1
http://refhub.elsevier.com/S0167-739X(20)30278-8/sb1
http://refhub.elsevier.com/S0167-739X(20)30278-8/sb2
http://refhub.elsevier.com/S0167-739X(20)30278-8/sb2
http://refhub.elsevier.com/S0167-739X(20)30278-8/sb2
http://refhub.elsevier.com/S0167-739X(20)30278-8/sb3
http://refhub.elsevier.com/S0167-739X(20)30278-8/sb3
http://refhub.elsevier.com/S0167-739X(20)30278-8/sb3
http://refhub.elsevier.com/S0167-739X(20)30278-8/sb3
http://refhub.elsevier.com/S0167-739X(20)30278-8/sb3
http://refhub.elsevier.com/S0167-739X(20)30278-8/sb4
http://refhub.elsevier.com/S0167-739X(20)30278-8/sb4
http://refhub.elsevier.com/S0167-739X(20)30278-8/sb4
http://refhub.elsevier.com/S0167-739X(20)30278-8/sb5
http://refhub.elsevier.com/S0167-739X(20)30278-8/sb5
http://refhub.elsevier.com/S0167-739X(20)30278-8/sb5
http://refhub.elsevier.com/S0167-739X(20)30278-8/sb6
http://refhub.elsevier.com/S0167-739X(20)30278-8/sb6
http://refhub.elsevier.com/S0167-739X(20)30278-8/sb6
http://refhub.elsevier.com/S0167-739X(20)30278-8/sb6
http://refhub.elsevier.com/S0167-739X(20)30278-8/sb6
http://refhub.elsevier.com/S0167-739X(20)30278-8/sb7
http://refhub.elsevier.com/S0167-739X(20)30278-8/sb7
http://refhub.elsevier.com/S0167-739X(20)30278-8/sb7
http://refhub.elsevier.com/S0167-739X(20)30278-8/sb7
http://refhub.elsevier.com/S0167-739X(20)30278-8/sb7
http://refhub.elsevier.com/S0167-739X(20)30278-8/sb8
http://refhub.elsevier.com/S0167-739X(20)30278-8/sb8
http://refhub.elsevier.com/S0167-739X(20)30278-8/sb8
http://refhub.elsevier.com/S0167-739X(20)30278-8/sb8
http://refhub.elsevier.com/S0167-739X(20)30278-8/sb8
http://refhub.elsevier.com/S0167-739X(20)30278-8/sb9
http://refhub.elsevier.com/S0167-739X(20)30278-8/sb9
http://refhub.elsevier.com/S0167-739X(20)30278-8/sb9
http://refhub.elsevier.com/S0167-739X(20)30278-8/sb9
http://refhub.elsevier.com/S0167-739X(20)30278-8/sb9
http://refhub.elsevier.com/S0167-739X(20)30278-8/sb10
http://refhub.elsevier.com/S0167-739X(20)30278-8/sb10
http://refhub.elsevier.com/S0167-739X(20)30278-8/sb10

M. Barika, S. Garg and R. Ranjan / Future Generation Computer Systems 112 (2020) 348–361 361

[12] F. Liu, et al., Traversing knowledge networks: An algorithmic historiogra-
phy of extant literature on the internet of things (iot), J. Manage. Anal. 4
(1) (2017) 3–34.

[13] A. Al-Fuqaha, et al., Internet of things: A survey on enabling technologies,
protocols, and applications, IEEE Commun. Surv. Tutor. 17 (4) (2015)
2347–2376.

[14] S. Li, et al., The internet of things: a survey, Inf. Syst. Front. 17 (2) (2015)
243–259.

[15] S. Li, et al., 5g internet of things: A survey, J. Ind. Inf. Integr. 10 (2018)
1–9.

[16] P.K. Sharma, et al., EH-HL: effective communication model by integrated
EH-WSN and hybrid lifi/wifi for iot, IEEE Internet Things J. 5 (3) (2018)
1719–1726.

[17] C. Zhang, Y. Chen, A review of research relevant to the emerging industry
trends: Industry 4.0, IoT, Block Chain, and Business Analytics, J. Ind. Integr.
Manage. 5 (1), 165–180.

[18] J.H. Kim, A review of cyber-physical system research relevant to the
emerging it trends: industry 4.0, iot, big data, and cloud computing, J.
Ind. Integr. Manage. 2 (03) (2017) 1750011.

[19] C. Wang, et al., Iot and cloud computing in automation of assembly
modeling systems, IEEE Trans. Ind. Inf. 10 (2) (2014) 1426–1434.

[20] C. Xie, et al., Linked semantic model for information resource service
toward cloud manufacturing, IEEE Trans. Ind. Inf. 13 (6) (2017) 3338–3349.

[21] Z. Bi, D. Cochran, Big data analytics with applications, J. Manage. Anal. 1
(4) (2014) 249–265.

[22] L. Jiang, et al., An iot-oriented data storage framework in cloud computing
platform, IEEE Trans. Ind. Inf. 10 (2) (2014) 1443–1451.

[23] X. Zheng, et al., Cloudqual: A quality model for cloud services, IEEE Trans.
Ind. Inform. 10 (2) (2014) 1527–1536.

[24] X. Zheng, et al., Cloud service negotiation in internet of things en-
vironment: A mixed approach, IEEE Trans. Ind. Inf. 10 (2) (2014)
1506–1515.

[25] J. Dean, S. Ghemawat, Mapreduce: simplified data processing on large
clusters, Commun. ACM 51 (1) (2008) 107–113.

[26] M. Hirzel, et al., IBM streams processing language: Analyzing big data in
motion, IBM J. Res. Dev. 57 (3/4) (2013).

[27] H. Hu, et al., Toward scalable systems for big data analytics: A technology
tutorial, IEEE Access 2 (2014) 652–687.

[28] V. Cardellini, et al., Optimal operator replication and placement for dis-
tributed stream processing systems, ACM SIGMETRICS Perform. Eval. Rev.
44 (4) (2017) 11–22.

[29] M. Barika, et al., Scheduling algorithms for efficient execution of stream
workflow applications in multicloud environments, IEEE Trans. Serv.
Comput. (2019) (early access).

[30] M. Barika, et al., Adaptive scheduling for efficient execution of dynamic
stream workflows, arXiv preprint arXiv:1912.08397.

[31] C. Chen, et al., Connected vehicular transportation: Data analytics and
traffic-dependent networking, IEEE Veh. Technol. Mag. 12 (3) (2017)
42–54.

[32] M. Barika, et al., Iotsim-stream: Modelling stream graph application in
cloud simulation, Future Gener. Comput. Syst. 99 (2019) 86–105.

[33] S. Rizou, et al., Solving the multi-operator placement problem in large-
scale operator networks, in: 19th International Conference on Computer
Communications and Networks, 2010, pp. 1–6.

[34] L. Fischer, B. Abraham, Workload scheduling in distributed stream pro-
cessors using graph partitioning, in: IEEE International Conference on Big
Data (Big Data), 2015, pp. 124–133.

Mutaz Barika has obtained his BSc. and MSc. in Com-
puter Science from University of Petra and King Saud
University respectively. He is currently a Ph.D. Candi-
date at University of Tasmania, Australia. He has been
awarded an Australian Government Research Training
Program (RTP) Scholarship for supporting his studies.
His current research interests include Big Data, Big Data
Workflow, Cloud Computing, IoT and Data Security.

Saurabh Garg is a Senior Lecturer at the University
of Tasmania, Hobart, Tasmania. He is one of the few
Ph.D. students who completed in less than three years
from the University of Melbourne in 010. He has
gained about three years of experience in the Industrial
Research while working at IBM Research Australia and
India. His area of interests are Distributed Computing,
Cloud Computing, HPC, IOT, BigData analytics, and
education analytics.

Rajiv Ranjan is a Chair Professor in Computing Sci-
ence and Internet of Things at Newcastle University,
United Kingdom. He has received two IEEE research
excellence awards 018 IEEE TCCPS Early Career Award
and 016IEEE TCSC Award for Excellence in Scalable
Computing), which recognised his leading expertise
in algorithms, resource management models and dis-
tributed system architectures for Cloud computing,
Internet of Things (IoT) and Data Science. Another tes-
timonial of his international research leadership is his
appointment by IEEE Computer Society as the Advisory

Board Chair and Lead Editor 01 019) for the Blue Skies department of IEEE Cloud
Computing. In this appointment, Prof Ranjan’s main role is to develop a vision
for the research community to guide future research at the intersection of Cloud
computing, IoT and Data Science. Additionally, he also serves on the editorial
boards of top quality international journals including IEEE Transactions on
Cloud computing, ACM Transactions on Internet of Things, IEEE Transactions on
Computers 014 016), IEEE Cloud Computing, Springer Computing, The Computer
Journal (Oxford University Press), among many others. His research outcomes
include 40+ academic peerreviewed articles and multiple opensource software
toolkits-stemming from funded research projects worth over $12 Million AUD
(£6 Million GBP). He is one of the highly cited authors (top 0.05%) in computer
science and software engineering worldwide (h-index=46, g-index= 121, and
12700+ google scholar citations).

http://refhub.elsevier.com/S0167-739X(20)30278-8/sb12
http://refhub.elsevier.com/S0167-739X(20)30278-8/sb12
http://refhub.elsevier.com/S0167-739X(20)30278-8/sb12
http://refhub.elsevier.com/S0167-739X(20)30278-8/sb12
http://refhub.elsevier.com/S0167-739X(20)30278-8/sb12
http://refhub.elsevier.com/S0167-739X(20)30278-8/sb13
http://refhub.elsevier.com/S0167-739X(20)30278-8/sb13
http://refhub.elsevier.com/S0167-739X(20)30278-8/sb13
http://refhub.elsevier.com/S0167-739X(20)30278-8/sb13
http://refhub.elsevier.com/S0167-739X(20)30278-8/sb13
http://refhub.elsevier.com/S0167-739X(20)30278-8/sb14
http://refhub.elsevier.com/S0167-739X(20)30278-8/sb14
http://refhub.elsevier.com/S0167-739X(20)30278-8/sb14
http://refhub.elsevier.com/S0167-739X(20)30278-8/sb15
http://refhub.elsevier.com/S0167-739X(20)30278-8/sb15
http://refhub.elsevier.com/S0167-739X(20)30278-8/sb15
http://refhub.elsevier.com/S0167-739X(20)30278-8/sb16
http://refhub.elsevier.com/S0167-739X(20)30278-8/sb16
http://refhub.elsevier.com/S0167-739X(20)30278-8/sb16
http://refhub.elsevier.com/S0167-739X(20)30278-8/sb16
http://refhub.elsevier.com/S0167-739X(20)30278-8/sb16
http://refhub.elsevier.com/S0167-739X(20)30278-8/sb18
http://refhub.elsevier.com/S0167-739X(20)30278-8/sb18
http://refhub.elsevier.com/S0167-739X(20)30278-8/sb18
http://refhub.elsevier.com/S0167-739X(20)30278-8/sb18
http://refhub.elsevier.com/S0167-739X(20)30278-8/sb18
http://refhub.elsevier.com/S0167-739X(20)30278-8/sb19
http://refhub.elsevier.com/S0167-739X(20)30278-8/sb19
http://refhub.elsevier.com/S0167-739X(20)30278-8/sb19
http://refhub.elsevier.com/S0167-739X(20)30278-8/sb20
http://refhub.elsevier.com/S0167-739X(20)30278-8/sb20
http://refhub.elsevier.com/S0167-739X(20)30278-8/sb20
http://refhub.elsevier.com/S0167-739X(20)30278-8/sb21
http://refhub.elsevier.com/S0167-739X(20)30278-8/sb21
http://refhub.elsevier.com/S0167-739X(20)30278-8/sb21
http://refhub.elsevier.com/S0167-739X(20)30278-8/sb22
http://refhub.elsevier.com/S0167-739X(20)30278-8/sb22
http://refhub.elsevier.com/S0167-739X(20)30278-8/sb22
http://refhub.elsevier.com/S0167-739X(20)30278-8/sb23
http://refhub.elsevier.com/S0167-739X(20)30278-8/sb23
http://refhub.elsevier.com/S0167-739X(20)30278-8/sb23
http://refhub.elsevier.com/S0167-739X(20)30278-8/sb24
http://refhub.elsevier.com/S0167-739X(20)30278-8/sb24
http://refhub.elsevier.com/S0167-739X(20)30278-8/sb24
http://refhub.elsevier.com/S0167-739X(20)30278-8/sb24
http://refhub.elsevier.com/S0167-739X(20)30278-8/sb24
http://refhub.elsevier.com/S0167-739X(20)30278-8/sb25
http://refhub.elsevier.com/S0167-739X(20)30278-8/sb25
http://refhub.elsevier.com/S0167-739X(20)30278-8/sb25
http://refhub.elsevier.com/S0167-739X(20)30278-8/sb26
http://refhub.elsevier.com/S0167-739X(20)30278-8/sb26
http://refhub.elsevier.com/S0167-739X(20)30278-8/sb26
http://refhub.elsevier.com/S0167-739X(20)30278-8/sb27
http://refhub.elsevier.com/S0167-739X(20)30278-8/sb27
http://refhub.elsevier.com/S0167-739X(20)30278-8/sb27
http://refhub.elsevier.com/S0167-739X(20)30278-8/sb28
http://refhub.elsevier.com/S0167-739X(20)30278-8/sb28
http://refhub.elsevier.com/S0167-739X(20)30278-8/sb28
http://refhub.elsevier.com/S0167-739X(20)30278-8/sb28
http://refhub.elsevier.com/S0167-739X(20)30278-8/sb28
http://refhub.elsevier.com/S0167-739X(20)30278-8/sb29
http://refhub.elsevier.com/S0167-739X(20)30278-8/sb29
http://refhub.elsevier.com/S0167-739X(20)30278-8/sb29
http://refhub.elsevier.com/S0167-739X(20)30278-8/sb29
http://refhub.elsevier.com/S0167-739X(20)30278-8/sb29
http://arxiv.org/abs/1912.08397
http://refhub.elsevier.com/S0167-739X(20)30278-8/sb31
http://refhub.elsevier.com/S0167-739X(20)30278-8/sb31
http://refhub.elsevier.com/S0167-739X(20)30278-8/sb31
http://refhub.elsevier.com/S0167-739X(20)30278-8/sb31
http://refhub.elsevier.com/S0167-739X(20)30278-8/sb31
http://refhub.elsevier.com/S0167-739X(20)30278-8/sb32
http://refhub.elsevier.com/S0167-739X(20)30278-8/sb32
http://refhub.elsevier.com/S0167-739X(20)30278-8/sb32
http://refhub.elsevier.com/S0167-739X(20)30278-8/sb33
http://refhub.elsevier.com/S0167-739X(20)30278-8/sb33
http://refhub.elsevier.com/S0167-739X(20)30278-8/sb33
http://refhub.elsevier.com/S0167-739X(20)30278-8/sb33
http://refhub.elsevier.com/S0167-739X(20)30278-8/sb33
http://refhub.elsevier.com/S0167-739X(20)30278-8/sb34
http://refhub.elsevier.com/S0167-739X(20)30278-8/sb34
http://refhub.elsevier.com/S0167-739X(20)30278-8/sb34
http://refhub.elsevier.com/S0167-739X(20)30278-8/sb34
http://refhub.elsevier.com/S0167-739X(20)30278-8/sb34

	Cost effective stream workflow scheduling to handle application structural changes
	Introduction
	Related work
	Problem definition and modelling
	Dynamic Form 1: Change the streaming data velocity
	Dynamic Form 2: Change of existing service
	Dynamic Form 3: Add a new service
	Dynamic Form 4: Delete an existing service

	Proposed pluggable scheduling technique
	Experiment setup and configuration
	Workflow application and simulation environment
	Configuration changes in service data processing requirement
	Configuration changes in service output data rate
	Experimental scenarios
	Plugin scheduling algorithms and techniques

	Experimental results
	Conclusion and future work
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgement
	References

