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a b s t r a c t

Software-defined networking (SDN) has evolved as an approach that allows network administrators to
program and initialize, control, change and manage networking components (mostly at L2-L3 layers) of
the OSI model. SDN is designed to address the programmability shortcomings of traditional networking
architectures commonly used in cloud datacenters (CDC). Deployment of SDN solutions have demon-
strated significant improvements in areas such as flow optimization and bandwidth allocation in a CDC.
However, the benefits are significantly less explored when considering Software-Defined Wide Area
Networks (SD-WAN) architectures in the context of delivering solutions by networking multiple CDCs.
To support the testing and bench-marking of data-driven applications that rely on data ingestion and
processing (e.g., Smart Energy Cloud, Content Delivery Networks) across multiple cloud datacenters,
this paper presents the simulator, IoTSim-SDWAN. To the best of our knowledge, IoTSim-SDWAN is the
first simulator that facilitates the modeling, simulating, and evaluating of new algorithms, policies, and
designs in the context of SD-WAN ecosystems and SDN-enabled multiple cloud datacenters. Finally,
IoTSim-SDWAN simulator is evaluated for network performance and energy to illustrate the difference
between classical WAN and SD-WAN environments. The obtained results show that SD-WAN surpasses
the classical WAN in terms of accelerating traffic flows and reducing power consumption.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

Proliferation of cloud computing has revolutionized hosting
and delivery of Internet-based application services that rely on
managing real-time streaming data (e.g., smart energy cloud
solutions based on smart meters connected to millions of house-
holds). As streaming data sources (e.g., smart meters, smart
thermostats, sensors) are geographically distributed, the network
quality of service (QoS) (data transfer latency) for data ingestion
and processing varies. This variation is dependent upon the loca-
tion of cloud datacenters CDCs in relation to the varied locations
of input data streams. The main reason for variable network QoS
across CDCs is the underlying TCP/IP based wide area networking
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(WAN) architectures that satisfy networking requirements across
the CDC/sensor infrastructure.

WANs are the core communication infrastructures that in-
terconnect geographically distributed systems and devices into
a single network [29]. Although traditional WANs have been
developed to interconnect distributed systems, there are some
limitations with respect to lack of adaptive routing behavior,
unbalanced load distribution, requirement of complex network
protocols, lack of prioritization and the need for specialist hard-
ware. Due to these drawbacks, the management and deployment
of traditional WANs in the context of data-driven applications
is limited. For a complete distributed CDC contected solution
affording resource management and efficiency within modern
applications (e.g., smart energy clouds, content delivery network,
distributed gaming), the WAN needs to be part of the whole
adaptable SDN solution.

Recently, Software-Defined Wide Area Network (SD-WAN) has
emerged as a promising solution to alleviate issues that inhibit
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the use of static WAN deployment for smart applications de-
ployment [8,11]. SD-WAN originates from the Software-Defined
Network (SDN) paradigm, proposing SDN’s mechanisms of man-
aging, operating, automating, and simplifying networks within a
WAN context [2]. The concept of SDN, in terms of decoupling
the control and data planes, is applied to SD-WAN ecosystem
in addition to leveraging software-based centralized controllers.
SDN is primarily responsible for controlling and managing the in-
ternal network operations of CDCs and local area networks (LANs)
whereas SD-WAN moves the focus to also include managing the
interconnecting applications spanning different CDCs.

While significant research has been achieved in proposing
and evaluating solutions for a SDN located in a CDC, there is a
need to address the shortfall in proposing and evaluating new
SD-WAN solutions. A way of determining the performance of
SD-WAN solutions can be to monitor and evaluate the use of real-
world SD-WAN infrastructures. However, this method of studying
and analyzing any proposed SD-WAN solutions has a number
of limitations: (1) requires access to real-world SD-WAN in-
frastructures that may be propriety and out of the reach of
academic researchers, (2) observed results are error prone due
to the dynamic and changing nature of SD-WAN, (3) implement-
ing systems simply determine suitability is time-consuming and
requires significant human resources, (4) real-world SD-WAN
infrastructures suffer from scalability and flexibility issues in that
they are application domain specific.

To better understand the difficulty of creating, evaluating and
benchmarking performance using a bespoke testbed for data-
driven multi-cloud applications, consider the example of a smart
energy cloud. It is well understood and documented that energy
companies collect significant amounts of data, possibly beyond
the amount that they can manage and analyze. The problem of
Big Data arises for these companies due to large scale deployment
of smart meters and smart grid devices (e.g. transformer sensors,
circuit breaker sensors, voltage regulator sensors, and other assets
that have the ability to communicate their status back to the pri-
vate/public CDC-based control center in real-time). Considering
the sheer number of configurable elements within this scenario,
there is no real practical solution to deriving optimal parameter
values apart from modeling through industry recognized bench-
marks. Even if such a model yields non-optimal results, sufficient
information will provision the engineer with a clearer under-
standing of network QoS requirements to achieve appropriate
Demand Response (DR) latency in the presence of data-streams
exhibiting volatile behaviors. Utilizing simulations and associated
models allows researchers and engineers to rapidly investigate,
evaluate, and optimize their proposed solutions in a cost-effective
and time-saving manner. This approach has been demonstrated
successfully in many application domains set
within a context of a distributed system. In the last few years,
there are many simulation and emulation tools that have been
developed to aid researchers and developers to evaluate new
algorithms for the management of different computing resources
and systems in a controllable and repeatable manner, such as
CloudSimSDN [25], Mininet [16], GreenCloud [14], and Network-
CloudSim [7]. However, these tools lack the modeling and sim-
ulation capability of modeling multiple SDN-enabled datacenters
running within SD-WAN environments. Contributing towards the
process of SD-WAN investigation and development, we present
a new simulation tool: IoTSim-SDWAN (Software-Defined Wide
Area Network Simulator). This is a stand-alone Java-based tool
that simulates SD-WAN ecosystems and SDN-enabled multi-cloud
environments in a discrete-event mechanism. To the best of our
knowledge, IoTSim-SDWAN is the first simulator that facilitates
the modeling, simulating, and evaluating of new algorithms,
policies, and associated design choices in the context of SD-WAN
ecosystems and SDN-enabled multi-cloud datacenters.

We empirically validate the models, formulas, and framework
of IoTSim-SDWAN using real world network data. Our validation
objective is to illustrate the level of accuracy of bandwidth, net-
work transmission time, TCP/UDP outputs, and overall network
delays. The validation is based on three different types of exper-
iments: Iperf3 TCP, Iperf3 UDP, and transferring real data over
Ubuntu secure Shell (SSH). The validation results demonstrate
that IoTSim-SDWAN is capable of obtaining a high degree of
accuracy compared with real networks. Furthermore, we design
two experiments to demonstrate the practicality and capability
of IoTSim-SDWAN. The assumption is that classical WAN and
cloud datacenters enable gateways and switches to have full con-
trol of their network decisions while SD-WAN and SDN-enabled
environments enable SD-WAN and SDN controllers to have full
network control to dynamically instruct gateways and switches in
real-time. We therefore seek an evaluation objective to compare
the network performance and power consumption of SD-WAN
and classical WAN. The obtained results show that SD-WAN sur-
passes the classical WAN in terms of accelerating traffic flows and
reducing power consumption.

In summary, the main contributions of this paper are as fol-
lows:

• Proposing a novel framework that simulates and models the
SD-WAN and SDN-enabled datacenters
• Accurate modeling of TCP and UDP protocols in addition to

network delays in IoTSim-SDWAN
• Proposing an SD-WAN routing technique to dynamically

compute the best route for every network flow together
with proposing a coordination scheme for SD-WAN and SDN
controllers
• Empirically validating IoTSim-SDWAN with a real-world

network environment

The rest of this paper is divided into several sections as
follows. Section 2 discusses design criteria and motivation. The
design and modeling capabilities of IoTSim-SDWAN is presented
in Section 3. Section 4 describes the empirical validation and
accuracy of IoTSim-SDWAN. Experiments are presented in Sec-
tion 5 to show how IoTSim-SDWAN can contribute to multi-CDC
design issues for smart applications. Section 6 illustrates the
most relevent related work. Section 7 concludes the paper and
highlights our future plans.

2. Background

The (classical) WAN is a core communications layer and pro-
vides the fundamental building block for enabling secure and
salable shared resource access across geographically dispersed
distributed systems. However, the main drawback of a WAN is
that it typically exhibits under resource utilization (30%–40% [11]).
Losing 60% of network utilization due to the static nature of
WAN network management (inability to manage utilization in
varying traffic flows) is not acceptable for modern, resource
aware, smart digital infrastructures. To improve today’s WANs,
new software based approaches (SD-WAN) are adopted by com-
mercial and state organizations. The earliest integration of an
SD-WAN ecosystem for improved network utilization was by
Microsoft [8] in 2013 followed by Google in 2014 [11]. Both
Microsoft and Google leverage SD-WAN solutions to accelerate
the process of copying large amount of data across, and between,
datacenters while improving network performance, coordination,
traffic engineering and overall resource optimizations.

Fig. 1 illustrates the key difference between WAN and SD-
WAN environments. In the classical WAN, a gateway contains
both data and control planes, whereas an SD-WAN separates
control planes from gateways to a centralized SD-WAN controller.
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Fig. 1. Key difference between classical WAN and SD-WAN networks.

The plane maintains routing information while the control plane
is responsible for making all network decisions and providing the
data plane with routing information. From Fig. 1, we can clearly
identify that the SD-WAN controller oversees and manages the
whole network. This results in cohesive global network decisions
made with awareness of current (and legacy) traffic issues. The
SD-WAN is also capable of enforcing a new network policy/QoS
on the fly, something that a classical WAN may never achieve due
to its static nature. An SD-WAN is also capable of load balancing
the network in a global sense, by directing data flows across
the least congested routes of a network. Such traffic engineering
techniques improve network transmission time and the QoS of
traffic flow (including improving utilization of resources).

A simplified view of the layered architecture of distributed
enterprise ecosystems that utilize an SD-WAN is highlighted in
Fig. 2. Applications can directly leverage SD-WAN capabilities
to better deliver services. For example, multimedia providers
can use an SD-WAN to efficiently interconnect their distributed
datacenters to enable optimized delivering of geographic aware
streamed videos to customers. This provides improved customer
satisfaction (e.g. less transmission time), reduces operational costs
(e.g. optimum average network utilization), and efficiently man-
ages the entire network infrastructure (e.g. end-to-end view of
per-flow performance).

A SD-WAN can be deployed in a variety of ways. For ex-
ample, an enterprise can leverage SD-WAN across global pri-
vate networks (e.g. Aryaka [3], Silver-Peak [19]). Such enterprises
may improve user experience, such as prioritizing network traffic
based on user’s demands. Another SD-WAN deployment option
is to allow global brands (e.g. Google [11]) to manage their own
resources in the context of mass date migration and storage
requirements. The relation between enterprise ecosystems and
SD-WAN is demonstrated in the following layers:

• Data source/sink maintains various devices that generate and
receive data. The devices include, but are not limited to, IoT
devices (e.g. smart meters, sensing devices), and computing
devices (laptops, Raspberry Pi). These devices can transfer
data to the respective datacenters while the datacenters can
instruct and send data to devices. For devices to access a
SD-WAN, they must be connected to their nearest network
gateways.
• SD-WAN provides a two-way approach of deployment and

communication. The first enables datacenter-to-datacenter
(DC-to-DC) and assumes responsibility for exchanging large
amounts of data across geographically dispersed datacen-
ters. Secondly, user-to-datacenter (user-to-DC) connects end
users and datacenters. Both types require different

management and policies for defining and modifying an
SD-WAN in real-time based on changing traffic flow require-
ments. The current stage of our work presented in this paper
(IoTSim-SDWAN) focuses on the modeling of DC-to-DC.
• Infrastructure consists of datacenter and SD-WAN hardware

supporting requirements. Every datacenter contains storage,
computing, and networking equipment in addition to the
deployment of SDN controller(s) for managing the inter-
nal network. SD-WAN requires networking equipment and
SD-WAN controller(s) for managing the network between
distributed datacenters in addition to end users.
• Management provides the ability to control, configure, and

program the resources of datacenters and SD-WAN. This
enables every datacenter to enforce different policies on
applications, such as priority and task selection. This also
allows every datacenter to program and monitor its inter-
nal network through the use of an SDN. The management
layer also offers features to an SD-WAN for controlling,
programming, and reshaping SD-WAN network traffic.
• Application facilitates the interactions with different type

of services and applications. Every enterprise requires soft-
ware enabled services to reinforce efficiency and productiv-
ity. This layer provides an abstraction from the underlying
layers, allowing enterprises to focus on the development
and deployment of efficient applications and services while
maintaining minimal knowledge of the underlying layers.

IoTSim-SDWAN is based on the design criteria of the above
layers. The current stage of IoTSim-SDWAN satisfies the require-
ment, design and implantation of the three layers: SD-WAN,
infrastructure, and management. IoTSim-SDWAN also supports a
generic design for the application layer where the tools support
users in designing and implementing the relations and workflows
of their applications. For example, implementing the behaviors
and interactions of web applications according to a given web
architecture (e.g. middleware systems, databases). The modeling
approach of IoTSim-SDWAN is generic and flexible where any
type of datacenter and SD-WAN topology can be simulated. We
support the modeling and evaluation of network performance
and energy consumption.

3. Design of IoTSim-SDWAN

This section describes the model and framework designs of
IoTSim-SDWAN. Section 3.1 illustrates various factors that af-
fect network performance, for example, the impact of TCP/UDP
protocols and delays produced by different approaches. We math-
ematically model the behavior, relationships, and variables of
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Fig. 2. Architecture of distributed enterprise ecosystems and SD-WAN.

SD-WAN in Section 3.2. Section 3.3 demonstrates the network
modeling of SD-WAN and classical WAN based on graph theory
along with presenting our proposed Shortest Path Map Based
(SPMB) routing algorithm and also presents our proposed coor-
dination scheme for SD-WAN and SDN controllers. Section 3.4
illustrates the system structure overview and physical properties
of IoTSim-SDWAN and also illustrates the interactions among the
components of IoTSim-SDWAN in a simplified form.

3.1. Considerations for performance modeling

End-to-end network performance between endpoints depend
on many internal structures of applications, systems, and net-
works. Even with two directly connected nodes, theoretical net-
work measurements may not achieve the same values as practical
network measurements. The dynamic changing status and the
underlying capabilities of such structures are hard to determine.
However, we attempt to list and illustrate the factors that play
important roles in network performance obtained from our real
network observations. Such factors are captured and modeled in
IoTSim-SDWAN.

In Fig. 3, a conceptual network model (known as a TCP/IP
model [15]) is presented to illustrate how data is being trans-
ferred from a sender to a receiver. Each layer can affect the
performance of data transmission in different ways. Each layer
appends a header or footer with the passing data for identifi-
cation, flow control and error control purposes. Based on the
underlying protocols, every layer ensures that the data size does
not exceed its total allowed size; otherwise, the data is split into a
number of smaller packets/frames with each packet/frame tagged

with a new header. Such techniques increase the data size which
results in longer transmission time.

Fig. 4 shows the total delay introduced when transmitting data
in a simplex communication mode (one-way). The main delays
can be characterized into processing, queuing, transmission, and
propagation. The processing delay differs from one node to an-
other. For example, a sender’s CPU needs to acquire data from
a hard drive (first delay), apply some operations on the data
(second delay), and store the data in memory (third delay). A
traditional switch has different processing delays where it reads
the headers of incoming packets and finds an output port/link,
subject to the time taken for searching and finding a record in its
database table that matches the header’s details. In case of SD-
WAN and SDN-enabled mode, most of network processing delays
are delegated to an SD-WAN and SDN controller.

The queuing delay is the waiting time of each packet before it
is put on a link or processed by a given node. There are many
factors that affect the waiting time, such as available network
bandwidth and a node’s processing capabilities. The transmission
delay is the time taken to place the whole data of a given packet
onto a link. If the packet size originated from the network layer is
larger than a frame maximum size (maximum transmission unit
- MTU) size, the data link layer will split-up/fragment the packet
into multiple frames (described in Section 3.2). Another way to
describe the transmission delay is the total time taken to push all
consecutive bits belonging to a frames of single packet to a given
link. The propagation delay is the time taken to deliver bits of
frames belonging to a given packet between two adjacent nodes
(e.g. sender and switch in Fig. 4). The propagation delay is subject
to the physical length and propagation speed of a given cable.
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Fig. 3. Procedure of data transmission based on the TCP/IP model.

Fig. 4. Overview of network delays.

Network speed is not the only factor that affects the trans-
mission time of given data. There are a number of contributing
factors that are involved in determining the transmission time,
such as the speed of network interface controllers (NICs), allo-
cated memory sizes of senders and receivers, and the hard drive
writing and reading speeds of senders and receivers. Moreover,
applications cannot use a given network separately, they must
somehow share the network according to a given set of policies
(e.g., fair-share, prioritizing). Such sharing techniques affect the
transmission time. Therefore, considering such performance re-
quirements in IoTSim-SDWAN is important to achieve a realistic
network performance as much as is feasible.

3.2. Theoretical model

The transport layer of TCP/IP model (as shown in Fig. 3)
plays a critical role in today’s networks (e.g. SD-WAN, WAN,
datacenter networks, LANs). This layer contains two common
protocols: UDP and TCP. UDP is critical for many today’s appli-
cations (e.g. multimedia) where minimum rate of transmission
time is more important than sending data reliably. On the other
hand, TCP is important for many applications (e.g. e-commerce),
which require improved reliability for transmitting data while
tolerating a degree of delay. In essence, TCP provides a degree
of reliability at the expense of delay while UDP dispenses with
any reliability effort to improve transmission delays which may
result in lost messages (increased error). In this way, UDP is
considered to be faster than TCP protocol as it does not enforce
any overhead mechanism found in TCP (requesting if packets
have arrived and re-sending of lost packets). TCP is often seen as a
streamed interaction using sliding window protocols to improve

reliability whereas UDP is seen as a one-off send without sender
considering any reliability issues.

The packet payload size at the transport layer is subject to the
system and application performance of senders and receivers. The
payload size of every TCP packet is difficult, if not possible, to
accurately quantify on the fly due to consistently changing factors
(e.g. the write speed and allocated size of sender’s memory, the
read speed and allocated size of receiver’s memory). The payload
size is also subject to an advertised TCP sliding window size orig-
inated from the receiver at some point during a given network
communication. There are some techniques that can be used to
increase the window size (a.k.a TCP window scaling [13]) where
receivers can handle more data than the traditional window size
can. A UDP payload size is not restricted where a respective
receiver consistently receives packets with no restrictions on
memory size. If too many UDP packets arrive at a receiver than
the receiver can handle they are simply dropped and forgotten.
For sake of simplicity, we used the concept of averaging to give
an approximation of TCP and UDP payload size, this is left for
users to decide according to their specific application dependent
scenarios.

Table 1 illustrates the symbol used in modeling IoTSim-
SDWAN. Given the data size ds(i) of ith data and an average
packet payload size pls at the transport layer, the total number
of packets pn for the given data is calculated as in Eq. (1). When
TCP/UDP packets are handed to the lower network layer, they
would be encapsulated into IP packets where the IP addresses
of source and destination are stamped. If TCP/UDP packets at the
transport layer are larger than the predefined size of IP packet
at the network layer, they would be broke up into multiple
IP packets. For simplicity, we assume that all packets at the
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Table 1
Modeling notation.
Symbol Description Symbol Description

H Set of all hosts c(i, j) A channel from sender i to receiver j
C Set of all channels tc(n) Total number of channels carried out by nth link
F Set of all flows cbw(i, j) Channel bandwidth between sender i and receiver j
N Set of all networks (datacenters & SD-WAN) lbw(n) Link bandwidth for nth link
pn Total number of packets fn Number of flows between endpoints

ds(i) Data size of ith data f (si, dj) Number of flows between sth application on ith
node and dth application on jth node

pls Average packet payload size fbw Flow bandwidth
hs(p) Header size of every packet fs Total data size of a flow
tph Transport header size d Total network delay

iph Network (IP) header size dp, dq, dt , dp Processing, queuing, transmission,
and propagation delays respectively

ts(p) Total size of each packet td(f ) Total delays of given flow
nf Total number of frames tr(f ) End-to-end transmission time of a flow
mtus Average MTU size tn Routing of traditional networks
tf Size of each frame r(ni, nj) Link connecting node i to node j
dlht (p) Header and footer sizes of the data link layer nc Total number of channels

transport layer are less than or equal to the IP packet size at the
network layer.

pn =
ds(i)
pls

(1)

Each packet at both the transport and network layers must
be tagged with a unique identification header. Eq. (2) is used
to obtain the header size hs(p) of every packet p where tph is
the transport header size and iph is the network (IP) header size.
Eq. (3) is used to determine the total size ts(p) of each packet p
that includes the average packet payload size pls and header size
hs(p)

hs(p) = tph + iph (2)

ts(p) = pls + hs(p),∀p ∈ {1, 2, . . . , pn} (3)

When the network layer passes IP packets to the lower data
link layer, the packet will be encapsulated into a frame. If the IP
packet size is larger than the MTU, the packet will be segmented
into multiple frames according to the maximumMTU size [6]. The
MTU is not always constant due to the nature of networks. To
simplify the MTU size, an average MTU size mtus is used. Eq. (4)
is used to calculate the total number of frames nf that packets
can be fragmented into. The size of each frame tf is computed
using Eq. (5) where dlht (p) is header and footer sizes appended
by the data link layer.

nf =
∑pn

n=1 ts(pn)
mtus

(4)

tf = mtus + dlht (p) (5)

In order to send the data from a sender i to a receiver j, a
channel c(i,j) must be established which traverses throughout
all the underlying nodes of a selected path. Using the concept
of channel makes the network bandwidth management easier
where all hosts H can share the network based on a given traffic
policy (e.g. fair share, prioritizing). The total number of channels
nc in a given SD-WAN and SDN-DC network is determined using
Eq. (6).

nc =
∑
i,j∈H

c(i, j) (6)

Every channel must pass through certain links that connect
senders and receivers. Every link has its own available bandwidth
that constantly changes according to the number of shared chan-
nels. The initial bandwidth size of a given link l is determined

by taking the minimum bandwidth value of its two directly
connected nodes’ network interface cards (NICs). The bandwidth
for each NIC is obtained from a given topology file in a JSON
format (refer to Fig. 9). For every node that has more than one
connected link, it must attach a separate NIC for each link. Every
link can have different numbers of channels. Therefore, Eq. (7) is
used to compute the total number of channels tc(n) carried out
by a given nth link.

tc(n) =
∑
c∈C

l(c) (7)

A network can be congested when the transmission for a set of
packets belonging to a given application/data is not restricted. To
avoid network congestion, we assign bandwidth to every channel
by taking the minimum bandwidth of links that the channel
passes through. Given the link bandwidth lbw(n) for nth link and
the total number of channels tc(n) passing through the nth link,
the channel bandwidth cbw(i, j) between sender i and receiver j is
calculated using Eq. (8).

cbw(i, j) = min
(
lbw(n)
tc(n)

)
(8)

In reality, data transferred via a network can be mapped
into millions of packets. However, having such a packet mod-
eling approach is difficult, if not impossible, due to memory re-
source limitations within a software implemented modeler such
as IoTSim-SDWAN. To reduce the difficulty of network packet
modeling, we use the concept of flow, which is defined as a
stream of packets belonging to a given application represented as
a 4 tuple ID (source application, destination application, source
host, and destination host). For every application between two
endpoints, a new flow f must be established. The number of flows
fn between two endpoints is computed using Eq. (9) where si
is the sth application executing on ith node and dj is the dth
application executing on jth node. Applications represented by
flows share the bandwidth of their assigned channels. We assume
the bandwidth is fairly shared amongst the flows. Given the
channel bandwidth cbw and number of flow fn, Eq. (10) is used
to fairly obtain flow bandwidth fbw . The total data size of a given
flow fs is computed by summing the size of all nf frames where
the size of each frame is considered to be tf as given in Eq. (11).

fn =
∑
f∈F

f (si, dj) (9)

fbw =
cbw
fn

(10)
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fs =
nf∑
j=1

tf (j) (11)

For every frame, there are transit delays encountered, as
shown in Fig. 4. As described earlier in 3.1, the main delays are
processing dp, queuing dq, transmission dt , and propagation dρ .
Such delays must be computed for every frame. Eq. (12) is used
to compute all delays d. Eq. (13) is used to obtain total delays td
for all frames belonging to a given flow f .

d = dp + dq + dt + dρ (12)

td(f ) = nf × d (13)

The SD-WAN and SDN-DC are responsible for tracking the
transmission time of all its applications/flows. In Fig. 5, every
SD-WAN and SDN-DC controller must compute the transmission
time for all of generated flows. For instance, the SDN controller
in datacenter one (datacenter_1) must track all flows going from
and into host one (H1) and host two (H2) up to the core switch
(C1). Every network can have different transmission times for
every flow due to the fact that the network is shared by other
applications. Therefore, the end-to-end transmission time tr of
a given flow f passing through nth network can be computed
by taking the maximum transmission time of the flow in all
networks (SD-WAN and datacenters).

tr(f ) = max
n

(
fs
fbw
+ td(f )

)
(14)

The above equations are implemented in IoTSim-SDWAN. In
the validation Section 4, the equations are filled with numbers
according to our real-world network observations using Wire-
shark [28] and according to TCP/IP predefined header sizes [10].

3.3. Network modeling

An SD-WAN simulator must be sufficiently flexible to support
different mechanisms that allow changes in experimental con-
texts (e.g. network topology, QoS) without the need to change
the basis of the simulator’s actual code. The main flexibly of our
tool is allowing different WAN and datacenter topologies, such
as the topologies provided by The Internet Topology Zoo [27]
where they present hundreds of WAN topologies used by dif-
ferent companies around the globe. For a given topology to be
simulated, researchers must code the way that nodes connect to
one another along with building internal routing tables, which
impedes the researchers to focus on evaluating and solving their
intended problems.

One well-accepted solution for solving the aforementioned
problem is the use of graph theory. Graph theory is the core
solution for network systems to dynamically maintain the loca-
tion and connection information between nodes. By using graph
theory in our tool, we not only analyze and contribute to the
performance of SD-WAN and SDN-DC traffic policies but also to
the performance of SD-WAN and SDN-DC routing algorithms. We
leverage the classical Dijkstra algorithm [5], which is based on
graph theory, for solving the challenge for maintaining a dynamic
network graph and finding the shortest path from every node to
all other nodes. As Fig. 5 shows, every given SD-WAN and SDN-DC
controller maintains its own network in the form of a sub-graph;
therefore, each one must execute its own routing algorithm to
properly allocate routes for its respective nodes.

To make the our approach more accessible and easier to use,
we have the ability to compare the solutions of traditional WAN
and DC networks with the new solutions of SD-WAN and SDN-
DC. We simulate classical WAN and DC networks by applying

Algorithm 1: Shortest Path Maximum Bandwidth.
Require: N: a set of nodes (hosts & switches)

f: a network flow containing a stream of packets
s: a source node
d: a destination node

Ensure: froute
1: /* Construct/update two network graphs, one for distance weight and one for

real-time bandwidth capacity */
2: for each i ∈ N do
3: for each k ∈ N do
4: if distanceWeight[i][k] ≡ ∅ or isNetwrokGraphChange ≡ true then
5: distanceWeight[i][k]← getDistanceWeight(i, k) ▷ if i & k adjacent return

1, otherwise return 0
6: end if
7: /* always update network bandwidth availability*/
8: availabBandwidth[i][k]← getAvailableBw(i, k) ▷ get real-time bandwidth of

a link connecting i & k
9: end for
10: end for
11: for each n ∈ N do
12: distance[n]←+∞
13: bandwidth[n]←−∞
14: elected[n]← false
15: end for
16: distance[s]← 0 ▷ distance of source host to itself is always 0
17: bandwidth[s]← 0 ▷ bandwidth of source host to itself is always 0
18: parentNode[s] ← ∅ ▷ source node does not have a parent node
19: for each i ∈ N (we only need N size!!!) do
20: minDistance←+∞
21: maxBandwidth←−∞
22: for each u ∈ N do
23: if elected[u] ≡ false and distance[u] ≤ minDistance and bandwidth[u] ≥

maxBandwidth then
24: minDistance← distance[u]
25: maxBandwidth← bandwidth[u]
26: en← u ▷ en: an elected node with min distance and max bw
27: end if
28: end for
29: elected[en]← true
30: for each k ∈ N do
31: if elected[k] ≡ false and distanceWeight[en][k] ̸= 0 and distance[en] +

distanceWeight[en][k] ≤ distance[k] and
32: availabBandwidth[en][k] ≥ bandwidth[k] then
33: distance[k]← distance[en] + distanceWeight[en][k]
34: bandwidth[k] ← availabBandwidth[en][k] ▷ Select the least bw along

the route to avoid network congestion
35: parentNode[k] ← en
36: end if
37: end for
38: end for
39: routeBuilt ← false
40: currentNode← d
41: nextNode← ∅
42: while routeBuilt ≡ false do
43: nodeLists.add(currentNode)
44: if currentNode.equal(s) then
45: routeBuilt ← true
46: end if
47: nextNode← parentNode[currentNode]
48: link← linkList.get(currentNode, nextNode)
49: routeLinks.add(link)
50: end while
51: flowLinks.put(f , link)

the classical shortest path Dijkstra algorithm (SP) with a single
network objective of finding a shortest path based on a minimum
number of traversing nodes. Eq. (15) is used to obtain the objec-
tive function of finding a route r that minimizes the traversing
number of nodes in traditional networks tn

tn = min
n

∑
ni,nj∈N

r(ni, nj) (15)

where (ni, nj) represents a link connecting two nodes.
We propose a Shortest Path Maximum Bandwidth algorithm

(SPMB) to simulate SD-WAN and SDN-DC networks. SPMB is a
novel routing algorithm that extends the classical Dijkstra algo-
rithm to obtain a min–max objective. This is designed to find
all elected routes that have the minimum number of traversing
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Fig. 5. Multi-datacenters and SD-WAN topology for experiments.

nodes and then select a route that has maximum bandwidth in
real-time. Algorithm 1 shows the pseudo-code of our proposed
SPMB algorithm. Eq. (16) is used to obtain the objective function
of finding a route r that minimizes the traversing number of
nodes and maximizes bandwidth bw.

SPMB = max
bw

⎛⎝tn,
∑

ni,nj∈N

r(ni, nj)

⎞⎠ (16)

Since our proposed algorithm (Algorithm 1) is based on Di-
jkstra’s algorithm with two objectives (Path and Bandwidth) to
optimize, the worst case time complexity is O(N2

+N2), where N
represents the number of nodes (hosts and switches). Ultimately,
the time complexity is reduced to O(N2).

Fig. 6 shows the overview of steps and actions taken by every
SD-WAN and SDN-DC controller to enable H1 to send data to
H2. In the first step, every controller initially builds its own
network (sub-graph of the whole network). For every network
objective, there must be a separate sub-graph. In the case of
SPMB, every controller must maintain two sub-graphs, one for
storing/updating the minimum number of nodes while the other
for storing/updating real-time network bandwidth. As shown,
there are two elected routes that obtain the same number of
traversing nodes (via S2-S3 and S4-S5). However, once a con-
troller executes its own SPMB algorithm to find the optimal route
that has maximum bandwidth between H1 and H2, it only selects
the route (H1, S1, S4, S5, S9) that satisfies the objective of SPMB
(see step two). In step three, the controller stores the final elected
route between H1 and H2 in its routing table. For each child
node starting from the destination (H2) up to source (H1), the
controller must map the child node to its parent node if it exists.
In the final step, the controller installs the forwarding rule on
all traversing switches to instruct switches for the appropriate
output link/port.

As each SD-WAN and SDN-DC controller separately manages
and isolates its network (as shown in Fig. 5), they must coor-
dinate with one another in order for each controller to make
appropriate (mutually agreeable) routing decisions. Fig. 7 pro-
poses a simple but effective scheme that is implemented in
IoTSim-SDWAN, which enables the coordination among SD-WAN
and SDN-DC controllers. An SD-WAN broker submits network
transmission requests on behave of users to respective source
SDN-DC controllers. If the source and destination hosts reside in

the same datacenter, the transmission process internally takes
place and the broker is acknowledged on transmission success.
If destination hosts reside in different datacenters, packets will
be forwarded to source gateway(s). The transmission process
between gateways is handled by an SD-WAN controller. Once
the destination gateway(s) receive external packets, they will
internally forward the packets to destination hosts. If routing
records do not exist, every SD-WAN and SDN-DC controller must
execute its routing algorithm and store elected route information
in its routing table.

3.4. Components modeling and interaction of IoTSim-SDWAN

Fig. 8 presents a system structure overview of IoTSim-SDWAN.
As shown, IoTSim-SDWAN uses some classes of other simulat-
ing tools (CloudSim [4] and CloudSimSDN [25]). IoTSim-SDWAN
extends the datacenter to enable the interactions with SDN-DC
controllers in addition to the provisioning and management of
hosts and VMs. SD-WAN and SDN-DC controllers extend the
class of networking operating systems (NOS) where the designs,
functionalities, and characteristics of such controllers are imple-
mented. The SD-WAN coordinator is responsible for sharing and
advertising the required information among SD-WAN controllers,
SDN-DC controllers, and datacenters; for example, sharing the
location of requested hosts in order to build appropriate routes
to respective destinations.

IoTSim-SDWAN describes the arrangement and relation among
components in the topology class. The topological description is
provided to IoTSim-SDWAN in a JSON file format. Once the file
is submitted, IoTSim-SDWAN will instruct the topology class to
parse, generate, and store the properties and relations among
components. Fig. 9 shows an example of the JSON format. As
shown, every datacenter must define and configure its own
topology that includes SDN-DC controllers, switches, and hosts
in addition to the links that connect switches and hosts to one
another. In addition, an SD-WAN topology must be defined and
configured in terms of specifying the properties of SD-WAN
controllers and links that connect datacenters together.

Every SD-WAN and SDN-DC controller must implement rout-
ing protocols/algorithms. The routing protocol class is designed
to facilitate the implementation of such algorithms by providing
abstract functions that can be used to develop smarter routing
algorithms. Currently, IoTSim-SDWAN contains two routing algo-
rithms (SPMB and SP) as described in Section 3.3. New routing
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Fig. 6. Overview of SD-WAN/SDN-DC controller’s actions to build forwarding rules. H#: host, S#:switch, MNTS: minimum number of traversing switches, XBW:
maximum bandwidth of traversing switches, XNTS: maximum number of traversing switches.

algorithms can easily extend the routing protocol class. IoTSim-
SDWAN couples every switch with a forwarding table so that
controllers can manipulate the way switches forward packets.
Fig. 10 illustrates how controllers handle network packets. Every
incoming packet must be put into a queue so that controllers may
serve packets in order. Packets will obtain their optimal routes
dictated by the routing algorithms of controllers.

For IoTSim-SDWAN to function correctly, the transport proto-
col to use must be specified. IoTSim-SDWAN is equipped with two
transport protocols: TCP and UDP. A given SD-WAN and SDN-DC
controller must be instructed on which protocol is to be utilized.
This allows computation of overhead bytes or headers and footers
for generated packets in a given network. Moreover, the header
data introduced by network and data link layers must also be
computed by. In the validation Section 4, the number of bytes
to be added to the original data are presented according to our
real-world network analysis and observation using the Wireshark
network monitoring tool [28].

Fig. 11 illustrates the interaction across the components of
IoTSim-SDWAN in a simplified form. The generation of packets
will take place once IoTSim-SDWAN initializes the required in-
frastructure according to a submitted JSON file. Generally, the
life-cycle of SD-WAN packets start from a source datacenter, pass
through an SD-WAN network, and end in a destination datacen-
ter (see Fig. 5). The submission of packets is carried out by a
broker who forwards packets to their respective source SDN-DC
controllers. When SDN-DC controllers receive packet transmis-
sion requests, they will correlate packets to flows, find optimal
routes using provided routing protocols/algorithms, and instruct
switches to forward packets to destination hosts. If destination
hosts are not within a given datacenter, packets will be forwarded
to a gateway switch. Once the packet reaches the gateway, it is
routed to the appropriate datacenter using an SD-WAN controller.
When packets reach the gateway of a destination datacenter,

an SDN-DC controller residing in the destination datacenter will
find the appropriate route to local destination hosts and ac-
knowledge/report back the output results once packets reach
destination hosts.

4. Empirical Validation of IoTSim-SDWAN

Validating IoTSim-SDWAN against real-world networks is cru-
cial in order to illustrate its accuracy and efficacy and prove
its models produce results that are realistic and reflective of
existing systems. It is worth noting that reaching maximum net-
work capacity for a given real-world network environment is
difficult to achieve (and unwarranted for live systems due to
service disruption). Therefore, to benchmark at this extreme is
difficult to achieve. Furthermore, Network and system engineers
may identify suitable factors that effect network capability and
may inform a model (e.g., identifying network protocols that con-
sume a part of the network bandwidth), but may not be able to
identify other hidden factors (e.g.,how receiving hosts queue and
deal with network packets and perform read/write operations
on hard drives). Therefore, accepting a slight difference between
model and reality is acceptable when measuring real network
environments with their theoretical values. A slight difference
occurring in IoTSim-SDWAN should, therefore, also be acceptable.
Nevertheless, we have tried to eliminate the difference rate of
IoTSim-SDWAN compared with real networks by understanding
and observing the conditions and behaviors that effect the per-
formance of real network systems. Based on our observations, we
have derived and established the theoretical model in Section 3.2.
The validation results prove that IoTSim-SDWAN is capable of
obtaining a high degree of accuracy compared with real networks.
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Fig. 7. SD-WAN Coordination Scheme.

Fig. 8. System structure of IoTSim-SDWAN.
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Fig. 9. An example of JSON input file.

Fig. 10. An interaction between OpenFlow switches (S#) and SDN for obtaining flow entry.

4.1. Validation setup and configuration

The validation experiments are conducted on two machines
that have Intel Core i7-7500U 2.70 GHz and 16 GB of RAM
memory. Each machine has an installed guest host (VM) running
Linux 4.4.0-31-generic. Each VM is configured with 4 virtual pro-
cessors and 4 GB of memory. Two Linux-based switches designed
by Shenzhen Helor Cloud Computer [24] are used with similar
configurations. Every switch has Intel Celeron 1037U (2 Cores,
1.80 GHz), 4 GB of memory, and 6 Ethernet ports each attaining
1000 Mbps of throughput. Every switch is installed with an Open-
Flow switch (OVS) [18], which enables controllers to instruct and
manipulate the data plane of switches. The SDN controller used is

Ryu SDN framework [23]. Machines and switches are connected
via Ethernet cables Cat5e with 1000 Mbps of speed.

For validating IoTSim-SDWAN, a number of real and simulated
experiments are carried out. Validation objectives are to:

• Identify the correctness, accuracy, and credibility of the
IoTSim-SDWAN framework compared with a real-world net-
work environment in terms of bandwidth, network trans-
mission time, TCP/UDP outputs, and network delays
• Measure how realistically a real-world network can reach its

maximum network bandwidth
• Observe the internal impact of applications and system

structures of hosts/servers (CPU, memory, and hard drives)
on network bandwidth/speed
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Fig. 11. Underlying interactions of IoTSim-SDWAN.

Fig. 12. Network topology design for the validation experiments.

• Validate TCP and UDP models of IoTSim-SDWAN compared
with a real-world network environment

Fig. 12 shows a network topology design for the validation ex-
periments. Similar designs are also developed for IoTSim-SDWAN.
The validation is carried out using three different types of appli-
cations: Iperf3 TCP, Iperf3 UDP, and Secure Shell (SSH). All of the
experiments have the Internet connection disabled and only run
intended applications, excluding default applications and those
operations required by operating systems. In this step, uninten-
tional use of networks and operating systems by unintended
applications is eliminated. Iperf3 [9] is a well-known network
tool for capturing and analyzing network performance in terms of
TCP and UDP protocols. It is mainly designed to measure network
throughput, which means that the internal structures of given
hosts have no or minimal impact on network performance. To
ensure we consider internal structures, SSH is used to transfer
a video file between hosts that involves the internal structures
of hosts (e.g. memory, CPU, and hard drives). By using SSH, the
impact of hosts’ internal structures on network performance can
be captured, which allows further validation IoTSim-SDWAN.

The configuration used to validate IoTSim-SDWAN is given in
Table 2. The header sizes and average payloads of given appli-
cations are obtained according to our Wireshark observations.
Capturing every single delay of real network processing, queuing,
transmission, and propagation is beyond the scope of this paper.
However, obtaining the total delay of a real network environment

is possible using a time counter. Delays are considered to be in
the order of milliseconds [20].

The management layer of the SDN is added to our empirical
network to program, manage, and instruct our network during
execution (see Fig. 10). The SDN mechanism does not change
a network’s built-in capabilities, such as network bandwidth,
but does manage the network in real-time (e.g. finding global
optimal routes between given nodes, reserving a part of network
bandwidth for given applications). The interaction time between
OpenFlow switches and the SDN controller is negligible and does
not affect the overall network performance. As it can be seen
in Fig. 10, an OpenFlow switch requires a one-time reactive
interaction with the SDN controller to obtain a flow entry for
a stream of packets holding same IP source and IP destination.
The SDN controller, for example, would determine the best path
for the given flow entry and feed the switch (s1) with routing
information. The controller can also instruct the switch to hold
the flow entry for a period of time (e.g. 30 s), which means
that the switch knows how to forward the remaining stream of
packets based on the given time to live

4.2. Validation results

Fig. 13 shows the overall header data sizes added to original
data. The original data size of each application is increased when
being transferred due to the added network headers. Each header
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Table 2
Validation configuration.
TCP UDP delays

Transport header size 20 bytes Transport header size 10 bytes Processing 0.001 ms
Network header size 20 bytes Network header size 12 bytes Queuing 0.001 ms
Data link header size 26 bytes Data link header size 12 bytes Propagation 0.0001 ms
– – – – Transmission 0.0001 ms

App data sizes Average packet payload Average frame payload

Iperf3 UDP 1061.49 MB 8146 Bytes 1366 Bytes
Iperf3 TCP 778.35 MB 21464.8 Bytes 1448 Bytes
Video file 493.42 MB 13007 Bytes 1408 Bytes

Fig. 13. Comparison of IoTSim-SDWAN and a real network environment.

size is injected by each of its respective layer as shown in the
network model (see Fig. 3). We can see that IoTSim-SDWAN is
capable of obtaining approximate header sizes compared with
the real-world network environment. In Iperf3 UDP, however,
simulated header sizes have a slight difference due to the average
header size not always reflecting expected accuracy.

Figs. 13(b) and 13(c) show the number of packets and frames.
We can observe that the number of packets and frames of each
application in IoTSim-SDWAN and the real environment is sim-
ilar. The average payload factors of packets and frames as given
in 3.2 verify that we can obtain similar results, even though the

distribution payload sizes of packets and frames may vary in real
network environments.

Fig. 14 shows the comparison of bandwidth, speed, and delay
between IoTSim-SDWAN and a real network environment. In
Fig. 14(a), the maximum bandwidth rate of Iperf3 UDP is 951
Mbps while for Iperf3 TCP is 929 Mbps. Iperf3 cannot achieve
the speed of the theoretical network bandwidth (1000 Mbps)
because there are additional factors affecting Iperf3, such as the
performance of the network interface cards (NICs) of hosts and
switches, CPU performance of hosts and switches. The bandwidth
for the video file is 832 Mbps, which is less than Iperf3 band-
width. Unfortunately, transmitting real data (e.g., video files) not
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Table 3
Evaluation configuration.
Sender Receiver Protocol Data sizes Average packet payload Average frame payload

Host 1 (H1) Host 3 (H3) TCP 10 Gb 21464.8 Bytes 1448 Bytes
Host 2 (H2) Host 4 (H4) TCP 10 Gb 8146 Bytes 1366 Bytes

Fig. 14. Bandwidth, speed, and delay comparison of IoTSim-SDWAN and a real network environment.

only depends on network performance but also on the perfor-
mance of given hosts in terms of CPU, memory, and hard drives.
Iperf3 generates random data originating from CPU (no drive)
while the video file application requires data from a hard drive
and then to write this data to memory, which degrades the overall
performance.

Fig. 14(b) shows overall network delay as a result of pro-
cessing, queuing, transmission, and propagation delays. We can
observe that the delays of IoTSim-SDWAN and the real network
are similar and, therefore, comparable. Fig. 14(c) compares the
IoTSim-SDWAN with the real network environment in terms of
transmission time. It can be seen that IoTSim-SDWAN and the
real network environment have a positive correlation. The trans-
mission time of IoTSim-SDWAN compared with iperf3 TCP and
iperf3 UDP is similar. IoTSim-SDWAN and the video file has a
slight difference in transmission time, which is expected since the
video file depends on the performance of the internal structures
of hosts in addition to the network. As IoTSim-SDWAN is mainly
intended to simulate the network layer and components of SD-
WAN, iperf3 is the suitable candidate to validate the accuracy of
IoTSim-SDWAN.

5. Use case evaluation

This section is intended to demonstrate the practicality and
advantages of IoTSim-SDWAN. Mainly, we consider the compar-
ison of performance and energy-consumption of SD-WAN and
classical WAN environments in addition to traditional cloud dat-
acenters compared with SDN-enabled cloud datacenters. Fig. 15
presents the network topology design used in the evaluation
experiments. Both SD-WAN and classical WAN have a similar
topology design. Every datacenter has a single gateway that is
connected to other datacenter gateways. In the classical WAN
and cloud datacenters, gateways and switches have full control of
their network decisions. In SD-WAN and SDN-enabled environ-
ments, SD-WAN and SDN controllers have full network control
to instruct gateways and switches to enable the management
and influence on network traffic in real-time. Table 3 shows the
configuration used in the evaluation experiments. Using TCP or
UDP protocol would not impact the evaluation results; therefore,
TCP is the protocol that we use in this evaluation. The average
payload size of packets and frames in addition to header sizes
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Fig. 15. Network topology used in IoTSim-SDWAN.

and delays are similar to the ones used in the validation section
in Table 2.

IoTSim-SDWAN shapes network traffic in SD-WAN and classi-
cal WAN environments according to the network model in 3.3. As
mentioned earlier, the classical shortest path Dijkstra algorithm
(SP) is used to shape network traffic in classical WAN environ-
ments whereas SD-WAN shapes its traffic based on our proposed
SPMB algorithm (see algorithm 1). Fig. 15 conceptually illustrates
how the SD-WAN and classical WAN work. Both environments
must forward packets that are generated from H1 and H2 residing
in datacenter 1 to H3 and H4 residing in datacenter 3. In the
classical WAN, the packets have the same route where they fairly
share network bandwidth. This is because the classical WAN
lacks the ability to dynamically forward packets based on real-
time changes in network congestion and bandwidth availability.
However, SD-WAN is capable of obtaining such information and
forwards the packets to different routes based on appropriate
choice. The coordination of SD-WAN and SDN controllers is also
possible to efficiently improve their traffic engineering decisions,
as shown in Fig. 7.

Fig. 16 shows the header data sizes added to the original data,
number of packets, number of frames, and end-to-end delays. It
can be seen that the SD-WAN (SPMB) and WAN (SP) have the
same number of header sizes, packets, frames, and delays. This
is expected because both SD-WAN and WAN have no impact on
TCP and UDP protocols. To appropriately evaluate the network
performance of SD-WAN and WAN, both networks must be over-
whelmed with packets from different sources at the same time.
Packets from sources to destinations are being transferred simul-
taneously during the simulation. Fig. 17(a) illustrates the network
transmission time of SD-WAN and WAN. It can be seen that SD-
WAN optimized network performance and usage by decreasing
the transmission time by approximately 50%. Exceptional per-
formance is achieved because SD-WAN and SDN-DC controllers
are capable of locating the least congested routes in addition to
minimizing the number of traversing nodes in real time, while the
classical WAN can only find routes in a static manner (determined
in advance in most cases).

To enhance further analysis using IoTSim-SDWAN, we provide
energy consumption tracking models. These allow the gathering

and reporting of power consumption of switches and gateways.
The modeling of power consumption is done by CloudSimSDN
[25]. Fig. 17(b) shows the overall energy consumption of both
WAN and SD-WAN environments. As the figure shows, SD-WAN
consumes less energy than WAN by approximately 54%. The
reason SD-WAN consumes less energy is that packet transfer is
shorter and if packets spend less time within the infrastructure
then fewer resources are consumed.

6. Related work

For several decades, there have been numerous solutions for
tackling a traditional WAN’s issues in performance management
(e.g., slow packet delivery, waste of network resources, routing
complexity) together with monitoring and improving network
performance and QoS. For example, the emergence of Multipro-
tocol Label Switching (MPLS) [22] in the early 2000s aimed at
increasing network bandwidth and improving network packet
delivery overcame the shortcomings of classical WAN traffic en-
gineering along with improving QoS for latency-sensitive applica-
tions. Although MPLS has become the de-facto standard for WAN
traffic engineering since its discovery, it still encounters major
obstacles such as long setup times, inflexible in the presence of
dynamic changes in network conditions, and a lack of dynamic
routing mechanisms. The characteristics of modern applications
coupled with rapid evolution of large systems, the classical WAN
fails to cope. This is evident when considering today’s applica-
tion requirements, such as application-aware traffic engineer-
ing, obtaining real-time network changes, on-the-fly network
re-configuration/provisioning, and real-time bandwidth reserva-
tion. Edge based streaming services and on-demand high volume
data migration services all place these types of requirements on
existing distributed systems.

There are many simulation tools that have been developed to
aid researchers and developers to evaluate new algorithms for the
management of different computing resources and systems in a
controllable and repeatable manner. These tools can be catego-
rized into four main groups relevant to IoTSim-SDWAN’s work: (i)
Cloud Simulators that model behavior of cloud components such
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Fig. 16. Simulation result and comparison between SPMB and SP.

Fig. 17. Simulation result and comparison between SPMB and SP.

as datacenters and virtual machines along with scheduling and
provisioning policies; (ii) Network Simulators which focus on the
modeling and simulating of network systems in different comput-
ing environments; and (iii) Cloud-based Application Simulators that
capture and simulate the behaviors, workflows, and dependencies

of various applications, such as MapReduce and web applications;

and (iv) Edge Simulators that simulate the characteristics and

behaviors of edge environments (e.g. IoT devices, edge devices,

computing and analytic operations).
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Table 4
Comparison of related simulators.
Simulators Features

Cloud
support

Traditional
n/w support

Multi-data-
center comm.

SDN
support

SD-WAN
support

TCP/UDP
n/w protocols

Dynamic n/w
adaptability

Heterogeneous
n/w topology

Power
modeling

CloudSim [4] ✓
GreenCloud [14] ✓ ✓
iCanCloud [17] ✓
Network-
CloudSim [7]

✓ ✓

CloudSimSDN [25] ✓ ✓ ✓ ✓
BigDataSDNSim [1] ✓ ✓ ✓ ✓ ✓ ✓
Mininet [16] ✓ ✓ ✓ ✓ ✓
NS-3[21] ✓ ✓ ✓ ✓
IoTSim-SDWAN
(Proposed)

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

CloudSim [4] is a discrete-event simulation tool that enables
the modeling and simulation of cloud-related systems. It supports
the modeling of cloud system components such as datacenters
and virtual machines (VMs) in addition to resource provisioning
policies with the aim of optimizing the performance of cloud in-
frastructures. GreenCloud [14] is a simulator designed for energy-
aware cloud datacenters. It evaluates the energy consumption of
datacenter components such as servers. iCanCloud [17] is a cloud-
based simulator designed to conduct large-scale experiments to
ease the process of integrating new policies for cloud brokers.
NetworkCloudSim [7] is an extension of CloudSim with the aim
of providing network modeling and also provides a generalized
application model to allow the evaluation of scheduling and
resource provisioning policies. These tools provide cloud infras-
tructures and some of network capabilities but fail to model SDN
and SD-WAN infrastructures.

CloudSimSDN [25] is a simulation framework for SDN-enabled
cloud environments developed on top of CloudSim. Its objective
is to model SDN environments as well as reduce the energy
consumption of hosts and network components by evaluating
scenarios with different management policies. However, it is not
flexible in terms of simulating different network topologies and
does not adapt to varying application traffic policies. Moreover, it
lacks the modeling and simulation of SD-WAN environments.

BigDataSDNSim [1] is a simulator developed on top of CloudSim
and CloudSimSDN. BigDataSDNSimmodels and simulates big data
analytics applications of MapReduce by allowing reducers and
mappers that are spread across multiple hosts to communicate
with one another over SDN-enabled cloud datacenters. This ap-
proach also allows the simulating of any type of network topology
along with providing greater flexibility for implementing new
MapReduce SDN-based scheduling techniques. Nevertheless, it is
limited within a single datacenter and lacks SD-WAN ecosystem
properties to interconnect distributed datacenters.

Mininet [16] is a lightweight network emulator that uses
OS-level virtualisation for prototyping large networks with the
resources of a single laptop. It supports the emulation of SDN and
networked systems. It can be used to evaluate the performance
of SDN. Similarly, NS-3 [21] consists of a discrete-event network
simulator that allows the emulation of real world protocols in
both IP and non-IP based networks, but it lacks the model-
ing of SDN environments. These tools do not allow the mod-
eling and evaluation of cloud environments and features, such
as virtual machines allocation policies and application workload
distribution. They also lack the support of SD-WAN environments.

EdgeCloudSim [26] and IoTSim-Edge [12] are simulators de-
signed to imitate the environments of edge computing and IoT.
EdgeCloudSim focuses on the modeling of some behaviors of edge
computing and IoT devices, such as network communication,
mobility, and processing operations of edge devices. IoTSim-Edge
models many behaviors and mechanisms of edge and IoT devices,

such as network and edge protocols, heterogeneity, mobility, and
power consumption. However, these tools lack the modeling and
simulation of SDN and SD-WAN environments.

The summary of aforementioned simulators are provided in
Table 4. To the best of our knowledge, there is no existing tool
capable of simulating workloads on cloud environments that span
several datacenters, each exhibiting a specific network topol-
ogy enabled through SDN. IoTSim-SDWAN is a novel simulator
that allows the modeling of cloud-specific application execut-
ing across heterogeneous datacenters with SDN-enabled support
both within the datacenters (local) and between them (WAN).

7. Conclusion

In this paper, we present a new tool IoTSim-SDWAN for simu-
lating the behavior and properties of SD-WAN and SDN-enabled
datacenters. IoTSim-SDWAN is a Java-based tool providing a va-
riety of modeling approaches and functionalities to evaluate and
test SD-WAN cloud-based solutions and gain additional insights
on the design of future systems without requiring in-the-field
experimentation that would be either prohibitively expensive
or simply not practical in live systems. We model the SD-WAN
ecosystem, TCP and UDP protocols, network delays, in addition to
modeling the network layer of SD-WAN and classical WAN using
graph theory. We propose a coordination scheme for SD-WAN
and SDN controllers residing in different datacenters along with
proposing appropriate routing approaches. This paper illustrates
the system structure overview and physical properties of SD-
WANSim in addition to the interactions across IoTSim-SDWAN’s
constituent components.

We empirically validate and analyze the accuracy and correct-
ness of the simulator. Three different types of experiments are
used in the validation: Iperf3 TCP, Iperf3 UDP, and transferring
real data over Ubuntu Secure Shell (SSH). The validation considers
measuring the level of similarities of IoTSim-SDWAN and a real-
world network environment in terms of bandwidth, transmission
time, TCP/UDP outputs, and network delays. The validation results
prove that the accuracy and correctness of IoTSim-SDWAN are
closely comparable to real networks.

We model and present a number of evaluation experiments
with a goal to illustrating the practicality and features of IoTSim-
SDWAN. The evaluation compares the network performance and
power consumption of SD-WAN and classical WAN. The evalua-
tion results demonstrate that SD-WAN outperforms WAN in both
performance and energy consumption.

We present a flexible approach to the design of experiments
to allow researchers a seamlessly way to implement and eval-
uate their new SD-WAN, SDN routing and power consumption
algorithms/approaches.

The current development of IoTSim-SDWAN is limited to the
network layer and does not involve the application layer of



34 K. Alwasel, D.N. Jha, E. Hernandez et al. / Journal of Parallel and Distributed Computing 143 (2020) 17–35

different application types (e.g. MapReduce applications). In fu-
ture work we will model and implement an application layer
that is distributed over multiple datacenters connected by an
SD-WAN ecosystem. We also plan to add the mechanisms of
edge computing and IoT, which would allow edge datacenters
to interconnect with cloud datacenters via SD-WAN. In addition
to this, we will propose a few novel algorithms based on our
proposed IoTSim-SDWAN to accelerate the network performance
of big data applications running in multiple SDN-enabled cloud
datacenters.
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