
Journal of Parallel and Distributed Computing 139 (2020) 1–17

Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

A general purpose contentionmanager for software transactions on
the GPU
Qi Shen a, Craig Sharp b, Richard Davison b, Gary Ushaw b, Rajiv Ranjan b,
Albert Y. Zomaya c, Graham Morgan b,∗

a Beijing Advanced Innovation Center for Big Data and Brain Computing, Beihang University, China
b School of Computing, Newcastle University, UK
c School of Information Technologies, The University of Sydney, Australia

a r t i c l e i n f o

Article history:
Received 16 February 2019
Received in revised form22 September 2019
Accepted 23 December 2019
Available online 28 January 2020

Keywords:
GPU
Parallel processing
High performance computing

a b s t r a c t

The Graphics Processing Unit (GPU) is now used extensively for general purpose GPU programming
(GPGPU), allowing for greater exploitation of the multi-core model across many application domains.
This is particularly true in cloud/edge/fog computing, where multiple GPU enabled servers support
many different end user services. This move away from the naturally parallel domain of graphics
can incur significant performance issues. Unlike the CPU, code that is hindered from execution due
to blocking/waiting on the GPU can affect thousands of threads, rendering the advantages of a GPU
irrelevant and reducing a highly parallel environment down to a serial one in the worst case. In this
paper we present a solution that minimises blocking/waiting in GPGPU computing using a contention
manager that offsets memory conflicts across threads through thread re-ordering. We consider conflicts
of memory not only to avoid corruption (standard for transactional memory) but also in the semantic
layer of application logic (e.g., enforcing ordering to ensure money drawn from bank account occurs
after all deposits). We demonstrate how our approach is successful across a number of industry
benchmarks and compare our approach to the only other related solution. We also demonstrate that
our approach is scalable in terms of thread numbers (a key requirement on the GPU). We believe this
is the first work of its kind demonstrating a generalised conflict and semantic contention manager
suitable for the scale of parallel execution found on a GPU.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

A Contention Management Policy (CMP) for parallel explo-
ration of solutions to transactional conflict using the GPU is
described. The approach utilises a priority rule based technique
to explore multiple schedules of transaction permutations on the
highly threaded GPU, in the context of resolving concurrent con-
flict in software transactional memory (the technique is labelled
PR-STM).

Due to the execution nature of the GPU, transactions are
enacted in batches. They are copied from main memory to the
GPU and executed. Only when all transactions have completed on
the GPU are results returned to main memory. Threads may not
transfer from CPU during batch execution on the GPU (i.e., join
and leave execution phases under pre-emptive CPU and operating

∗ Corresponding author.
E-mail addresses: shenqi@act.buaa.edu.cn (Q. Shen),

craig.sharp@newcastle.ac.uk (C. Sharp), richard-gordon.davison@newcastle.ac.uk
(R. Davison), gary.ushaw@ncl.ac.uk (G. Ushaw), raj.ranjan@newcastle.ac.uk
(R. Ranjan), albert.zomaya@sydney.edu.au (A.Y. Zomaya),
graham.morgan@newcastle.ac.uk (G. Morgan).

system control). Therefore, the major research challenge is to
determine a solution within which all GPU hosted transactions
can be executed efficiently (in terms of timeliness) while avoiding
livelock and deadlock.

We extend our CMP from [30] that addresses concurrent con-
flicts (ensuring ordered and correct memory access of a memory
location) on GPU to also address semantic conflict. A semantic
conflict occurs when there are application-specific factors af-
fecting the order in which transactions must be completed (for
example, funds must be placed into a bank account before they
can be withdrawn). A CMP which only addresses concurrent
conflict (interference of state resulting in possible inconsistency)
will promote a lack of logical progress to the application level;
there will be no state conflicts, but applications cannot progress
logically in the context of their execution requirements. For ex-
ample, transactions trying to withdraw money when there is no
money available may commit successfully due to no concurrent
conflicts resulting in inconsistency of memory, but will seman-
tically hinder the application in a logical sense. The ordering of
transactions, in our model, includes consideration of concurrent
and semantic conflict.

https://doi.org/10.1016/j.jpdc.2019.12.018
0743-7315/© 2020 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jpdc.2019.12.018
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2019.12.018&domain=pdf
mailto:shenqi@act.buaa.edu.cn
mailto:craig.sharp@newcastle.ac.uk
mailto:richard-gordon.davison@newcastle.ac.uk
mailto:gary.ushaw@ncl.ac.uk
mailto:raj.ranjan@newcastle.ac.uk
mailto:albert.zomaya@sydney.edu.au
mailto:graham.morgan@newcastle.ac.uk
https://doi.org/10.1016/j.jpdc.2019.12.018


2 Q. Shen, C. Sharp, R. Davison et al. / Journal of Parallel and Distributed Computing 139 (2020) 1–17

We add a semantic conflict management policy (CMP) to
our existing concurrent conflict resolution policy, whereby a
thread that is executing a transaction must check whether a
semantic conflict occurs. If so, the transaction is delayed and the
thread searches for the next uncommitted transaction. In order to
achieve this on the parallel architecture of the GPU we introduce
a global transaction table which tracks the commit status of
multiple transactions. This itself utilises the parallel nature of the
GPU, bringing scalability to our solution.

The effectiveness of our approach to PR-STM on the GPU
is demonstrated by injecting semantic conflict into well-known
benchmarks for contention management policies. We utilise the
Bank benchmark (which is provided within tinySTM [11]), the
Vacation and Kmeans benchmark (commonly associated with
Stanford Transactional Applications for Multi-Processing (STAMP)
[21]), the Skiplist benchmark [18] and a sample graph processing
benchmark. The performance figures presented show that our
approach handles semantic conflict appropriately. We argue that
the overhead introduced by our approach is offset by the increase
in timely throughput at the logical progression layer of the
application. We compare our work against the comparator GPU-
STM [34], the only other possible comparator at this time. We
show that our approach performs better than GPU-STM when
semantic conflict is introduced.

This is the first time that semantic conflict has been considered
in a CMP that operates on the GPU. While there is an additional
overhead in handling semantic conflict, our generalised approach
to contention allows the CMP to be used for arbitrary permuta-
tions of transaction, without requiring any sorting by the user
application.

2. Background and related work

This section introduces the GPU architecture, its execution
model, and the notion of concurrent conflict together with con-
currency control in the context of software transactional memory.
We consider existing approaches to CMP, on both CPU and GPU
to provide a broader context for our work. As a relatively new
concept, we dedicate a portion of our text to a more detailed
overview of semantic conflict resolution.

2.1. General purpose GPU execution model

To design an algorithm for GPU computing, it is necessary
to take into account the differences in execution between the
CPU and GPU. In a multi-core CPU, threads are delegated to
cores with such execution continuing in parallel across cores
with the only coordination occurring when memory is shared
(conflict). This may require one or more threads to wait. In
essence, a multi-core CPU may support unrelated execution traces
of distinct types occurring across cores that share the same mem-
ory and such threads may experience a degree of blocking be-
fore their completion. Standard programming languages (such
as C++) can support multi-threading using language primitives
with the operating system handling the pre-emptive nature of
execution. For example, one thread may be downloading in-
formation from a port while another renders an interface to a
user and only when the interface requires the port information
do they share memory through pre-defined locking strategies
(e.g., transactional memory).

Due to the nature of the GPU’s hardware, a dedicated program-
ming environment is required. In our work this is provided by
CUDA (Compute Unified Device Architecture) [26]. CUDA provides
a General Purpose GPU (GPGPU) computing API. In essence, this
allows non-graphically related programs to be constructed for
execution on the GPU.

Fig. 1. CUDA device architecture.

Fig. 1 shows an abstract architecture of a CUDA device. CUDA
applications can run on any card which supports this architec-
ture (usually provided by Nvidia). However, as each GPU device
has different specifications, they may have slightly different sets
of supported features and different numbers of available com-
putational resources. Any CUDA supported device should have
some Streaming Multiprocessors (SMs), each of which consists of
some processor cores (ALUs), one multi-thread instruction unit, a
shared memory and a set of registers [25].

A CUDA application requires a compute kernel to be invoked
that represents the desired execution to take place on the GPU.
In a graphics environment these may be termed compute shaders
and may refer to the graphical techniques run on a GPU in highly
parallel ways. However, in CUDA these may represent arbitrary,
more general, computations but are executed and managed in the
same manner as their graphical counterparts. From a program-
mer’s perspective, threads are organised into thread blocks that
carry out the desired execution defined in the compute kernel
within which such threads may share memory. Therefore, it is
the programmer’s task to allocate these executions appropriately
from the CPU and handle their outputs back to the CPU once
execution has finished.

Thread block scheduling is handled by a streaming multi-
processor that assumes responsibility for scheduling thread
blocks in parallel and attempting to execute thread blocks when
resources permit. From a hardware perspective, thread blocks are
deployed across warps that expect hosted threads to execute the
same code. Thread divergence may occur given the existence of
branching in code (e.g., if statement). A warp incurs overheads as
it attempts to execute divergent threads. This is because warps
may only handle divergence of execution by deactivating diver-
gent threads, according to a well known policy, and executing



Q. Shen, C. Sharp, R. Davison et al. / Journal of Parallel and Distributed Computing 139 (2020) 1–17 3

Fig. 2. A race condition.

them in series. This incurs substantial overhead by reducing the
parallel efficiency of the execution and highly divergent environ-
ments can create serial environments on a GPU. This outlines the
significant difference between CPU and GPU: the GPU performs at
its best with limited divergence whereas the CPU is accustomed
to highly divergent thread hosting (i.e., thread context in terms
of programming logic are of little importance to the CPU in terms
of scheduling).

A key point to highlight in the context of this work is that
a substantial amount of wasted resources may be witnessed by
the GPU unnecessarily if logical issues in thread execution are a
problem. An ‘‘if’’ statement waiting on a memory change (e.g., if
account is greater than zero), can cause substantial overheads on
a GPU. The fact that we are concerned with a batch programming
approach means that we simply cannot retry the logical execution
again and again as on the CPU as it will lead to deactivation
of a large number of threads which must wait for all previous
threads to finish on the GPU. Therefore, we want to ascertain
the appropriate ordering of threads in a manner that ensures the
most optimum and successful execution once a compute kernel is
enacted on warps. In graphical programming this is of little issue
as compute shaders are naturally parallel in their exploitation
(the reason for a GPU architecture). However, in GPGPU scenarios
this can cause significant problems and overheads.

2.2. Concurrent conflict and concurrency control

We now explain conflict resolution in the context of well
known concurrent issues in parallel programming. Race con-
ditions are a well-known type of concurrency error that may
result in inconsistent data across multi-threaded programs. Fig. 2
provides an example with two threads (T1 and T2) which read
the same location (x) in shared memory and increase the value
of that shared memory by 1. The possibility of a race condition
means that there could be two different final values for memory
location x. In the top scenario, the memory holds the value 2
when there is no interference between T1 and T2. However, in the
bottom scenario, interleaved thread execution produces a final
memory value of 1.

In this example the possibility of a race condition has re-
moved the element of determinism from the program; it is no
longer possible to say what value will be held at x. Concur-
rency control aims to implement mechanisms which prevent
this loss of determinism. The two most prominent approaches
to implementing concurrency control are pessimistic and opti-
mistic concurrency control. Pessimistic concurrency control (PCC)
protocols aim to prevent non-deterministic conflict occurring
in advance, normally by using blocking synchronisation such

as locks or semaphores. Optimistic concurrency control (OCC)
detects conflicts after they have occurred and then implements
steps to correct such conflicts [20], for example using abortable
transactions.

Blocking synchronisation by mutual exclusion [9] is a common
approach to pessimistic concurrency control and transactional
memory [15] is a popular optimistic method for concurrency
control. As there exist many kinds of applications in which con-
currency control is needed, no single approach is likely to be the
best solution for all scenarios. However, whether a method is
pessimistic or optimistic, the main aims of a concurrency control
mechanism are:

1. Correctness: Prevent the logical inaccuracy.
2. Efficiency: Resources should be used efficiently.

2.3. Transactional memory

Transactional memory is a well known example of optimistic
concurrency control. In the transactional memory paradigm,
threads can access shared data within the execution of a trans-
action. However, modifications to shared data are not made per-
manent until the transaction has completed successfully. These
changes are made to shared data only if no concurrency conflict
is detected, or otherwise the potential changes must be aborted
and the transaction will restart. The main benefit of transactional
memory compared to mutual exclusion is that deadlock can be
avoided [15]. This is because all threads can operate without
interference from other threads. Transactional memory imple-
mentations, however, typically require an overhead in excess of
that required by a more simple blocking approach, which may
lead to the degradation of performance when contention is high.

2.4. Contention management policies

To alleviate the degradation in performance of transactional
memory in the presence of high contention a Contention Manage-
ment Policy (CMP) may be employed. A variety of CMPs have been
successfully implemented, which can be categorised as either
wait-based or schedule-based. Wait-based CMPs, such as Greedy,
Karma and Polka are well-known approaches which are relatively
straightforward to implement, offering versatility and improved
performance [14,27]. An inefficiency with wait-based approaches
was identified in [16], as the dynamic nature of execution of STM
leads to difficulty in finding an adequate back-off period.

Schedule-based CMPs typically reschedule or serialise aborted
transactions. An example is described in [2] whereby transactions
are distributed among the threads, with transactions that are
likely to conflict being assigned to the same thread, thus assuring
serialisation. In [1] a Steal-on-Abort approach is described in
which various techniques are considered for rescheduling trans-
actions across threads, with additional work queues created when
the number of transactions passes a defined threshold. A collision
avoidance and resolution approach to schedule-based CMP is
described in [10] which also reassigns conflicting transactions to
the same work thread.

Wait-based and schedule-based CMP take no consideration
of the semantics of the application that they support. Several
approaches to STM have been developed which employ a uni-
versal construction (UC). The concept was introduced in [17],
enabling multiple threads to access a shared data structure in a
wait-free manner. The UC technique was subsequently applied to
transactions to handle failure conditions [7,33]. The approach was
further extended in [8] to remove the abort semantics of STM.
Thread level speculation is introduced to transactional memory
in [3]. In this approach platform parallelism is exploited to ex-
plore different permutations of transactional elements. This is



4 Q. Shen, C. Sharp, R. Davison et al. / Journal of Parallel and Distributed Computing 139 (2020) 1–17

Fig. 3. In scenario 1 a read/write conflict has occurred between the w/draw and deposit transactions. The depositor is aborted and rescheduled to execute after the
withdrawer has committed. In scenario 2, thread 1 aborts the depositor but then also aborts itself because of a semantic conflict caused by attempting to execute
a withdrawal before a deposit. The conflict is resolved by the execution of an ordering which allows both to commit in the correct semantic order (deposit then
withdraw).

achieved through reordering the internal execution of a trans-
action to better reflect concurrent schedules. This technique re-
orders executions at a lower level than that presented in our
paper, as we seek to reschedule whole transactions to better
accommodate the semantics of execution.

2.5. Parallel exploration of transaction scheduling on CPU

The CMP described in [29] and [28] uses a UC technique to
resolve conflicts (labelled Hugh2). The threads which are consid-
ered are those which contain transactions that have been aborted
due to semantic conflicts. The technique was first presented
for object-based STM in [29] and extended to resolve semantic
conflicts in word-based software transactional memory in [28].

Universal Construction allows any sequential data structure
to be transformed into a linearisable representation that can be
accessed and updated by a number of threads [17]. UC consists
of three phases. Firstly a thread proposes an input to be added
to the UC. Secondly each thread which has proposed an input
performs consensus to decide which input will be added. Lastly
the winning thread updates a log of inputs to reflect the decision.
Hugh2 accepts as input a permutation of one or more sequentially
executed transactions and decides which permutation will be
added to the log.

Two hypothetical scenarios are shown in Fig. 3, both involving
a depositor and a withdrawer transaction which access a shared
object. In scenario 1, the CMP reorders transactions to avoid
concurrent conflicts. Although the withdrawer transaction can
commit, it may need to re-execute in future (if deposits must
precede withdrawals for example). In scenario 2, our approach
is illustrated where a semantic abort occurs and each thread
re-executes a different permutation of the aborted transactions.

The CMP is activated when thread a encounters a semantic
conflict (causing a to explicitly abort its transaction). Before the

aborted transaction is restarted, thread a enters a new session
mode. During session mode, a re-executes its own transaction in
addition to the transactions of any other session mode threads.
Each session mode thread executes a single permutation of trans-
actions, to discover a schedule of transaction execution which
resolves the semantic conflict.

When there are no further transactions to execute, each thread
performs consensus to determine the permutation to be com-
mitted. Consensus is managed using the UC, which is essentially
a linked-list that may be concurrently appended to by threads
engaged in session mode. Each new entry of the UC identifies
the transactions that have been committed during a particu-
lar session. Once a session has terminated each participating
thread can determine whether its own transaction was commit-
ted or aborted by reading the log of the UC. Those threads whose
transactions remain uncommitted perform a new session, while
the threads of the committed transactions return to non-session
mode.

This approach to CMP for STM was the first to use addi-
tional threads to provide multiple serialised executions of aborted
transactions in parallel. This was achieved without the overhead
of a thread-pool. However, the number of additional threads
required to calculate multiple serialised execution for aborted
transactions is based on the number of aborted transactions. The
probability of having large amounts of aborted transactions is
high as there are many more threads on the GPU which makes the
conflict rate higher than on the CPU. The expense of having more
threads providing multiple serialised executions is not acceptable
as it is running on the CPU.

2.6. Transactional memory on GPU

The ability of the GPU to handle considerably more threads
than the CPU has recently led to increased interest in utilis-
ing transactional memory for GPU. Both hardware and software



Q. Shen, C. Sharp, R. Davison et al. / Journal of Parallel and Distributed Computing 139 (2020) 1–17 5

transactional memories have been proposed for the GPU archi-
tectures.

On the hardware side, Kilo TM was proposed [13] in 2011. It
implements a specific Commit Unit to carry out lazy conflict de-
tection and version management. WarpTM [6,12] improved this
by considering read-only transactions, reducing bus communica-
tion and early conflict detection. GPU-LocalTM [31,32] is an eager
approach on the other hand, which supports synchronisation at
local memory level. All these approaches must modify current
GPU hardware architecture which means they cannot directly be
applied on current commercial GPUs.

The first STM on the GPU that operates at the granularity
of a thread-block (as opposed to the granularity of individual
threads) is described in [5]. The thread-block approach avoids
dependency between threads within a single block. This coarse
granularity reduces contention due to the typically high thread
numbers available on GPU, but does not accommodate workloads
more appropriate for GPU execution. Generic modifications to
improve the performance of algorithms with irregular access
patterns have been proposed [24]. GPU techniques to speed up
execution by reducing the usage of atomic operations have also
been explored [23].

An approach, labelled GPU-STM, which does operate at the
granularity of the individual thread, is described in [34]. The
technique is based on a hierarchical validation system which is
a combination of time-stamp and value based validation. Locks
must be sorted whenever transactional reading or writing takes
place, to avoid the possibility of livelock. The technique described
in our paper avoids the necessity for sorting locks due to the
introduction of a static priority rule. The lock sorting is a novel
way to solve extra livelock possibilities introduced by lock-step
execution mode on the GPU, but the overhead is comparatively
high as every read or write operation in a transaction has to
search and/or update the lock table. We utilise GPU-STM as the
comparator during the evaluation of our system.

Three lightweight techniques for software transaction man-
agement on GPU are described in [19]. Firstly ESTM (eager) up-
dates shared memory during transaction execution while
maintaining an undo log which is used to remove those up-
dates upon an abort. Secondly PSTM (pessimistic) is a simpler
version of ESTM treating reads and writes in the same manner,
which increases the effectiveness when transactions regularly
read and write to the same shared data. Finally ISTM (invisible)
which can represent invisible reads to reduce conflicts during a
transaction. However none of these three techniques allow for
lock-stealing based on thread priorities. While [19] compares the
performance of each algorithm with the CPU, only basic fine-grain
and coarse-grain locking benchmarks are employed.

2.7. Contribution

We consider the increased threading available within the GPU
as an opportunity to explore transactional ordering that not only
resolves concurrent conflicts at the data integrity layer, but at the
application semantic layer also. In doing so we present a CMP
implementation that improves overall application performance in
terms of successful transactional commit ordering while promot-
ing the logical progression of an application. We demonstrate our
approach with well known benchmarking applications and com-
pare our approach against the closest state-of-the-art. However,
as this is the first time semantic consideration for thread schedul-
ing on the GPU is employed, we also demonstrate the usefulness
of our unique technique. A significant contribution in the context
of developing threaded applications is that programmers do not
have to consider the ordering of concurrent actions to promote
application progression and avoid semantic conflict.

The reason why aborted transactions (divergence of execution)
is of significant importance on the GPU is the batch nature of exe-
cution. In a warp an increase in divergence of execution amongst
threads increases the serial nature of the execution, rendering the
batch approach quite inappropriate.

To date the authors are not aware of any works addressing
semantic conflict in transaction scheduling on the GPU.

3. Implementation

We have introduced our semantically aware universal con-
struction for transactional memory systems [28,29] in previous
works. We now describe how to modify and apply the technique
to GPGPU scenarios via a priority rule-based software transac-
tional approach, which we label PR-STM. The work provides a
generalised contention manager which removes a requirement
for the application programmer to order transactions appropri-
ately to optimise performance by minimising concurrent and
semantic conflicts resulting from thread divergence in GPGPU
scenarios.

3.1. Priority rule based STM for GPU

In order to evolve our semantic approach to CMP for use on
the GPU, we introduce a priority rule based STM (PR-STM). Two
fundamental differences between the CPU and GPU must be taken
into account when implementing a CMP for GPU. Firstly there is
potentially a significantly higher number of threads available on
a GPU, and secondly GPU threads are grouped together as a warp
with similar execution traces. A common instruction counter is
used by all threads in a warp, so they execute each instruction in a
lock-step fashion. High levels of contention are more likely due to
the increased number of threads available. Furthermore, deadlock
and livelock are possible as threads in the same warp cannot
coordinate their access to locks in the same manner as on the
CPU and any divergence present could result in the deactivation
of many threads (reducing the parallel nature of execution much
more than a CPU counterpart).

We introduce a lock-stealing algorithm which prevents the
possibility of livelock and deadlock. This is achieved by assigning
a unique static priority to every thread. A thread may then steal
a lock from any thread with a lower priority than its own. This
addresses the issue of deadlock as a thread can always determine
its next action when locked data is encountered. The possibility
of livelock is also removed as threads can never attempt to per-
petually steal each others locks (the thread with highest priority
would take the lock while other threads rollback their actions).
The way in which PR-STM addresses livelock and contention
management is illustrated in Fig. 4.

A thread with high priority may cause a starvation problem
during parallel computing on CPU. However, due to the execution
model of the GPU, all threads will be assigned the same amount of
transactions at start-up, with no more transactions added during
their execution. Even if the thread with highest priority blocked
all other threads (the worst case), other threads can still carry
out their transactions after the highest priority one terminates.
The possibility of starvation is therefore eliminated partly due to
the nature of execution on the GPU.

In PR-STM, threads attempt to acquire locks at the end of their
transactions (i.e., when ready to commit). Before committing, a
thread must first attempt to validate its transactions by pre-
locking the shared data. The priority rule still allows pre-locked
data to be stolen by a thread with a higher priority. If validation is
successful without locks stolen by other threads, the thread com-
mits the transaction. Invisible reads are implemented to allow
threads to maintain a version of the data they have accessed so



6 Q. Shen, C. Sharp, R. Davison et al. / Journal of Parallel and Distributed Computing 139 (2020) 1–17

Fig. 4. Livelock avoidance on GPU.

an early abort can occur if a conflict is detected. The cost of false
conflict is therefore reduced as a thread which encounters data
that has been locked by a thread which will abort in the future
does not itself need to abort.

Two types of metadata are required for PR-STM - global meta-
data which is shared among all threads, and local metadata which
is private to a particular thread. The metadata used is as follows:

• Global: The global lock table contains a set of unique locks,
each of which references shared data. Each lock can ref-
erence a variable number of words of data, enhancing the
scalability of the system. However the greater the number of
words of data referenced from a single lock, the greater the
potential for false conflict based on shared locks. Each entry
in the global lock table is an unsigned integer composed of
the version (11 bits), owner (19 bits), locked flag (1 bit) and
pre-locked flag (1 bit).
• Local: The local read set contains the current thread’s set of

reads. Each entry comprises a memory location, version and
value. The local write set contains the current thread’s set of
writes.
• The local lock set contains the locks set by the current

thread. Each entry consists of a lock index into the global
lock table, and the lock version. Thread priorities along
with lock versioning provide the required information for
lock-stealing.

A number of functions are required for correct operation of
the PR-STM. Algorithm 1 shows the pseudocode for each of these
functions. The ‘⟨⟩’ tuples means all data inside the tuple will
be passed (read or write) at the same time (e.g. line 4 means
checking whether that address and a value need to be set to that
address is already in local write set).

3.1.1. txStart
Before a thread begins or restarts a transaction, the function

txStart is called. The thread’s local read, write and lock sets are
initialised to be empty. The thread then sets its local abort flag to
false.

3.1.2. txRead
When a thread attempts to read shared data from global

memory, the txRead function is invoked. If the shared data is
already locked by another thread, then the transaction is aborted

and restarted. If the data has not already been locked, then the
local write set is checked to see if the data has already been added
to it (if so, the stored value is returned). If the data is not in
the local write set then it is retrieved from the global memory,
and added to the local read set, before being returned from the
function.

3.1.3. txWrite
The txWrite function is invoked each time the thread attempts

to write data. If the data is already locked then the abort flag is
set, indicating that the transaction must abort and restart. If the
data is not already locked, it is added to the local write set (or, if
the data is already in the local write set, the value is updated).

3.1.4. txValidate
Before a transaction commits, the txValidate function is in-

voked. A lock is attempted on all shared data that the thread
wants to write to, and validation is performed on all shared data
that the thread has read. The thread first checks whether it has
the highest priority on all shared data in its read set and write
set by invoking prelock. The data in its read set is then validated
by checking that the version of each piece of data has not been
changed. The final validation step is to attempt to lock all the
data. If any step is unsuccessful then the transaction is aborted.

3.1.5. txCommit
If a transaction has been successfully validated, the txCommit

function is invoked. The global shared memory that is referenced
in the thread’s local write set is written to, and a thread fence
is executed. The thread then updates the version number in the
global lock table for each lock in its lock set, either incrementing
it, or resetting it if the value has reached its maximum.

3.2. CMP for PR-STM

The contention management policy for PR-STM uses locks to
protect shared data and to implement the priority rule policy.
Each lock is a 32-bit word comprised of:

• Bits 1–11 contain the current version of the lock. This ver-
sion is incremented whenever an update transaction is suc-
cessfully committed. The version would be reset to 0 when
it exceeds the value that these 11bits can represent (211,
2048), so there is no limitation of the number of modifica-
tions on a memory address.



Q. Shen, C. Sharp, R. Davison et al. / Journal of Parallel and Distributed Computing 139 (2020) 1–17 7

ALGORITHM 1: Pseudocode for PR-STM functions txRead, txWrite,
txValidate and txCommit

function txStart()
1 readSet ← writeSet ← lockTable← ∅;
2 abort ← false;
function txRead(Address addr)

3 if getLockBit(g_lock[hash(addr)]) = 0 then
4 if < addr, valWritten >∈ writeSet then
5 return valWritten ;

else
6 value← atomicRead(addr);
7 version←

getVersion(atomicRead(g_lock[hash(addr)]));
8 readSet ← readSet ∪ {< addr, value, version >};
9 return value;

else
10 abort ← true;
11 return 0;

function txWrite(Address addr, Value val)
12 if getLockBit(g_lock[hash(addr)]) = 0 then
13 if < addr, valWritten >∈ writeSet then
14 < addr, valWritten >←< addr, val >;

else
15 idx← hash(addr);
16 version← getVersion(g_lock[idx]);
17 writeSet ← writeSet ∪ {< addr, val >};
18 lockSet ← lockSet ∪ {< idx, version >}};

else
19 abort ← true;

function txValidate()
20 if tryPreLock() = true then
21 for all< addr, value, version >∈ readSet do
22 if getVersion(g_lock[hash(addr)]) ̸= version then

return false;

23 return tryLock();
else

24 return false;

function txCommit()
25 for all < addr, val >∈ writeSet do
26 ∗addr ← val;
27 _threadfence();
28 for all< idx, version >∈ lockSet do
29 if version < maxVersion then
30 setVersion(g_lock[idx], version + 1);

else
31 setVersion(g_lock[idx], 0);

• Bits 12–30 contain the priority of the thread which has
pre-locked the data. The lower the value, the higher the
priority. These bits can present 219 (524288) threads which
is enough for current GPU frameworks. If there are more
than 524288 threads, we could use an unsigned integer to
present the pre-locked thread number, and the limitation
would be expanded to 232, but the storage overhead would
increase in the mean time.
• Bit 31 is a flag to indicate whether the lock is currently pre-

locked. Threads with a higher priority may steal a pre-locked
lock.
• Bit 32 is a flag to indicate whether the lock is locked. If set,

no other thread can steal the lock.

The storage overhead of the system on global memory is
the number of locks integer. Because the locks number can be

manipulated on demand by modifying the lock coverage, the
overhead could be from the number of items integer (which can
achieve the best performance, there would be no fault conflict as
each item is bound to a different lock) to 1 integer (which will
achieve the worst performance, all items were bound to a single
lock, a sequential computing likely fashion).

ALGORITHM 2: Pseudocode for locking mechanisms for PR-STM
functions tryPreLock, tryLock and releaseLocks

function tryPreLock()
1 for all< idx, version >∈ lockSet do
2 repeat
3 tmpLockVal← g_lock[idx];
4 if getVersion(tmpLockVal) ̸= version
5 or getLockBit(tmpLockVal) = 1
6 or(getPreLockBit(tmpLockVal) = 1 and

getOwner(tmpLockVal) < threadIdx) then
7 releaseLocks();
8 return false;
9 preLockVal←

calcPreLockedVal(version, threadIdx);
until atomicCAS(g_lock+idx,tmpLockVal,preLockVal) =
tmpLockVal;

10 return true;
function tryLock()

11 for all< idx, version >∈ lockSet do
12 PreLockVal← calcPreLockedVal(version, threadIdx);
13 FinalLockVal← calcLockedVal(version);
14 if atomicCAS(g_lock+idx,PreLockVal,FinalLockVal) ̸=

PreLockVal then
15 releaseLocks();
16 return false;

17 return true;
function releaseLocks()

for all idx ∈ PreLocked do
18 preLockVal← calcPreLockedVal(version, threadIdx);
19 atomicCAS(g_lock+idx,preLockVal,preLockVal-1);

for all idx ∈ Locked do
20 unLockVal← calcUnlockVal(version);
21 g_lock[idx] ← unLockVal;

The handlers required to manage the locking mechanisms for
PR-STM are tryPreLock, tryLock and releaseLocks. The pseudocode
for these handlers is shown in Algorithm 2.

3.2.1. tryPrelock
When a thread attempts to pre-lock shared data, the tryPre-

Lock handler is called. Each lock in the local lock list is checked for
three things: its availability, whether the lock versions are consis-
tent, and whether there is an existing pre-lock from a thread with
a higher priority. If any of these checks fail, the thread releases
all locks that it has previously pre-locked and aborts. Otherwise
the thread attempts to pre-lock the lock with an atomic compare
and swap (CAS). If the CAS fails then another thread must have
accessed the lock, so the checks are repeated until either the
transaction is aborted, or the CAS succeeds (meaning this thread
has the highest priority of the threads attempting to pre-lock the
lock).

3.2.2. tryLock
When a thread has successfully pre-locked every lock in its

local lock set, the tryLock handler is invoked. The thread attempts
to lock each of its pre-locked locks with a CAS operation. If the
CAS fails then the lock must have been stolen by a higher priority
thread, so this thread releases all its locks and aborts.



8 Q. Shen, C. Sharp, R. Davison et al. / Journal of Parallel and Distributed Computing 139 (2020) 1–17

Fig. 5. Unnecessary retries are avoided by acquiring new transactions when a semantic conflict occurs.

3.2.3. releaseLocks
When a thread either commits or aborts, it invokes the release-

Locks handler. All locks on the local lock list are released (both
pre-locked and locked). A CAS must be used to release pre-locked
locks, in case that lock has been stolen by a higher priority thread.

3.3. Semantic conflict

Unlike threads on the CPU, groups of GPU threads execute
in lock-step fashion, sharing a single instruction counter. In GPU
terminology, this group of threads is called a warp and may con-
sist of 1 to 32 threads. We have introduced a priority-rule based
approach (PR-STM) for resolving concurrency conflicts on the
GPU within software transactions. PR-STM avoids livelock, which
is caused by a warp of GPU threads continuously generating the
same concurrency conflicts due to lock-step memory access.

When semantic conflicts are introduced to the application
they: (a) increase the possibility that transactions must abort;
(b) reintroduce the possibility of livelock. For example, a trans-
action may now abort due to either a concurrency conflict or
the semantics of the application preventing the transaction from
completing (e.g. attempting to remove from a shared buffer which
is empty). Furthermore, if the shared buffer remains empty, then
the transaction may never commit and is in a state of livelock.

It is the objective of PR-STM to reduce the rate of aborts caused
by semantic conflict and reduce the possibility of livelock. Elim-
inating livelock completely requires some transaction to always
exist that will resolve the semantic conflict. For example, a trans-
action which appends items to an empty buffer or deposits funds
in a bank account from which another transaction is attempting
to dequeue/withdraw. Meeting this requirement is outside the
scope of PR-STM. Furthermore, the application programmer must
identify one simple priority permutation by tagging each type
of transaction with a number. For example, in a bank scenario,
the programmer must tag the deposit function with a number 1
and the withdraw function with a number 0 indicating that a
deposit should precede a withdraw. This is the only consideration
required by a programmer to ensure appropriate progression of
the system.

Fig. 5(A) shows transaction execution without a semantic CMP.
Thread x attempts to withdraw funds from a bank account that
is empty and aborts/retries until the account has been deposited
with funds by thread y. The number of extra retries depends
on the time taken for another transaction to deposit funds into

the account which can be arbitrarily large causing unnecessary
resource consumption. Furthermore, as thread numbers grow so
does the potential for a greater amount of unnecessary resource
consumption.

In Fig. 5(B) all transactions are now stored in a global transac-
tion table. As the scenario begins both threads encounter semantic
conflicts. Unlike Fig. 5(A), semantic conflicts now cause each
thread to abandon their transactions rather than retrying. Instead,
the threads acquire new transactions from the global transaction
table. At some future time the abandoned transactions are re-
executed, possibly resolving the original semantic conflicts if
conditions have changed sufficiently (if withdrawals can now be
made because deposits have now taken place).

3.4. Semantic contention management policy

We use a postpone strategy to deal with semantic conflict
and a global transaction table to store transactions (see Fig. 6).
When semantic conflict occurs, the thread aborts the transaction
and reads the next uncommitted transaction from the global
transaction table. As the search wraps back to the start of the
allocated transaction block, threads will retry previously aborted
transactions. After all transactions belonging to a thread com-
plete, the finish flag for this thread will be set, and after all
threads are finished the result will be transferred back to CPU
memory.

Pseudocode for the management of semantic conflict in this
manner is shown in Algorithm 3.

mainKernel is invoked when the GPU launches a thread to
carry out a block of transactions. Firstly a thread gets a transaction
block allocated. Because all transactions one thread needs to
execute are sequential in instruction table, a thread can use its
thread index multiply transaction number each thread needs to
execute to get the start instruction index in instruction table (line
1), and calculate the finish instruction index by calculating the
start point of next thread (line 2). Then it tries to execute all
transactions in that block sequentially. When a thread reads a
transaction from the allocated block of the global transactions
table, it checks whether this transaction has already been com-
mitted. If this transaction has not been committed, it will call the
doTransaction function to execute it. If a transaction is successfully
committed, this thread will set the finish flag to true in the global
transaction table.

When a thread encounters a concurrent conflict and can-
not complete because of lower priority, the thread will try to



Q. Shen, C. Sharp, R. Davison et al. / Journal of Parallel and Distributed Computing 139 (2020) 1–17 9

Fig. 6. PR-STM maintains a global transaction table to provide GPU threads with transactions to execute.

ALGORITHM 3: Pseudocode for mechanisms to deal with semantic
conflict

function mainKernel()
1 startIns← threadIdx ∗ transEachThread;
2 finishIns← (threadIdx+ 1) ∗ transEachThread;
3 while startIns < finishIns do
4 anyNotFinish← false;
5 for i← startIns to finishIns do
6 if g_insTable[i].finish = false then
7 if doTransaction() = succeed then
8 ginsTable[i].finish← true;
9 if doTransaction() = concurrentConflict then

10 doTransaction();
11 if doTransaction() = semanticConflict then
12 anyNotFinish = true;

13 if anyNotFinish = false then
14 startIns← i+ 1;

function doTransaction()
15 if txRead() = false then
16 return concurrentConflict;
17 if semanticConflictDetect() = true then
18 return semanticConflict;
19 if txWrite() = false then
20 return concurrentConflict;
21 if txValidate() = true then
22 txCommit();
23 return succeed;

else
24 return concunrrentConflict;

execute the transaction again. If a semantic conflict is encoun-
tered the thread will skip the transaction and begin the next
available transaction while setting a variable to indicate that a
previous transaction has been skipped. The thread is finished
when all transactions in the allocated transaction block have been
committed.

doTransaction is called after a thread reads a transaction from
the global transaction table. There can be different types of
transaction (e.g. deposit, transfer or withdraw) defined by the
transaction type read from the global transaction table. If the

executing transaction is not read-only, a thread has to check
whether it encounters a semantic conflict (e.g. a withdraw trans-
action occurring before a required deposit transaction). If so,
a semanticConflict flag is returned. If a concurrent conflict is
encountered the thread will abort with a concurrentConflict flag,
otherwise, it will commit updates with a succeed flag. The se-
mantic conflict result must be determined by the programmer by
identifying which situation is a semantic and returning a certain
value in the code (e.g. in the bank scenario, the programmer
needs to return 2 when insufficient money is in one account),
and the system will check whether there is a semantic conflict
by detecting return values.

The overhead of this semantic conflict management mecha-
nism is 15% in timely execution. We compared our approach with
a previous version [30] which has no mechanism for dealing with
semantic conflict.

4. Results and evaluation

To evaluate our system, we compare the performance of PR-
STM with GPU-STM [34]. The GPU-STM is the only acceptable
related work as it is also a software transactional memory deploy-
ment on the GPU which focuses on concurrent conflict resolution.
The authors of GPU-STM compared their work to other STMs on
the GPU, indicating that GPU-STM performs well (as they do not
have the sophistication found in GPU-STM regarding contention
management). Therefore, by comparing our work to GPU-STM we
identify the appropriateness of our solution in the context of the
wider comparisons GPU-STM has already achieved.

Systems on the CPU that can deal with semantic conflict can
only launch a few threads and are not comparable to our system.
This is primarily because the CPU is a completely different prob-
lem in the area of concurrency control as the overhead involved
in its resolution is much lower in terms of thread blocking com-
pared to its GPU counterpart: warps must deactivate divergent
threads and serialise execution — described more in the ear-
lier background section of this paper. Furthermore, threads may
enact quite different execution traces on the CPU and provide
a continuous execution rather than batch as witnessed on the
GPU. Therefore, comparing CPU contention management with
GPU contention management makes little sense.

Evaluation is made in the context of transaction throughput
and scalability. We evaluate performance for generalised appli-
cation usage (semantic transactions present). Only transactions



10 Q. Shen, C. Sharp, R. Davison et al. / Journal of Parallel and Distributed Computing 139 (2020) 1–17

successfully committed are counted for performance and those
retry transactions are not counted. In each case we compare
results for instruction sets which have and have not been pre-
ordered to avoid semantic conflict. We then present results which
evaluate the performance of each CMP as the ratio of semantic
transactions is increased from 0% to 100%.

Five scenarios are used to benchmark our technique against
GPU-STM to demonstrate that PR-STM is a generalised solution.
The benchmarks Bank (a simple benchmark provided as part of
tinySTM [11]), Vacation and Kmeans (from Stanford Transactional
Applications for Multi-Processing (STAMP) [21]), SkipList [18] and
Graph Processing are used. Bank is a relatively straightforward
scenario showing performance in a simple application. Vacation
involves a much higher conflict rate due to the fixed number
of room types accessed by a high number of threads. SkipList
and Graph Processing are commonly used benchmarks for parallel
computing system performance with complex data structures.
Kmeans is a widely used algorithm in clustering.

For each benchmark scenario, results are presented as three
parameters are varied:

• The number of threads. Increases in the number of threads
utilised increases the chances of conflict as threads are
more likely to compete for the shared resource. The default
number of threads used in the experiments is 6720.
• The lock coverage. Each lock covers a greater amount of

shared resource; the potential for conflict increases but
there is a reduction in the memory requirement. The default
hash value used in the experiments is 1. Both GPU-STM and
PR-STM use a hash number approach to explicitly control
how many memory addresses share one lock. With a higher
hash number, a greater contention rate can be expected.
• The ratio of semantic transactions. The performance of each

system is assessed as the amount of semantic conflict in-
troduced by the application increases. The default semantic
transaction ratio used in the experiments is 100% (repre-
senting generalised usage).

For each of these experiments four graphs are presented com-
paring the throughput of PR-STM and GPU-STM. The graphs show
results from experiments where the transactions are either all
read/write or 20% read-only. For each of these cases results are
shown with and without a stage when the transactions are pre-
sorted to avoid semantic conflict (replicating the task of the
application programmer).

All experiments are carried out on a server with a CPU (Intel
Xeon E5-2630 v3) running at 2.4 GHz. The GPU was a NVidia
GeForce GTX 1080 with a clock speed of 1733 MHz, 8 Gb of
GDDR5X memory and 20 streaming multiprocessors each of
which has 128 CUDA cores. The operating system was Linux. The
two CMPs (PR-STM and GPU-STM) were implemented with the
CUDA 9.2 runtime library.

The shared data, including global lock table, are allocated in
off-chip global memory. In the PR-STM implementation, local
metadata is stored in thread-local memory, whereas for GPU-
STM, metadata is stored in global memory but the pointers to the
data are in local memory [34]. For both implementations, the local
metadata is cached at the L1 and L2 levels, and the global data is
cached only at the L2 level as the L1 cache is not coherent [30].

4.1. Implementation of bank and vacation benchmark

The bank scenario was the first to be used to benchmark the
performance of the two systems. Bank consists of an array of bank
account structures and allows the execution of a number of trans-
action types on these simulated bank accounts. Each transaction

stands for one behaviour operated by a person, they can enact a
deposit, withdraw, transfer or a combination of these options.

As many threads are available on a GPU, a sizeable number
of accounts were created in shared data for the bank scenario. A
memory block of 10MB was set aside for the creation of roughly
2.5 million accounts. This allows the observation of both low and
high contention as the scenario parameters are varied. The bank
scenario was adapted to our needs in a number of ways:

• The hashing function used by both CMPs was modified so
that the amount of shared data covered by a single lock can
be varied. This allows investigation into the amount of false
sharing.
• Results are included where the number of threads is in-

creased, to observe the contention caused by the high num-
bers of threads available on GPU.

The Vacation scenario implements a hotel room coordination
system which handles the booking and cancelling of certain types
of hotel room concurrently. It is commonly used as part of the
STAMP benchmarking suite [21]. The vacation scenario involves
transactions which tend to execute more statements of greater
complexity than those in the bank scenario [28].

As the vacation benchmark is designed for CPU implementa-
tion, some adjustments were made to ensure compatibility with
GPU operation. The variables available in the Vacation scenario
for evaluation include the hash number and the number of trans-
actions per thread (TPT). This provides the base environment for
the performance testing. The TPT is used to examine the vitality
of a thread. The more transactions a thread executes, the longer
it is active, which allows us to evaluate the ability a thread has
to proceed through different concurrent situations.

In the Vacation scenario, semantic conflict occurs when an
attempt is made to book a type of room that is sold out. For
sequential computing, it is easy to deal with this eventuality —
the unsatisfied customer is added to a waiting list, and when a
suitable room becomes available the first customer on the waiting
list is allocated that room. However, in the context of parallel
computing, there is no trivial solution to this issue because the
instructions are executed in an arbitrary order and the threads are
isolated from each other. One way to handle this issue is to have
the threads that want to book an unavailable room listen to the
account of the type of room. Once the type of room is available
again, all the threads compete for it using some atomic operation,
with one being selected to be successful.

PR-STM provides a solution to semantic conflict by running
through the instruction table, if a semantic conflict occurs, the
instruction is added to an array of instructions which have in-
curred semantic conflict. After the kernel finishes the whole
instruction table, it will continue to execute instructions from
the recorded array until all the semantic conflicts are resolved
or abandoned [4].

GPU-STM provides no semantic conflict solution. To make
benchmarking more scalable for this evaluation, a simple seman-
tic conflict solution has been added to GPU-STM. If conflict occurs,
the instruction will not be aborted instantly. Instead it is given
a limited number of chances to retry. The number of chances is
recommended to be adjusted according to the size of data [34].
As we use a fixed size of shared data, the retry limit for GPU-STM
is set to 100 for all benchmarks.

Results are shown for the case when all threads perform
update transactions (i.e., read and write operations), and also the
case when 20% of threads execute read-only transactions. This
approach allows the impact of invisible reads in the scenarios to
be analysed. Each test lasted for 5 s, and was executed 10 times
with the average results presented.



Q. Shen, C. Sharp, R. Davison et al. / Journal of Parallel and Distributed Computing 139 (2020) 1–17 11

Fig. 7. Bank and vacation scenario average throughput with increasing number of threads. Graphs A and C have all read/write transactions, graphs B and D have
20% read-only transactions. Graphs A and B have no pre-sorting of transactions to avoid semantic conflict, whereas graphs C and D do.

4.2. Performance of bank and vacation benchmark

The graphs in Fig. 7 show the transaction throughput achieved
when the number of threads available for resolution is increased.
In each case the performance of PR-STM is compared to that of
GPU-STM on the GPU. Graphs A and B show the results for the
generalised application (i.e. 100% semantic transactions with no
pre-ordering). As GPU-STM is not designed to handle semantic
conflicts it performs poorly in these circumstances (the y axes are
presented as logarithmic to better distinguish the performance
of GPU-STM as the thread count increases). Graphs C and D
show results where the application’s instructions have been pre-
ordered to avoid semantic conflict, so that the transactions are
more suited to GPU-STM, allowing us to assess both CMPs in a
less generalised context.

The number of threads available was varied between 960 and
9600. The throughputs achieved by PR-STM and GPU-STM for the
cases when all threads perform read and write transactions, and
when 20% of threads perform read-only transactions respectively
are presented. In all cases PR-STM outperforms GPU-STM. The
introduction of 20% read-only threads causes only a minimal
change in throughput in both cases, so it appears that read-only
transactions have little effect on GPU performance.

The vacation benchmark scenario utilised consists of 150,000
customers attempting to book rooms of 1000 different room
types (with 150 rooms of each type available). For a booking
transaction, a random customer is allocated a random room type
to attempt a booking. For a cancellation transaction, an already-
booked customer is selected at random to cancel a room of
the selected room type. The choice of hash number in each
algorithm gives a certain number of consecutive data addresses
only one lock, so it is necessary to make the room type account
non-consecutive. Otherwise, the processing will simply occur se-
quentially. Therefore, we set the interval between each room type
account to 100.

Increasing the number of threads means there is an increase
in the available computing resource. Our results show an increase
in throughput which is a little less than linear. This is because as

more threads work in parallel, the conflict rate also increases (as
the total shared resource is steady). The scalability of PR-STM is
demonstrated by the increase in throughput, compared to GPU-
STM across all thread numbers. An important aspect of a GPU
based solution is it can launch a much greater number of threads
than a CPU solution, so scalability is of interest. Even in the
Pre-sorted scenarios, PR-STM still perform better than GPU-STM
because GPU-STM has to execute a search and insert operation in
every read and write function, which is costly because each time
this occurs all threads in the same must be deactivated and wait
for the slowest one. On the other hand, PR-STM only performs the
divergence pre-lock operation in the commit session once each
transaction and consume much less time than GPU-STM.

Tests were also carried out with a modified hash function,
which determines the number of accounts that can be covered
by a single lock. The lower a hash value, the less chance of a
thread trying to access the same lock when reading or writing to
different shared data. The number of threads remained at 6720.
The results are shown in Fig. 8 for the cases when all threads
perform read and write transactions, and when 20% of threads
perform read-only transactions respectively. The y-axes show the
number of transactions per second as logarithmic, and the x-axes
show the hash function value, which is the number of accounts
covered by a single lock.

A decrease in throughput is seen in both GPU-STM and PR-STM
as the number of accounts per lock is increased. The performance
of both CMPs decreases because of increased false conflict, but
reduced lock querying counters this somewhat (as both CMPs use
lock-sets), as does reduced bus traffic when querying the status
of those locks (due to coalescence of memory). When 20% of the
threads are read-only, throughput is only slightly improved for
both CMPs.

4.3. Bank and vacation semantic transactions

We now consider performance under varying levels of se-
mantic conflict to assess the performance of our algorithm in
comparison to that of GPU-STM in situations where transactional



12 Q. Shen, C. Sharp, R. Davison et al. / Journal of Parallel and Distributed Computing 139 (2020) 1–17

Fig. 8. Bank and Vacation scenario average throughput with increasing lock coverage. Graphs A and C have all read/write transactions, graphs B and D have 20%
read-only transactions. Graphs A and B have no pre-sorting of transactions to avoid semantic conflict, whereas graphs C and D do.

Fig. 9. Bank and vacation scenario average throughput with increasing ratio of semantic transactions. Graphs A and B show results when the application has
pre-ordered transactions to avoid semantic conflict, graphs C and D show results when that application-level ordering has not occurred.

conflict is caused by the semantics of the application. Fig. 9 shows
the rate of transaction throughput as the semantic transaction
ratio is increased from 0% to 100% for two situations. In the
first the application has not pre-ordered transactions to avoid
semantic conflict, whereas in the second that ordering has oc-
curred. The number of threads used was kept constant at 6720
and the hash number was 1 (i.e. every account gets a lock to
avoid false conflict). In each graph, Y-axes show the number of
transactions committed per second as logarithmic and X-axes

show the percentage of semantic transactions in the transaction
table.

Fig. 9 C and D show results after the transaction table has
been sorted to avoid semantic conflict. This allows us to com-
pare performance of GPU-STM and PR-STM in a situation which
both are expected to handle — the onus on sorting the trans-
actions is left to the application programmer. For example, a
semantic conflict could be resolved by ordering a withdrawal
transaction shortly after a deposit transaction, thus allowing the



Q. Shen, C. Sharp, R. Davison et al. / Journal of Parallel and Distributed Computing 139 (2020) 1–17 13

Fig. 10. Throughput of skiplist scenario with increasing number of threads. Graphs A and C have all read/write transactions, graphs B and D have 20% read-only
transactions. Graphs A and B have no pre-sorting of transactions to avoid semantic conflict, whereas graphs C and D do.

withdrawal to succeed with minimum retries. PR-STM produced
higher throughput than GPU-STM even when the transactions
were sorted. As the semantic conflict rate was increased GPU-
STM decreased in throughput very slightly while PR-STM began
to improve. This is because PR-STM can benefit from temporarily
abandoning transactions with semantic conflicts and searching
for new transactions, causing fewer conflicts overall.

The graphs in Fig. 9 A and B show the results with no sorting
of the transaction table (i.e., for a generalised situation). In this
case, GPU-STM cannot deal with semantic transactions — the sim-
ulation aborts after 100 failed attempts. Introduction of semantic
conflicts representing as little as 5% of the overall transactions
shows a very rapid decline in performance. Note that the y-
axes are logarithmic to better illustrate the relative performance
of GPU-STM as the ratio of semantic conflict increases. PR-STM,
however, copes well with the increased ratio of semantic conflict
with little degradation after the initial drop-off.

While there is an increased cost in PR-STM’s ability to han-
dle semantic conflict, the fact that it can handle any form of
conflict makes it an appealing solution. The requirement for the
application programmer to correctly order transactions to provide
no semantic conflict is removed, and a generalised solution is
provided.

4.4. Implementation of skiplist benchmark

A skip-list is, effectively, a hierarchical linked-list. The skiplist
benchmark is commonly used to assess contention resolution in
transactional memory. In our implementation of the benchmark
we use an initial array of 5000 entries, with sufficient memory
allocated to expand this to 10 million entries (so that there are
no allocation issues). The maximum number of hierarchical levels
is set to 5. Three types of transactions are invoked by threads at
random - a thread may insert a new element into the skip-list,
delete an element, or simply search an element (i.e., a read-only
transaction).

The use of skiplist as a benchmark allows us to further assess
the scalability of the CMP. The hierarchical nature of the skip-list

means that, in order to complete an insert or delete transaction,
multiple nodes must be read from and written to. A higher rate
of lock contention can therefore be reached than with the other
benchmarks that have been considered [22].

4.5. Performance of skiplist benchmark

The concept of semantic transactions does not apply to the
skiplist benchmark, as the application cannot attempt to insert
a duplicate entry or remove a non-existent one. Evaluation was
therefore limited to increasing the threads count and the hash
number, allowing an assessment of PR-STM compared to GPU-
STM for an application to which both are suited.

Fig. 10 shows the throughput achieved by both CMPs in the
skiplist benchmark as the number of threads is increased. The
hash number was set to the default value of 1 for these ex-
periments. As there is no semantic conflict, the performance of
GPU-STM is improved in comparison to that achieved in the bank
and vacation scenarios. However PR-STM still achieves higher
throughput in all cases. Again the introduction of 20% read-only
transactions has a minimal effect on throughput for both CMPs.

The results from evaluating performance as the hash number
is increased in the skiplist benchmark are shown in Fig. 11. In
these experiments the thread number was set at 1536. Once again
PR-STM is outperforming GPU-STM in all cases as PR-STM does
not overly rely on global memory for evaluating the outcomes
this execution domain.

4.6. Implementation of K-means benchmark

The kmeans benchmark groups objects into K clusters. In our
implementation, we try to partition around 1 million points
(which consist of two integers indicating a 2D position) into 16
clusters, and the maximum iteration time is 5. Two types of
operations are assigned to threads in different stages: assignment
stage and update stage. In the assignment stage, each thread is
allotted a certain number of points and calculates which cluster
each should belong to. In the update stage, threads are invoked



14 Q. Shen, C. Sharp, R. Davison et al. / Journal of Parallel and Distributed Computing 139 (2020) 1–17

Fig. 11. Throughput of skiplist scenario with increasing hash number. Graphs A and C have all read/write transactions, graphs B and D have 20% read-only transactions.
Graphs A and B have no pre-sorting of transactions to avoid semantic conflict, whereas graphs C and D do.

Fig. 12. Throughput of kmeans scenario with increasing threads number and hash number.

to calculate the new centroids of clusters. In practice, the first
stage transactions are not required as there is no conflict, so
transactions are only invoked in the second stage. In the update
stage, different threads that try to update the same cluster leads
leading to conflict.

The kmeans benchmark allows us to discover how the CMP
works when the read conflict rate is much higher than the write
conflict rate. Moreover, the update stage takes much more time
than the assignment stage because conflicts only arise in this
stage.

4.7. Performance of K-means benchmark

The concept of semantic transactions does not apply signif-
icantly to the kmeans benchmark, as the initial clusters are se-
lected randomly and all integers can be assigned to a calculated
cluster. However, as there is no read-only thread, the evaluation
is limited to manipulating the threads number and hash number,
in order to assess the efficiency and scalability of both systems.

Fig. 12 shows the throughput achieved by both CMPs in the
kmeans benchmark when the number of threads and hash num-
ber is increased. The hash number was set to default value of 1
for Graph A. The performance of GPU-STM improved less than

PR-STM because the algorithm it employs modifies the version
even with read operations. In experiments of manipulating hash
number, the thread number was set at 6720. Once again PR-STM
is outperforming GPU-STM in all cases due to the same reason
outlined earlier.

4.8. Implementation of graph processing benchmark

A compressed sparse row (CSR) graph is implemented on the
GPU. Values in 3 arrays represent linked vertexes count, target
vertexes’ IDs and values of vertexes respectively. In this format
the graph cannot add or remove vertexes nor edges, but the
values can change. We initialise a graph with 1 million vertexes
and 10 million edges. The value of vertexes is random from
1 to 10000. Threads are launched allowing different vertexes
to calculate the minimal value of all its predecessor vertexes.
Each transaction sends the value of a source vertex to all its
neighbours, and updates those vertexes if their value is greater
than the source vertex. Only vertexes updated will send their
values again, and the transaction will terminate when no further
vertexes need to update. Conflict happens when a vertex value
needs to be modified by multiple threads.



Q. Shen, C. Sharp, R. Davison et al. / Journal of Parallel and Distributed Computing 139 (2020) 1–17 15

Fig. 13. Throughput of graph processing benchmark with increasing thread numbers and hash number.

4.9. Performance of graph processing benchmark

The concept of semantic transactions does not apply to the
graph processing benchmark because if all neighbour vertexes
have smaller values than a vertex, then that transaction can
terminate. There is no possibility to generate read-only threads
because read-only transaction only occur when all neighbour
vertexes have smaller value than the start vertex, which requires
pre-knowledge of the graph. So the evaluation is again limited to
manipulating the thread number and hash number, in order to
assess the efficiency and scalability of both systems.

Fig. 13 shows the throughput achieved by both CMPs in the
graph processing benchmark when the number of threads and
hash number is increased. The hash number was set to 1 for
Graph A and B as before while the thread number was set to 1536
in experiments of manipulating hash number. The throughput
drops more sharply than previous benchmarks when hash num-
ber increasing is because the false conflict rate is much higher
in this scenario. If several threads are updating adjacent vertexes
which are covered by the same lock, then every step may cause
a false conflict.

5. Conclusions

A contention management policy for GPUs (PR-STM) has been
introduced which utilises increased parallelism to explore trans-
actional ordering solutions in a scalable manner to remove inter-
thread contention. Our technique advocates a priority rule-based
approach that increases thread throughput, improves application
timeliness and removes the requirement for manual interven-
tion of the programmer. We show that our approach is general
purpose in the context of a variety of application domains using
industry acknowledged benchmarks. We compare our solution
to the only other similar comparator to demonstrate how the
handling of semantic conflict can improve overall resource usage
while improving timeliness of execution.

A traditional CMP (on the CPU or GPU) may reach a state
where transactions are completed when considering concurrent
conflict alone, but logical progression of the application does
not occur (e.g., ordering withdrawal before deposit in banking
scenario). This task is traditionally left to the programmer to en-
act coordination techniques, difficult to achieve in a pre-emptive
transactional environment. However, our approach demonstrates
that we can achieve this on the CPU and with this latest work
achieve this on the GPU. The GPU, due to its hardware config-
uration and execution environment, is more reliant on avoiding
semantic conflict as we show they would have a much more
damaging impact on performance and resource utilisation. Our
approach pioneers the automation of the resolution of semantic
conflicts in co-ordination with transactional conflict, providing
the first practical approach for handling software engineering

issues in semantic conflict on the GPU (a complete solution for
the programmer).

Due to the nature of how memory is utilised in our algorithms
(local/global) we also perform better than our comparator in all
benchmarks. Identifying that for those applications that do not
consider semantic conflict an issue we still provide the most
competitive solution.

Our priority rule approach has much scope for further de-
velopment, in particular the introduction of dynamic priority
settings that may configure themselves to react to the nature of
execution may yield performance gains. One way to approach
this problem is to consider AI influenced CMP for determining
optimisation of CMP parametrisation during runtime.

In the future we expect session locking mechanisms within a
distributed STM application to open some interesting possibilities
in further scalability gains across cloud infrastructures (as we
only consider single GPU deployments). In addition, combining
the GPU and CPU within a heterogeneous transaction manager
will be of greater interest as we expect such environments to be
more pronounced in the future. We should be able to formulate a
transaction allocation strategy which assigns thread exploration
of transaction schedules to CPU or GPU when appropriate.

Declaration of competing interest

No author associated with this paper has disclosed any po-
tential or pertinent conflicts which may be perceived to have
impending conflict with this work. For full disclosure statements
refer to https://doi.org/10.1016/j.jpdc.2019.12.018.

Acknowledgments

We would like to thank the anonymous reviewers for their
insightful feedback. This work is partly supported by the National
Key R&D Program of China under Grant 2016YFB1000103.

References

[1] Mohammad Ansari, Mikel Luján, Christos Kotselidis, Kim Jarvis, Chris
Kirkham, Ian Watson, Steal-on-abort: Improving transactional mem-
ory performance through dynamic transaction reordering, in: High
Performance Embedded Architectures and Compilers, Springer, 2009,
pp. 4–18.

[2] Tongxin Bai, Xipeng Shen, Chengliang Zhang, William N. Scherer, Chen
Ding, Michael L. Scott, A key-based adaptive transactional memory execu-
tor, in: Parallel and Distributed Processing Symposium, 2007. IPDPS 2007.
IEEE International, IEEE, 2007, pp. 1–8.

[3] Joao Barreto, Aleksandar Dragojevic, Paulo Ferreira, Ricardo Filipe, Rachid
Guerraoui, Unifying thread-level speculation and transactional mem-
ory, in: Proceedings of the 13th International Middleware Conference,
Springer-Verlag New York, Inc., 2012, pp. 187–207.

[4] Colin Blundell, E. Christopher Lewis, Milo M.K. Martin, Subtleties of
transactional memory atomicity semantics, Comput. Arch. Lett. 5 (2)
(2006).

https://doi.org/10.1016/j.jpdc.2019.12.018
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb1
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb1
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb1
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb1
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb1
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb1
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb1
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb1
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb1
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb2
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb2
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb2
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb2
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb2
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb2
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb2
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb3
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb3
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb3
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb3
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb3
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb3
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb3
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb4
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb4
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb4
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb4
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb4


16 Q. Shen, C. Sharp, R. Davison et al. / Journal of Parallel and Distributed Computing 139 (2020) 1–17

[5] Daniel Cederman, Philippas Tsigas, Muhammad Tayyab Chaudhry, Towards
a software transactional memory for graphics processors, in: EGPGV, 2010,
pp. 121–129.

[6] S Chen, L Peng, Efficient gpu hardware transactional memory through early
conflict resolution, in: Proceedings of 22nd International Symposium on
High Performance Computing Architecture, ACM, 2016, pp. 274–284.

[7] Phong Chuong, Faith Ellen, Vijaya Ramachandran, A universal construction
for wait-free transaction friendly data structures, in: Proceedings of the
Twenty-Second Annual ACM Symposium on Parallelism in Algorithms and
Architectures, ACM, 2010, pp. 335–344.

[8] Tyler Crain, Damien Imbs, Michel Raynal, Towards a universal construction
for transaction-based multiprocess programs, in: Distributed Computing
and Networking, Springer, 2012, pp. 61–75.

[9] E.W. Dijkstra, Solution of a problem in concurrent programming control,
Commun. ACM 8 (9) (1965).

[10] Shlomi Dolev, Danny Hendler, Adi Suissa, Car-stm: scheduling-based col-
lision avoidance and resolution for software transactional memory, in:
Proceedings of the Twenty-Seventh ACM Symposium on Principles of
Distributed Computing, ACM, 2008, pp. 125–134.

[11] Pascal Felber, Christof Fetzer, Torvald Riegel, Dynamic performance tuning
of word-based software transactional memory, in: Proceedings of the
13th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, ACM, 2008, pp. 237–246.

[12] Wilson W.L. Fung, Tor M. Aamodt, Energy efficient gpu transactional
memory via space-time optimizations, in: Proceedings of the 46th Annual
IEEE/ACM International Symposium on Microarchitecture, ACM, 2013,
pp. 408–420.

[13] Wilson WL Fung, Inderpreet Singh, Andrew Brownsword, Tor M Aamodt,
Hardware transactional memory for gpu architectures, in: Proceedings of
the 44th Annual IEEE/ACM International Symposium on Microarchitecture,
ACM, 2011, pp. 296–307.

[14] Rachid Guerraoui, Maurice Herlihy, Bastian Pochon, Toward a theory of
transactional contention managers, in: Proceedings of the Twenty-Fourth
Annual ACM Symposium on Principles of Distributed Computing, ACM,
2005, pp. 258–264.

[15] T. Haerder, A. Reuter, Principles of transaction-oriented database recovery,
in: ACM Computing Surveys, ACM, 1983.

[16] Tomer Heber, Danny Hendler, Adi Suissa, On the impact of serializing
contention management on stm performance, J. Parallel Distrib. Comput.
72 (6) (2012) 739–750.

[17] Maurice Herlihy, Wait-free synchronization, ACM Trans. Program. Lang.
Syst. (TOPLAS) 13 (1) (1991) 124–149.

[18] Maurice Herlihy, Victor Luchangco, Mark Moir, A flexible framework for
implementing software transactional memory, in: ACM Sigplan Notices,
Vol. 41, ACM, 2006, pp. 253–262.

[19] Anup Holey, Antonia Zhai, Lightweight software transactions on gpus, in:
2014 43rd International Conference on Parallel Processing (ICPP), IEEE,
2014, pp. 461–470.

[20] H.T. Kung, T. Robinson John, On optimistic methods for concurrency
control, ACM Trans. Database Syst. (1981) 213–226.

[21] Chi Cao Minh, JaeWoong Chung, Christos Kozyrakis, Kunle Olukotun,
Stamp: Stanford transactional applications for multi-processing, in: IEEE
International Symposium on Workload Characterization, 2008. IISWC 2008,
IEEE, 2008, pp. 35–46.

[22] Chi Cao Minh, Martin Trautmann, JaeWoong Chung, Austen McDonald,
Nathan Bronson, Jared Casper, Christos Kozyrakis, Kunle Olukotun, An
effective hybrid transactional memory system with strong isolation guar-
antees, in: ACM SIGARCH Computer Architecture News, Vol. 35, ACM, 2007,
pp. 69–80.

[23] Rupesh Nasre, Martin Burtscher, Keshav Pingali, Atomic-free irregular
computations on gpus, in: Proceedings of the 6th Workshop on General
Purpose Processor using Graphics Processing Units, ACM, 2013, pp. 96–107.

[24] Rupesh Nasre, Martin Burtscher, Keshav Pingali, Morph algorithms on gpus,
in: ACM SIGPLAN Notices, Vol. 48, ACM, 2013, pp. 147–156.

[25] C. Nvida, Programming Guide, Nvida, 2008.
[26] Jason Sanders, Edward Kandrot, CUDA by Example: an Introduction to

General-Purpose GPU Programming, Addison-Wesley Professional, 2010.
[27] William N. Scherer I.I.I., Michael L. Scott, Advanced contention manage-

ment for dynamic software transactional memory, in: Proceedings of
the Twenty-Fourth Annual ACM Symposium on Principles of Distributed
Computing, ACM, 2005, pp. 240–248.

[28] Craig Sharp, William Blewitt, Graham Morgan, Resolving semantic conflicts
in word based software transactional memory, in: Euro-Par 2014 Parallel
Processing, Springer, 2014, pp. 463–474.

[29] Craig Sharp, Graham Morgan, Hugh: a semantically aware universal con-
struction for transactional memory systems, in: Euro-Par 2013 Parallel
Processing, Springer, 2013, pp. 470–481.

[30] Qi Shen, Craig Sharp, William Blewitt, Gary Ushaw, Graham Morgan, Pr-
stm: Priority rule based software transactions for gpu, in: Euro-Par 2015
Parallel Processing, Springer, 2015.

[31] Alejandro Villegas, Rafael Asenjo, Angeles Navarro, Oscar Plata, David Kaeli,
Lightweight hardware transactional memory for gpu scratchpad memory,
IEEE Trans. Comput. 67 (6) (2018) 816–829.

[32] Alejandro Villegas, Rafael Asenjo, Angeles Navarro, Oscar Plata, Rafael Ubal,
David Kaeli, Hardware support for scratchpad memory transactions on gpu
architectures, in: European Conference on Parallel Processing, Springer,
2017, pp. 273–286.

[33] Jons-Tobias Wamhoff, Christof Fetzer, The Universal Transactional Memory
Construction, Tech Report, University of Dresden, Germany, 2010, p. 12.

[34] Yunlong Xu, Rui Wang, Nilanjan Goswami, Tao Li, Lan Gao, Depei Qian,
Software transactional memory for gpu architectures, in: Proceedings
of Annual IEEE/ACM International Symposium on Code Generation and
Optimization, ACM, 2014, p. 1.

Qi Shen is a postdoctoral researcher in Beijing Ad-
vanced Innovation Center for Big Data and Brain
Computing, Beihang University, where he is inves-
tigating data processing systems for geographically
distributed clusters. He received his Ph.D. degree in
2017 from The University of Newcastle Upon Tyne for
work on semantically aware transactional concurrency
control for GPGPU computing. His research interests
include parallel programming, software transactional
memory, and distributed architectures.

Craig Sharp is currently working for Newcastle Uni-
versity as a Data Scientist, specialising in the field
of Convolutional Neural Networks. Craig previously
worked in the Games Lab at Newcastle University
(2013–2018) and was the lead developer in sev-
eral projects implementing Gamification of Distributed
Healthcare Diagnosis and Recovery, particularly in the
area of 3D vision and stroke rehabilitation. Craig was
awarded his P.h.D. in Computing Science in 2013 from
Newcastle University, in the area of applied Contention
Management in Transactional Memory applications.

Richard Davison is a lecturer in video game technology
at Newcastle University, where he investigates uses
of virtual reality in training scenarios, and in GPU
accelerated data processing. He received his Ph.D. in
2016 from Newcastle University for work on utilising
commodity video game hardware to detect rehabil-
itation markers in software designed for post-stroke
physiotherapy. His interests include real time computer
graphics, GPGPU technology, and medical gamification.

Gary Ushaw is Director of Business and Engagement for
the School of Computing at Newcastle University. He
is a senior lecturer in the Networked and Ubiquitous
Systems Engineering group, with a particular interest
in video game engineering and real-time simulation
techniques. He attained his Ph.D. in 1996 with the
Signal Processing Group at the University of Edinburgh.
Gary was the engineering lead on multiple high profile
projects for the computer games industry.

Rajiv Ranjan has been able to establish an interna-
tional reputation as a leader in the field of Scalable
Computing and in particular Cloud Computing and Big
Data Analytics. For over 10 years, he has conducted
seminal research around the development of generic
resource management models and methods for efficient
scheduling and resource allocation for all types of
parallel and distributed computing systems such as
grid computing and cloud computing. He also easily
extended his methods to new computing trends we
see in the industry such as Internet of Things (IoT)

and Edge Computing. As a prolific researcher and as of November 2016, he
has published 180 scientific publications that include 113 journal articles,
47 conference papers, 12 book chapters, and 8 edited research books. His
research has received excellent recognition from the research community as
evidenced by the citations, Google scholar h-index 33, i-10 index 66, 6700+
citations (November 2016).

http://refhub.elsevier.com/S0743-7315(19)30137-6/sb5
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb5
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb5
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb5
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb5
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb6
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb6
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb6
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb6
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb6
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb7
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb7
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb7
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb7
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb7
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb7
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb7
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb8
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb8
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb8
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb8
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb8
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb9
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb9
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb9
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb10
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb10
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb10
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb10
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb10
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb10
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb10
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb11
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb11
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb11
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb11
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb11
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb11
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb11
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb12
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb12
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb12
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb12
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb12
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb12
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb12
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb13
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb13
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb13
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb13
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb13
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb13
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb13
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb14
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb14
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb14
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb14
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb14
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb14
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb14
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb15
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb15
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb15
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb16
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb16
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb16
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb16
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb16
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb17
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb17
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb17
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb18
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb18
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb18
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb18
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb18
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb19
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb19
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb19
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb19
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb19
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb20
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb20
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb20
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb21
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb21
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb21
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb21
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb21
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb21
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb21
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb22
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb22
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb22
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb22
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb22
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb22
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb22
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb22
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb22
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb23
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb23
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb23
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb23
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb23
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb24
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb24
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb24
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb25
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb26
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb26
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb26
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb27
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb27
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb27
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb27
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb27
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb27
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb27
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb28
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb28
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb28
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb28
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb28
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb29
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb29
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb29
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb29
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb29
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb30
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb30
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb30
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb30
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb30
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb31
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb31
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb31
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb31
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb31
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb32
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb32
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb32
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb32
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb32
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb32
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb32
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb33
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb33
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb33
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb34
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb34
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb34
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb34
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb34
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb34
http://refhub.elsevier.com/S0743-7315(19)30137-6/sb34


Q. Shen, C. Sharp, R. Davison et al. / Journal of Parallel and Distributed Computing 139 (2020) 1–17 17

Albert Y. Zomaya is currently the Chair Professor
of High-Performance Computing and Networking and
Australian Research Council Professorial Fellow in the
School of Information Technologies, The University of
Sydney. He is also the Director of the Centre for
Distributed and High-Performance Computing which
was established in late 2009. Professor Zomaya is
the author/co-author of seven books, more than 450
publications in technical journals and conferences, and
the editor of 14 books and 19 conference volumes.
He is the Editor in Chief of the IEEE Transactions on

Computers and Springer’s Scalable Computing Journal serves as an associate
editor for another 19 journals including some of the leading journals in the
field.

Graham Morgan is the director of Networked and
Ubiquitous Systems Engineering (NUSE) Group, jointly
with Professor Rajiv Ranjan, in the School of Com-
puting. Graham also created and leads the Game
Technology Lab. The Game Technology Lab is a research
and teaching laboratory that works with the video
games industry on optimised resource management,
streamed/networked gaming and real-time graphical
simulations. Members of the lab regularly work on
many of the top selling global video games. In addition
to commercial activity, he has led research in a wide

area of distributed systems topics, including the development of large scale real-
time gaming technologies for cloud infrastructures and applied such work in the
area of digital health for stroke rehabilitation and cognitive therapies. His work
has won best paper awards in leading IEEE and ACM conferences and he has
published in leading IEEE and ACM journals.


	A general purpose contention manager for software transactions on the GPU
	Introduction
	Background and related work
	General purpose GPU execution model
	Concurrent conflict and concurrency control
	Transactional memory
	Contention management policies
	Parallel exploration of transaction scheduling on CPU
	Transactional memory on GPU
	Contribution

	Implementation
	Priority rule based STM for GPU
	TxStart
	TxRead
	TxWrite
	TxValidate
	TxCommit

	CMP for PR-STM
	TryPrelock
	TryLock
	ReleaseLocks

	Semantic conflict
	Semantic contention management policy

	Results and evaluation
	Implementation of bank and vacation benchmark
	Performance of bank and vacation benchmark
	Bank and vacation semantic transactions
	Implementation of skiplist benchmark
	Performance of skiplist benchmark
	Implementation of K-means benchmark
	Performance of K-means benchmark
	Implementation of graph processing benchmark
	Performance of graph processing benchmark

	Conclusions
	Declaration of competing interest
	Acknowledgments
	References


