
7014 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 16, NO. 11, NOVEMBER 2020

Multiobjective Deployment of Data Analysis
Operations in Heterogeneous

IoT Infrastructure
Devki Nandan Jha , Student Member, IEEE, Peter Michalák, Student Member, IEEE, Zhenyu Wen,

Rajiv Ranjan, Senior Member, IEEE, and Paul Watson

Abstract—The growth of Internet of Things (IoT) tech-
nology brings many new opportunities for applications
in areas including smart healthcare, smart buildings, and
smart agriculture. These applications must normally dis-
tribute the computations, required for extracting value from
sensor data, over the IoT infrastructure platforms (e.g.,
sensors, phones, field-gateways, and clouds). This can
be very challenging for IoT application developers due to
the heterogeneity of the aforementioned platforms, poten-
tially conflicting nonfunctional requirements (e.g., battery
power, latency, and cost), and related deployment crite-
ria, which is impossible to resolve manually. To address
the above challenges, we have developed the PATH2iot
framework that decomposes a complex IoT application into
self-contained micro-operations. Based on the deployment
criteria, PATH2iot automatically distributes the set of micro-
operations across IoT infrastructure platforms, while re-
specting their run-time data and control flow dependen-
cies. In our previous work, we have shown how to use
the PATH2iot to optimize the battery life of a healthcare
wearable. In this article, we describe a new research that
significantly extends PATH2iot, which introduces a heuris-
tic model capable of making optimal deployment decisions
based on multiple conflicting nonfunctional requirements
and selection criteria (user preferences). It does so by lever-
aging a well-known multicriteria decision-making method
called the analytic hierarchical processes (AHP). The appli-
cability of the deployment model is validated based on a
real-world digital healthcare analytics use case. The results
show that our model is able to find the optimal deployment
solution for different user preferences.

Index Terms—Analytic hierarchical process (AHP), Inter-
net of Things (IoT), smart healthcare, streaming data.

Manuscript received April 30, 2019; revised August 2, 2019; accepted
November 20, 2019. Date of publication December 23, 2019; date of
current version July 29, 2020. This work is supported in part by the En-
gineering and Physical Sciences Research Council, Centre for Doctoral
Training in Cloud Computing for Big Data under Grant EP/L015358/1
and in part by the Digital Catapult Teaching Grant Award under Grant
KH161118. Paper no. TII-19-1680. (Corresponding author: Devki Nan-
dan Jha.)

The authors are with the School of Computing, Newcastle University,
Newcastle Upon Tyne NE1 7RU, U.K. (e-mail: d.n.jha2@newcastle.
ac.uk; p.michalak1@newcastle.ac.uk; zhenyu.wen@newcastle.ac.uk;
raj.ranjan@newcastle.ac.uk; paul.watson@newcastle.ac.uk).

Color versions of one or more of the figures in this article are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TII.2019.2961676

I. INTRODUCTION

ADVANCES in Internet of Things (IoT) technology are
transforming the society and the economy through their

widespread impact, e.g., smart homes, smart healthcare, and
smart agriculture. This will continue to grow: research by Cisco
predicts that 50 billion smart devices will be connected to IoT
by 2020 [1]. To extract and process the massive streaming data
collected from these data sources, several stream processing
engines are developed that run in cloud providing a common
programming frameworks, e.g., Apache Storm [2] and Amazon
Kinesis [3].

However, this cloud-based approach is not suitable for many
critical IoT applications for three main reasons. First, some
applications require close coupling between the IoT data gener-
ators and actions taken based on the analysis of the data [4].
For these applications, the centralized cloud-based analytics
approach might introduce unacceptable message transfer delays,
and there may be a major problem due to network failure.
Second, sending all the raw data from sensors to the cloud for
analysis is not possible in cases where it may require higher
bandwidth than is available or affordable [5]. Third, sending
all data to the cloud may flatten the battery of devices, such as
healthcare wearables, too quickly [6].

To addresses these challenges, an alternative approach is to
run part of the application on, or close to, the sensors that
generate the data. In the literature, an IoT application can be
represented using a set of queries (Qis) which can be modeled
as a directed acyclic graph (DAG) with data transformation
operations (Ois) as its nodes, and dataflow dependencies (or
control flow dependencies for computational synchronization,
if/as needed) between data transformation operations Oi as its
vertices (see Fig. 1) [7]. This approach has been made possible
by the introduction of what has become known as edge devices.
Development of smarter IoT and edge devices, with some local
storage and processing (e.g., healthcare wearables), opens up
a tremendous opportunity for local analytics. Smartphones and
field gateways can perform some basic analytic operations on the
data, as well as acting as a network bridge between IoT devices
and the cloud [8], [9].

Unfortunately, distributing applications across such a wide
range of infrastructure (clouds, edge devices, sensors) (see
Fig. 1) is an extremely challenging task for a systems

1551-3203 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Newcastle University. Downloaded on February 17,2021 at 13:05:12 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-1322-2588
mailto:D.N.Jha2@newcastle.ac.uk
mailto:p.michalak1@newcastle.ac.uk
mailto:Zhenyu.Wen@newcastle.ac.uk
mailto:raj.ranjan@newcastle.ac.uk
mailto:Paul.Watson@newcastle.ac.uk
http://ieeexplore.ieee.org

JHA et al.: MULTIOBJECTIVE DEPLOYMENT OF DATA ANALYSIS OPERATIONS IN HETEROGENEOUS IoT INFRASTRUCTURE 7015

Fig. 1. Distributed deployment of IoT application.

programmer, especially for critical IoT applications such as in
healthcare and city management. Key challenges include:

1) Heterogeneity of IoT infrastructure—Applications need
to be deployed across a wide variety of heterogeneous
platforms with differing programming interfaces and ca-
pabilities (e.g., sensors may have very limited computa-
tional capabilities). Data must be communicated between
them over a variety of networks, each with its own id-
iosyncrasies and limitations.

2) Meeting multiple, nonfunctional requirements—Optimiz-
ing several requirements is challenging as the require-
ments may be conflicting to each other, e.g., performance,
energy, cost, and dependability.

These challenges lead to the following research questions:
RQ 1. How to model the problem of mapping complex IoT

application across distributed IoT infrastructure with heteroge-
neous hardware and software configurations?

RQ 2. How to compute an optimal set of hardware and
software configurations for each micro-operations of an IoT ap-
plication considering conflicting nonfunctional requirements?

Early efforts centered on the deployment of IoT applications
across cloud and edge datacentres are mostly theoretical. More-
over, these solutions have not considered automatic computation
partitioning and deployment. Nor have they considered the
optimization of multiple conflicting nonfunctional requirements
during the deployment process.

In our previous work [6], we developed the PATH2iot system
that allows an application administrator to define the overall
computation in a high-level declarative event processing lan-
guage (EPL). The system decomposes the set of queries into
a DAG that can be easily optimized. Next, it automatically
partitions the applications into deployable operations, distributes
them across the IoT infrastructure based on the battery power
of the IoT device as the single nonfunctional requirement, and
performs the physical deployment. However, this article did
not focus on multiple nonfunctional requirements for making
deployment decisions.

A. Contributions

To address the limitations of our previous work, this article
makes the following new contributions:

1) We provide a formal model for the deployment of a gen-
eral IoT application across a distributed IoT infrastructure
(e.g., sensor/wearable, edge/phone, cloud).

2) We prove that the partitioning and deployment of an IoT
application across a distributed IoT infrastructure is a
strong NP-hard problem.

3) We introduce a new heuristic model ABMO (AHP-based
multiobjective optimization) based on analytic hierarchi-
cal processes (AHP) [10] for finding the optimal deploy-
ment plan taking into account multiple, potentially con-
flicting nonfunctional requirements. This includes user
preferences for making decisions based on a set of non-
functional requirements.

4) A comprehensive experimental evaluation is carried out
using a real-world, digital healthcare scenario for veri-
fying the performance of the proposed decision-making
technique.

The rest of this article is organized as follows. Section II
discusses the relevant related work, while a formal model for the
PATH2iot framework is presented in Section III. It also discuss
the complexity analysis of the PATH2iot problem. Section IV de-
scribes the system model of PATH2iot, along with our proposed
ABMO module. Section V evaluates the proposed framework on
the real-world healthcare IoT application. Section VI concludes
this article.

II. RELATED WORK

The problem of distributed stream processing has been
extensively studied in the literature. Frameworks such as
Stream [11], Flextream [12], Naiad [13] from academia and
Apache Storm [2], Amazon Kinesis [3], and Google Mill-
Wheel [14] from industry are common examples of stream pro-
cessing systems. However, these approaches are usually limited
to a cloud environment. Recent studies [8], [15], [16] show that
data streams generated by IoT often require local processing
to satisfy different application requirements. Distributing the
processing across sensors and edge devices along with the cloud
introduces new problems mainly due to the heterogeneity of
processing and storage capacity, the power status of the battery-
constrained devices, the mobility of the IoT devices, and the
interaction between them.

There are very few models that consider edge/fog and
IoT devices for distributed stream application deployments.
Hong et al. [17] propose a framework for mobile fog computing
that helps in the deployment of streaming IoT applications.
Sarkar and Misra [18] propose a theoretical model for the
fog computing infrastructure. They analyze the performance
latency and energy performance of fog compared to the cloud
environment. Saurez et al. [19] propose a programming infras-
tructure – “Foglets” – for distributing the deployment across
edge and cloud. Foglets are used in the distributed deployment
with latency and sensor mobility parameters taken into account.
Benchmarks are used to test the application. Most of these
models are theoretical and also consider only one or two pa-
rameters to be optimized.

Authorized licensed use limited to: Newcastle University. Downloaded on February 17,2021 at 13:05:12 UTC from IEEE Xplore. Restrictions apply.

7016 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 16, NO. 11, NOVEMBER 2020

In [20], an infrastructure module, LEONORE, is presented
that provisions applications on resource-constrained edge de-
vices. Cao et al. [21] present the work that distributes the ana-
lytics of health-monitoring application across edge processing.
A similar work is done in Kea [22], a system for computa-
tional offloading of sensor data processing that also takes into
consideration hardware capabilities, communication energy, and
latency costs. However, the focus of the system is limited to
smart phone sensor data, compared to our system that views
computational placement holistically.

A general model to support QoS-aware deployment is pre-
sented in [23], where a multicomponent IoT application is
deployed across fog infrastructure. The fog infrastructure here
considers both edge and cloud environments. A simple Java-
based prototype, FogTorch, is presented to illustrate the pro-
posed model. Although the deployment of an application across
the IoT infrastructure is considered, it does not address how
to optimize the deployment solution. Also, this is an abstract
model that does not consider how to generate the distributed
IoT application and how to perform the physical deploy-
ment. Recent work in [24] addresses the problem of dynamic
computation offloading in wearable healthcare devices. An
improvement of 21.1% in battery life is achieved by parti-
tioning the computation between the wearable and a mobile
device: the approach is derived and validated using simulation
software.

To the best of our knowledge, this article is the first to propose,
implement, and evaluate an optimized solution for distributed
stream processing that considers how to optimize for hetero-
geneous nonfunctional requirements. Our framework, ABMO,
extends the capability of PATH2iot, is based on AHP [10] that
incorporates user preferences along with a high-level compu-
tation description, nonfunctional requirements, and a resource
catalogue, in order to find an optimized deployment plan. AHP
is a well-known multicriteria decision-making method used in
a variety of domains [25], [26].

III. FORMAL MODEL

In this section, we give some basic concepts and formally
define our problem. Different symbols used in this article is
given in Table I.

A. Basic Concepts

Definition 1: An IoT application A is a triple 〈DS,Q,Γ〉
where

1) DS represents a continuous stream of data generated by the
IoT device.

2) Q = {q1, q2, . . ., qk} is the set of k queries defined by the
user as a description of the computation. The set Q is logically
decomposed using a stream optimization function P() into a
set of computational micro-operations O, which need to be
deployed on the processing elements, as given in (1)

O = {o1, o2, . . ., ol} = P{q1, q2, . . ., qk}. (1)

TABLE I
SUMMARY OF SYMBOLS AND ABBREVIATIONS USED IN THIS ARTICLE

The dependency among various micro-operations is repre-
sented by a topologically ordered DAG. Each micro-operation
ol has specific hardware and software requirementsRH andRS ,
respectively. Some constraintsCons are also associated with the
requirement specification.

3) Γ represents the identity property of the application and
is represented as 〈id, rH , rS , cons〉, where id is the identifier
of application, rH and rS are the set of hardware and software
requirements, and cons is the set of constraints defined for the
hardware/software requirement of the application.

Definition 2: An IoT infrastructure I is a quadruple
〈D,E,C, λ〉, where

1) D is the set of IoT devices d, each represented by a set
of 4-tuple 〈id, Type, SH , SS〉, where id is the identifier, Type
represents the type of device, and SH and SS , respectively,
represent the hardware and software support provided by the
device d.

2) E is the edge datacentre consisting a set of edge devices e,
each denoted by 〈id, SH , SS〉, where id is the identifier, SH and
SS , respectively, represent the hardware and software support
provided by the edge device e.

3) C is the set of cloud datacentre components (VMs or
containers) c, each denoted by 〈id, SH , SS〉, where id is the
identifier, and SH and SS , respectively, represent the hardware
and software capabilities provided by c.

Authorized licensed use limited to: Newcastle University. Downloaded on February 17,2021 at 13:05:12 UTC from IEEE Xplore. Restrictions apply.

JHA et al.: MULTIOBJECTIVE DEPLOYMENT OF DATA ANALYSIS OPERATIONS IN HETEROGENEOUS IoT INFRASTRUCTURE 7017

Fig. 2. Nonfunctional requirements.

4) λ ∈ {{D × E× C} ∪ {D × E} ∪ {D × C} ∪ {E ×C}}
is a set of all the available connections from IoT device to edge
to cloud.

Definition 3: The set R of nonfunctional requirements is a
sequence of r elements R = {R1, R2, . . ., Rr}, where each ele-
mentRi can have either numeric or Boolean values. Unspecified
values of element Ri are denoted by ∅.

Numerous nonfunctional requirements may be associated
with the application. Our approach is general, but those con-
sidered in this article are discussed in Appendix A. Fig. 2
shows the hierarchical representation for all the nonfunctional
requirements considered in this article.

B. Problem Definition

Definition 4: Let A = 〈DS,Q,Γ〉 be an IoT application and
I = 〈D,E,C, λ〉 be the IoT infrastructure. A possible deploy-
ment plan Δi is a mapping from operation O : P(Q) to λ ∈
{{D × E × C} ∪ {D × E} ∪ {D × C} ∪ {E × C}} (Δi =
O → λ) if and only if:

1) all oj ∈ O must be mapped to some IoT infrastructure
Ik ∈ I .

2) for each oj ∈ O, Ik ∈ I , if (oj → Ik) ∈ Δ,
then RH(oj) � SH(Ik), RS(oj) � SS(Ik), and
satisfied(Cons(oj)).

3)
∑max

j=1 RH(oj) ≤ SH(Ik) and
∑max

j=1 RS(oj) ≤ SS(Ik).
The definition given above considers all the constraints to

meet the optional deployment requirements. Condition (1) guar-
antees that all the operations must be deployed on some IoT
infrastructure. Condition (2) allocates the operations oj only to
infrastructure Ik, which satisfies their hardware requirements
RH(oj) and software requirements SH(oj), along with any
other deployment constraints Cons defined for the operation oj .
Condition (3) limits the number of operations to be deployed on
an infrastructure component so that the hardware and software
requirements are enough to satisfy the demands of selected
operations oj |j ∈ {i,max}.

Definition 5: Given the available possible plans Δ, find
the best possible plan Δbest ∈ Δ that optimizes all nonfunc-
tional requirements such that for any other plan Δi ∈ Δ, Δi ≤
Δbest|∀Rl ∈ R, and Δi < Δbest|∃Rl ∈ R.

C. Complexity Analysis

Given an IoT application A and IoT infrastructure I , finding
the optimal deployment planΔbest from the set of possible plans
Δ that optimizes all R nonfunctional requirements is strong

Fig. 3. Holistic representation of the deployment plan.

NP-hard and can be proved by reduction from the bin-packing
problem.

Bin-packing is known to be a strong NP-hard problem, which
is nonsolvable in any polynomial time [27]. It is defined as
follows: given a set of o objects with sizes s1, s2, . . ., so and a set
of binsB1, B2, B3, . . . of the same capacitiesC, find the smallest
integer k ∈ N such that all the o objects got mapped to some
bins Bi following the condition that for any i = {1, 2, . . ., k},∑

i∈Bk
si ≤ C.

Proposition 1: Finding an optimal mapping for PATH2iot
problem in NP-hard.

Proof: Considering the formal definition of the bin-packing
problem as given above, it is possible to transform the bin-
packing problem into the simplest PATH2iot problem in a poly-
nomial time. The transformation is as follows. �

Change all the binsBi to IoT infrastructure deployment nodes
I (IoT device, edge device, or cloud datacentre components)
with equal hardware capacities and no software support. Change
all the objects o to operations O with so hardware requirements,
no software requirements, no constraints, and no dependency
between operations.

This maps the bin-packing problem into the simplest case of
our PATH2iot deployment problem. This transformation can be
easily achieved in polynomial time. Thus, it is proven that the
simplest case of our problem is at least as hard as bin-packing
problem, which is already strong NP-hard, making the generic
PATH2iot problem ∈ strong NP-hard.

Inherently, as given in Proposition 1, finding a solution of
the bin-packing problem in polynomial time leads to finding a
solution of the generic PATH2iot problem in polynomial time.
No such algorithm exists for any NP-hard problem; therefore,
we need a heuristic algorithm to find a solution.

IV. SYSTEM MODEL

Fig. 3 summarizes the internal processing of our proposed
PATH2iot framework. The framework is divided into three com-
ponents. The first is the User Input that accepts a set of EPL
queries which defines – in high-level terms – the computation,
the state of the deployment infrastructure, and the nonfunc-
tional requirements to be placed on the system. The second
is the PATHfinder implementation, where all the deployment
decisions are performed automatically, while the third is the

Authorized licensed use limited to: Newcastle University. Downloaded on February 17,2021 at 13:05:12 UTC from IEEE Xplore. Restrictions apply.

7018 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 16, NO. 11, NOVEMBER 2020

PATHdeployer that performs the physical infrastructure deploy-
ment. PATHfinder is again divided into three stages, namely,
Initial Optimization, ABMO, and Device Specific Compilation.
A detailed discussion of each component is given below.

A. User Input

The whole system is driven by the following inputs:
Resource Catalogue: It holds a description of all the relevant

features of the IoT infrastructure platforms over which the
computations can be distributed. This includes the infrastructure
capabilities in terms of hardware support SH and software
support SS . It represents the state of the infrastructure, i.e.,
a description of the available cloud resources, IoT, and edge
devices with their current state (e.g., active/disabled, battery
level, battery capacity, network bandwidth). It also holds the
constraints that need to be recognized when making deployment
decisions. This includes a definition of user-defined functions
(UDFs) that are supported by the system with their placement
constraints, along with the energy impact coefficients for the
supported operators. The optimizer accesses this information in
the form of a JSON file.

Computation Description: To allow automatic partitioning
over a set of platforms, it requires the computation to be defined
in a high-level declarative language which can be analyzed,
distributed, and optimized. In this article, we adopt the approach
of [6] and use a complex event processing (CEP)-based relational
model in which an EPL is used to define the computation.

Nonfunctional Requirements: This defines all the require-
ments that are required to be optimized. The set of nonfunctional
requirements considered in this article are discussed in detail in
Appendix A. The nonfunctional requirements are represented by
a top-down hierarchical structure of level L, where lower level
elements are grouped under some higher level elements based
on a common property, e.g., lower level attributes IoT cost, edge
cost, and cloud cost are grouped as they all calculate the cost.

User Preferences: This is one of the key user inputs as it
defines the relative importance of the nonfunctional require-
ments. A user submits pairwise comparison values for all the
nonfunctional requirements in the form of a CSV file.

B. PATHfinder

PATHfinder is an internal module of the PATH2iot system and
is divided into three stages as explained below.

1) Initial Optimization: This stage is divided into two consec-
utive phases logical optimization and physical optimization. The
details are given below.

1) Logical Optimization: The high-level user description for
the computation is decomposed into a DAG, and the operators
of the DAG are topologically sorted. Therefore, each operation
is executed in a valid sequence. Various stream optimization
techniques can be used to used to optimize the DAG [28]. A list
of topologically sorted logical plans PL are created that acts as
input for the next step.

2) Physical Optimization: This step generates a set of physical
deployment plans based on the logical plansPL generated by the
previous step. For each logical plan, it first creates all possible

TABLE II
SATTY SCALE FOR ASSIGNING THE PRIORITY VALUE

TABLE III
RANDOM INDEX (RI) VALUE

deployment plans POD based on the topological ordering of the
operations.

Algorithm 1 is used to shortlist the plans that satisfy the
constraints and nonfunctional requirements and generates a list
of physical deployment plans PPD.

2) AHP-Based Multiobjective Optimization (ABM): This
stage uses the AHP [10] for calculating the rank of each physical
deployment plan. The whole process is divided into four steps
as given below.

1) Calculating Weights: This step uses AHP to first find
the weights for each nonfunctional requirements, based on the
user preferences. The preferences are measured by using Satty
scale [29] as given in Table II. A reciprocal comparison matrix
M is constructed from the user preferences following the rules
as given in (2)

Mij =

⎧⎪⎨
⎪⎩

1, when i = j

X, when i > j

1/Mij , when i < j

}. (2)

Before calculating the weights of the nonfunctional require-
ments, it is necessary to check whether the provided user-
preference values are consistent or not. The consistency of
comparison matrix is verified by checking the consistency ratio
(CR) value. CR is calculated using the maximum eigen value
(eig), size of the comparison matrix (M.size), and the random
index (RI) values. The default RI values are given in Table III.
Equation (3) is used to calculate the CR

CR = CI/RI (3)

where CI = (eig −M.size)/(M.size− 1). If the comparison
matrix M is found to be consistent, AHP is used to calculate the
final weights Wj for nonfunctional requirement j. Otherwise,
the user is instructed to reenter the preference values. AHP uses

Authorized licensed use limited to: Newcastle University. Downloaded on February 17,2021 at 13:05:12 UTC from IEEE Xplore. Restrictions apply.

JHA et al.: MULTIOBJECTIVE DEPLOYMENT OF DATA ANALYSIS OPERATIONS IN HETEROGENEOUS IoT INFRASTRUCTURE 7019

principal eigenvector to calculate the priority of each nonfunc-
tional requirement. The final weights are computed by averaging
the priority values. The pseudo-code for the whole process is
explained in Algorithm 2.

2) Normalization: Directly comparing different nonfunctional
requirement values is not possible as each requirement can have
a different data type and range. Also, the optimal value depends
on the type of requirements: in some cases, higher is better, e.g.,
battery power, while in others, lower is better, e.g., cost. It is
necessary to normalize all these values to one type and range.

The normalization is performed according to the data type of
the nonfunctional requirements, e.g., Boolean, numerical, etc.,
and the function whether to maximize or minimize. The steps
of normalization process is summarized in Algorithm 3.

3) Plan Shortlisting: The complexity of the Pathfinder de-
pends on the number of physical deployment plans. To manage
the complexity of the Pathfinder, we shortlist N plans from the
full list of physical deployment plans. If the total number of the
plans are less than N , we can skip this step.

Algorithm 4 explains the steps involved in the pruning pro-
cess. It first ranks all the plans and finally selects top N plans
for further evaluation.

4) Multiconstrained Optimization: This step combines the
final weights of the nonfunctional requirement with the corre-
sponding values of the plans to find the final rank of the plans.
This step aims to find the optimal plan over the selected plans.
The rank of each plan Pi is computed using (4), where Wj is the
weight for nonfunctional requirement j, and norm(Rj(Pi)) is
the normalized value for the plan Pi. The plan with highest rank
is selected for the physical execution

Rank(Pi) =
r∑

j=0

(Wj)× norm(Rj(Pi)). (4)

3) Device-Specific Compilation: Once the execution plan is
derived, the framework converts the selected plan into a deploy-
ment configuration which is finally transmitted to PATHdeployer
for deployment over the available IoT infrastructure.

C. PATHdeployer

There are two stages to deploy the optimized plan in
PATH2iot: cloud deployment and edge and IoT deployment.
The two stages are detailed below.

Cloud Deployment: It is the first phase, where the tool verifies
through the ZooKeeper that the destination D2ESPer instances
are available in the infrastructure and then transmits the de-
ployment configuration to them. The configuration information

Authorized licensed use limited to: Newcastle University. Downloaded on February 17,2021 at 13:05:12 UTC from IEEE Xplore. Restrictions apply.

7020 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 16, NO. 11, NOVEMBER 2020

is then parsed and dynamically compiled EPL statements are
executed within the Esper CEP engine, which is wrapped inside
the D2ESPer tool.

Edge and IoT Deployment: It occurs once the cloud de-
ployment has been completed. The configuration information
is passed through a REST API endpoint. Preinstalled agents
on IoT and edge devices pull regularly configuration from the
endpoint, and once it has been received, it starts the processing
accordingly.

D. Time Complexity of the Proposed Framework

This section computes the time complexity of our proposed
framework. Let o be the number of operations and I is the num-
ber of IoT infrastructure components. Consider the nonfunc-
tional requirements R is represented in a hierarchical structure
with L number of levels. The complexity of each phase is given
below.

Path Finder: This phase is divided into three stages, and the
complexity of each stage is given below.

a) Initial Optimization: There are two steps for this stage,
the complexity of logical optimization depends only on the
operator reordering operation. For one logical optimization, the
maximum complexity of operator-reordering is O(o). Varying
the window size between a given range, R1 and R2 with defined
step size Step creates {(R1 −R2)/Step} plans. Since R1, R2,
andStep are constant, the complexity for creating a set of logical
plans, PL, is O(o). For physical optimization, finding all the
possible deployment plans for one logical plan takes O(o× I)
searches. Thus, the total complexity for finding all the optional
deployment plan POD for the given set of logical plan PL is
O(PL × o× I). For finding the physical deployment plan PPD,
we have to check all the available possible deployment plan,
making the complexity as O(POD) = PL × o× I .

After reduction, the overall complexity for initial optimization
step is O(PL × o× I).

b) ABMO: This stage consists of four steps: calculating
weights, normalization, plan shortlisting, and multiconstrained
optimization. Calculating weights compares the user prefer-
ences for each attribute by using matrix manipulation and com-
putes eigen vector as the priority values. Given n elements,
the complexity to calculate the normalized eigen vector is
O(n3). Considering Nlev number of attributes at level lev and
rsub,lev number of subattributes at level lev of subth attribute
at level (lev − 1), the complexity to calculate the normalize
eigen vector is given as O(

∑L
lev=1

∑Nlev−1
sub=1 (rsub,lev)

3). The
complexity value seems large but is comparatively very small
when compared with the comparison complexity without using
AHP. The total complexity for comparing all the low-level
elements without using AHP is (

∑N0
sub=1(rsub,1))

3, which is
>> (

∑L
lev=1

∑Nlev−1
sub=1 (rsub,lev)

3)when there are a large number
of elements which can be represented in a hierarchical structure.
AHP reduces the complexity by breaking the problem in a
hierarchical structure resulting in more, smaller comparisons.

For the normalization step, the time taken to normalize any
nonfunctional requirement value is O(PPD) irrespective of the
data type. The complexity to normalize all R nonfunctional
requirements is O(R× PPD). Therefore, the final complexity

for normalization step is O(R× PPD). Plan shortlisting step
finds the grade for each plan which is O(R× PPD) complex.
The time taken to sort the grade values is O((PPD)2) and finally
selecting the top N plan is O(1). Therefore, the final complexity
for plan shortlisting is given as O((PPD)2). For final step,
multiconstrained optimization step, the complexity to calculate
the rank for plan is O(R). For all N plan, the complexity is
O(R×N) = O(R) as N is a constant. Finally, the time taken
to find the best value from sorted plan is O(N) = O(1).

Thus, the total time complexity for the second stage is reduced
to O(

∑L
lev=1

∑Nlev−1
sub=1 (rsub,lev)

3 +R× PPD + (PPD)2).
c) Device-Specific Compilation: The complexity of this step is

constant as there is only one execution plan for the deployment.
Path Deployer: The complexity of this step is also constant

as the deployment is always performed for one selected plan.
Thus, the overall time complexity of our proposed frame-

work is summarized as O((PL × o× I) +
∑L

lev=1

∑Nlev−1
sub=1

(rsub,lev)
3 +R× PPD + (PPD)2).

V. EXPERIMENTAL EVALUATION

In this section, we evaluate the performance of our proposed
framework on a real testbed.

A. Experimental Setup

For experimentation, we choose a healthcare-based appli-
cation that captures the physical activity and blood glucose
level of a type II diabetes patients [30]. The architecture is
as shown in Fig. 1. To analyze the activity, we used Pebble
Steel smartwatch that contains an embedded accelerometer. The
smartwatch connects to an LG G4 smart phone via a Bluetooth
low-energy (BLE) network and the phone is then connected to
the cloud via 4 G mobile network. The data analysis uses a Step
Count algorithm [31] that accepts the raw accelerometer data
and generates activity information. Our framework – PATH2iot
– automatically decides where to place the components of the
analysis while optimizing different objectives (maximizing the
battery life on the smartwatch and mobile phone, minimizing
the turnaround time, etc.). The starting point is a description of
the required computation as a set of EPL rules

1) INSERT INTO AccelEvent
SELECT getAccelData(25, 60)
FROM AccelEventSource

2) INSERT INTO EdEvent
SELECT Math.pow(x× x+ y × y + z × z, 0.5) AS
ed, ts
FROM AccelEvent WHERE vibe = 0

3) INSERT INTO StepEvent
SELECT * FROM EdEvent
MATCH_RECOGNIZE (MEASURES A AS ed1, B
AS ed2 PATTERN (A B) DEFINE A AS (A.ed>THR),
B AS (B.ed ≤ THR))

4) INSERT INTO StepCount
SELECT count(*) AS steps
FROM StepEvent.win:flexi_time_batch(30, 120, 15, sec)

5) SELECT persistResult(steps, “step_sum,” “time_
series”) FROM StepCount

Authorized licensed use limited to: Newcastle University. Downloaded on February 17,2021 at 13:05:12 UTC from IEEE Xplore. Restrictions apply.

JHA et al.: MULTIOBJECTIVE DEPLOYMENT OF DATA ANALYSIS OPERATIONS IN HETEROGENEOUS IoT INFRASTRUCTURE 7021

TABLE IV
POWER CONSUMPTION COEFFICIENTS FOR THE PEBBLE STEEL WATCH

TABLE V
POWER CONSUMPTION COEFFICIENTS FOR THE LG G4 MOBILE PHONE

PATH2iot interprets this into a graph of basic operations,
and then considers all the possible solutions that map these
operations onto the available IoT infrastructure (Pebble watch,
mobile phone, and cloud). For each option, a cost is derived,
and the one that has the maximal value of the nonfunctional
requirements is selected.

In order to calculate the energy consumption of the Pebble
Steel watch and the mobile phone, we must know the energy
consumption of performing each operation (i.e., per sample
received from the accelerometer). A series of experiments were
conducted in which the watch and the mobile phone were
connected to a Monsoon Power Monitor to measure the energy
expenditure with each executed operation. Based on central limit
theorem (CLT), we assume that the entire data set follows Gaus-
sian distribution. Therefore, we compute the 95% confidence
interval (Conf) using (5), where sd and X̄ are the standard
deviation and mean of the sample and n is the size of the
sample. The results are shown in Tables IV and V. Notably,
the energy impact shown in the two tables represents the mean
of the sample.

Conf = X̄ ± 1.96 × sd√
n
. (5)

To calculate the battery life resulting from each option, we
need to know the overall capacity of the battery. The battery
capacity and battery voltage of Pebble watch and LG G4 are
130 mAh, 3.7 V and 3000 mAh, 3.85 V, respectively. The
maxBatteryLife of Pebble watch and mobile phone βD and
βE is calculated as βD = 130 mAh × 3.7V × 3.6 = 1731.6 J
and βE = 3000 mAh × 3.85V × 3.6 = 41580 J.

To calculate the total transmission time from mobile phone
to cloud, we considered the Wi-Fi data rate from our phone
(30 Mbps). Also, to calculate the total cost, we considered the
standard electricity cost (ignoring the average fixed cost) as
£0.155/KWh [32] and standard data-rate cost as £0.01/MB [33].
We have neglected the VM cost for our experiment as the VM

cost is almost the same for all the cases. Different nonfunctional
requirement values for our experiment can be found in Ref. [34].

B. Experimental Results and Analysis

We have compared three scenarios, where different nonfunc-
tional requirements of the IoT infrastructure have been moni-
tored. The detail of these scenarios are as follows:

1) Baseline: The generated raw accelerometer data (under
25 Hz) is streamed from the Pebble Steel watch to the cloud as
quickly as possible. Given the software restrictions, this is done
in a batch of ten accelerometer samples, and therefore with a
frequency of 2.5 messages per second. This scenario gives the
best turnaround time but consumes maximum energy.

2) Optimized by Energy: The main focus, in this case, is to
optimize the energy consumption of IoT device to increase the
battery running hours. This is outlined in our previous article [6],
where the optimizer selects the deployment plan where some of
the operators are placed on the wearable watch, reducing the
amount of data required to be transmitted and pushing windows
closer to the data source in this case directly on the wearable
device, with fixed window size of 120 s, greatly reducing the
energy required to keep the Bluetooth connection opened. The
result shows that we achieved a significant improvement in
the energy consumption of the wearable device of 453% as
compared to the baseline approach. However, the turnaround
time in this scenario is higher as compared to the baseline
approach.

3) Optimized by Multiple Conflicting Objectives: Depending
on the type of application and user requirements, the module
automatically selects the best deployment plan. It can be easily
converted to the previous scenarios, i.e. baseline or optimized by
energy by setting up the user preference highest for turnaround
time or sustainability, respectively. To illustrate the effectiveness
of our proposed plan, we considered three cases with different
user preferences, as given below.

Case 1: In this case, the battery constraints are more impor-
tant, so making the user preferences inclined toward
sustainability. The comparison matrix, C1, for level
1 is given below. For other levels, we considered
equal priority for all the attributes.

C1 =

Sus. T 3 Cost

Sus. 1 7 9

T 3 1/7 1 2

Cost 1/9 1/2 1

Case 2: For this case, the total turnaround time has higher
preference as compared to other nonfunctional re-
quirements. The comparison matrix, C1, for this
case is given below:

C1 =

Sus. T 3 Cost

Sus. 1 1/7 2

T 3 7 1 9

Cost 1/2 1/9 1

Authorized licensed use limited to: Newcastle University. Downloaded on February 17,2021 at 13:05:12 UTC from IEEE Xplore. Restrictions apply.

7022 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 16, NO. 11, NOVEMBER 2020

Fig. 4. Normalized nonfunctional requirement values for selected
plans.

Fig. 5. Final rank in different cases.

Case 3: In this case, cost has given higher preference as
compared to other nonfunctional requirements. The
comparison matrix,C1, for this case is shown below:

C1 =

Sus. T 3 Cost

Sus. 1 2 1/7

T 3 1/2 1 1/9

Cost 7 9 1

After completing the initial optimization stage, a total of
108 optimal plans got selected, which act as input for the
ABMO. After execution of ABMO, the final result gives
Plan107, Plan9, and Plan1 for the physical deployment in
Case 1, Case 2, and Case 3, respectively. Fig. 4 presents a
clear comparison of the normalized values for all three selected
plans. The figure clearly shows that Plan1 has the best nor-
malized value for communication cost and T3 with the value
of (0.0157 and 0.0179) as compared to Plan9 and Plan107
with values of (0.0010 and 0.0082) and (0.0003 and 0.0045), re-
spectively. However, for remaining nonfunctional requirements,
Plan9 and Plan107 give better results. The detailed descrip-
tion of our implementation and result analysis is available in
Ref. [35].

Based on the user preference values, the final rank is calcu-
lated as discussed in Section IV-B2. Depending on the users’
preferences, our proposed approach always select the optimal
solution. Fig. 5 shows the actual rank value for the best three

plans. For Case 1, Plan107 has the highest rank value of 0.0345
followed byPlan9 with the rank value of 0.0261. For Case 2, the
highest rank (0.0187) is shown for Plan9 followed by Plan107
(0.0158). Finally, for Case 3, Plan1 gives the best result (rank
value of 0.0128) followed by Plan107 (rank value of 0.0124).

VI. CONCLUSION

PATH2iot provides a novel framework to facilitate the
partitioning and deployment of IoT application across the
distributed IoT infrastructure. This article extended the basic
PATH2iot framework by adding ABMO, a heuristic module
leveraging AHP for making optimal decision based on users’
preferences and conflicting nonfunctional requirements. The
case study showed that ABMO always chose the optimal de-
ployment plan based on user preferences. The approach is very
general; while we described a healthcare use case in this article,
it can be directly applied to any other domain in which nonfunc-
tional requirements are vital. For example, we have other Smart
City and transport applications, in which PATH2iot is used to
minimize the bandwidth needed when transmitting data over
a low-bandwidth network. The system also works well when
a model derived by machine learning is used to classify, or
predict behavior; in this case, the model is simply treated as an
operation in the computational graph, and PATH2iot is then used
to decide where to place it in order to meet the nonfunctional
requirements. In addition to this, our model is also compatible
with the IoT environment that includes software-defined net-
works (SDN). To interoperate with the SDN infrastructure, a
query operation needs to be composed and deployed based on
the network function virtualization (NFV) technique. Finally,
while the focus of this article was on stream processing IoT
application, the approach can be easily applied to batch query
processing workload. To this end, a batch query can be modeled
as an operation, within our IoT graph, deployed at either edge
or cloud layer. Since batch processing is normally executed
over massive historical data, batch query operation is most
likely to be mapped to the cloud layer. However, in the future
work, we will make the deployment decision more dynamic
so that if the environment changes over time, the deployment
plans are automatically adjusted to maintain the nonfunctional
requirements specified by the user.

APPENDIX A
NONFUNCTIONAL REQUIREMENTS

The details of different nonfunctional requirements consid-
ered in this article are as follows.

Sustainability: This considers the energy impact in terms of
the battery life of all the IoT and edge devices. Battery life is
very important to consider, as it can be a limiting factor; for
example, healthcare wearables that do not last a full day on a
single charge of the battery are not going to be used in practice.
Battery power is represented in terms of energy impact (EI),
which is measured in milliJoule (mJ). As an example, the energy
impact for a BLE-connected IoT device EID and edge device

Authorized licensed use limited to: Newcastle University. Downloaded on February 17,2021 at 13:05:12 UTC from IEEE Xplore. Restrictions apply.

JHA et al.: MULTIOBJECTIVE DEPLOYMENT OF DATA ANALYSIS OPERATIONS IN HETEROGENEOUS IoT INFRASTRUCTURE 7023

EIE is calculated as given in (6) and (7)

EID = OSidle +

n∑
i

c_costi

+
msg_countD× n_costD+BLEactive ×BLEdur

cycle_length
(6)

EIE = OSidle +

n1∑
j

c_costj

+
msg_countE × n_costE +RFactive

time_slice
(7)

where OSidle is the power consumption by the IoT device/edge
device caused by the operating system, c_cost and n_cost are
the overall power consumption of the IoT device (D) and edge
device (E) for each computation and transmission, respectively,
msg_count specifies the number of messages transmitted from
IoT device to edge device or edge device to cloud device,
BLEactive is the power consumption for the Bluetooth low
energy active state that is activated just after the message trans-
fer, BLEdur is the period of BLEactive state, cycle_length
is the time duration after which the whole cycle repeats, and
time_slice is the particular period of time considered for edge
device.

The energy impact value represents the average power con-
sumed by the IoT device and the edge device. The battery life is
inversely proportional to the energy impact. The battery life in
hours (batD) for IoT device D is computed as given in (8)

batD ∝ (EID)−1 ⇒ batD = βD × (EID)−1 (8)

where βD is a constant called maxBat that depends on IoT
deviceD and is given by (9), where bat(C) is the battery capacity
and bat(V) is the battery voltage

maxBat = bat(C)× bat(V)× 3.6. (9)

Similarly, for an edge device, the battery life in hours batE is
calculated in terms of energy impact EIE and a device-specific
constant βE as given in (10)

batE = βE × (EIE)
−1. (10)

Total Turnaround Time: The raw data generated by the ac-
celerometer is partially processed by the IoT device and is then
transferred to edge devices for further processing. The final
processing takes place in a cloud datacenter which also saves the
result for further processing (e.g., for cross-population analytics
that can generate better predictive models). The total turnaround
time T 3 is given by summing the time taken by IoT device TD,
edge device TE , and cloud datacenter TC from data generation
to data computation and is given by equation (11)

T 3 = TD + TE + TC . (11)

Each layer performs some operation and then sends the data
to upper layer. The time taken by IoT device TD is given in (12).
The total time is equal to the cycle length as it includes both

computation time and time to send data to the edge device

TD = cycle_length. (12)

The time taken by edge and cloud datacenter are given in (13a)
and (13b), respectively

TE = TE(comp) + TE→C(trans) (13a)

TC = TC(comp) (13b)

whereTE→C(trans) is the transmission time from edge to cloud
and Tx(comp) is the computation time taken by either edge
device or cloud datacenter. For the sake of simplicity, we are not
considering any waiting time or queueing time at any part of the
IoT infrastructure.

Cost: Performing the operations on either IoT device, edge or
cloud datacenter incurs some cost in terms of electricity charge,
setup cost, cloud VM cost, or storage cost. There is an additional
cost associated with the data transfer. The total cost (CostTotal)
is given by the sum of the cost incurred by an IoT device
(CostD), edge device (CostE), cloud datacenter (CostC), and
communication cost (Costcomm). The cost incurred by an IoT
device is determined in terms of electricity cost in charging the
device plus a fixed setup cost. The electricity cost depends on
the power consumed (energy impact) by the device and the
per unit electricity rate ρelec. The value of CostD is given in
(14a). Similarly, the cost for an edge device depends on the
setup cost and electricity cost as given in (14b). The cost for
cloud datacenter can be given in terms of launching cost and the
processing and storage cost of a VM as given in (14c)

CostD = (EID × ρelec) + CostD(setup) (14a)

CostE = (EIE × ρelec) + CostE(setup) (14b)

CostC = CostC(VMproc). (14c)

Data is transferred from the IoT device to the edge, and from
the edge device to the cloud. For an IoT device, the data transfer
costs drain the battery (see Sustainability above) but the data
transfer from edge device to cloud datacenter costs not only
in terms of the edge device’s battery charge cost, but also the
network charge, e.g., for transferring data over a 3G or 4G
network. The communication cost is calculated by multiplying
the quantity of data transferred (msg_countE) with the data rate
charge (ρdata) as given in (15)

Costcomm = (msg_counte +msg_header)× ρdata. (15)

REFERENCES

[1] Cisco, “Fog computing and the Internet of Things: Extend the cloud
to where the things are,” pp. 1–6, 2015. [Online]. Available: https://
www.cisco.com/c/dam/en_us/solutions/trends/iot/docs/computing-over
view.pdf

[2] Apache storm. [Online]. Available: http://storm.apache.org/
[3] Amazon kinesis. [Online]. Available: https://aws.amazon.com/kinesis/
[4] M. Yannuzzi, R. Milito, R. Serral-Gracià, D. Montero, and M. Nemirovsky,

“Key ingredients in an IoT recipe: Fog computing, cloud computing, and
more fog computing,” in Proc. 19th Int. Workshop IEEE Comput. Aided
Model. Des. Commun. Links Netw., 2014, pp. 325–329.

[5] W. Shi and S. Dustdar, “The promise of edge computing,” Computer,
vol. 49, no. 5, pp. 78–81, 2016.

[6] P. Michalák and P. Watson, “PATH2iot: A holistic, distributed stream
processing system,” in Proc. Int. Conf. IEEE Cloud Comput. Technol. Sci.,
2017, pp. 25–32.

Authorized licensed use limited to: Newcastle University. Downloaded on February 17,2021 at 13:05:12 UTC from IEEE Xplore. Restrictions apply.

https://www.cisco.com/c/dam/en_us/solutions/trends/iot/docs/computing-overpenalty -@M view.pdf
http://storm.apache.org/
https://aws.amazon.com/kinesis/

7024 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 16, NO. 11, NOVEMBER 2020

[7] M. Nardelli, S. Nastic, S. Dustdar, M. Villari, and R. Ranjan, “Osmotic
flow: Osmotic computing+ IoT workflow,” IEEE Cloud Comput., vol. 4,
no. 2, pp. 68–75, Mar./Apr. 2017.

[8] L. M. Vaquero and L. Rodero-Merino, “Finding your way in the fog:
Towards a comprehensive definition of fog computing,” ACM SIGCOMM
Comput. Commun. Rev., vol. 44, no. 5, pp. 27–32, 2014.

[9] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its
role in the Internet of Things,” in Proc. 1st Ed. MCC Workshop Mobile
Cloud Comput., ACM, 2012, pp. 13–16.

[10] T. L. Saaty, “Axiomatic foundation of the analytic hierarchy process,”
Manage. Sci., vol. 32, no. 7, pp. 841–855, 1986.

[11] A. Arasu et al., “Stream: The Stanford data stream management system,”
in Proc. Data Stream Manage., Springer, 2016, pp. 317–336.

[12] A. H. Hormati, Y. Choi, M. Kudlur, R. Rabbah, T. Mudge, and S. Mahlke,
“Flextream: Adaptive compilation of streaming applications for heteroge-
neous architectures,” in Proc. 18th Int. Conf. IEEE Parallel Architectures
Compilation Techn., 2009, pp. 214–223.

[13] D. G. Murray, F. McSherry, R. Isaacs, M. Isard, P. Barham, and M. Abadi,
“Naiad: A timely dataflow system,” in Proc. 24th ACM Symp. Operating
Syst. Princ., ACM, 2013, pp. 439–455.

[14] T. Akidau et al., “MillWheel: Fault-tolerant stream processing at Internet
scale,” Proc. VLDB Endowment, vol. 6, no. 11, pp. 1033–1044, 2013.

[15] M. Satyanarayanan et al., “Edge analytics in the Internet of Things,” IEEE
Pervasive Comput., vol. 14, no. 2, pp. 24–31, Apr./Jun. 2015.

[16] R. Fang, S. Pouyanfar, Y. Yang, S.-C. Chen, and S. Iyengar, “Computa-
tional health informatics in the Big Data age: A survey,” ACM Comput.
Surv., vol. 49, no. 1, p. 12, 2016.

[17] K. Hong, D. Lillethun, U. Ramachandran, B. Ottenwälder, and B. Kolde-
hofe, “Mobile fog: A programming model for large-scale applications on
the Internet of Things,” in Proc. 2nd ACM SIGCOMM Workshop Mobile
Cloud Comput., ACM, 2013, pp. 15–20.

[18] S. Sarkar and S. Misra, “Theoretical modelling of fog computing: A green
computing paradigm to support IoT applications,” IET Netw., vol. 5, no. 2,
pp. 23–29, 2016.

[19] E. Saurez, K. Hong, D. Lillethun, U. Ramachandran, and B. Otten-
wälder, “Incremental deployment and migration of geo-distributed situ-
ation awareness applications in the fog,” in Proc. 10th ACM Int. Conf.
Distrib. Event-Based Syst., ACM, 2016, pp. 258–269.

[20] M. Vögler, J. M. Schleicher, C. Inzinger, and S. Dustdar, “A scalable
framework for provisioning large-scale IoT deployments,” ACM Trans.
Internet Technol., vol. 16, no. 2, p. 11, 2016.

[21] Y. Cao, P. Hou, D. Brown, J. Wang, and S. Chen, “Distributed analytics and
edge intelligence: Pervasive health monitoring at the era of fog computing,”
in Proc. Workshop Mobile Big Data., ACM, 2015, pp. 43–48.

[22] R. B. Das, N. V. Bozdog, M. X. Makkes, and H. Bal, “Kea: A computation
offloading system for smartphone sensor data,” in Proc. Int. Conf. IEEE
Cloud Comput. Technol. Sci., 2017, pp. 9–16.

[23] A. Brogi and S. Forti, “QoS-aware deployment of IoT applications through
the fog,” IEEE Internet Things J., vol. 4, no. 5, pp. 1185–1192, Oct. 2017.

[24] H. Kalantarian, C. Sideris, B. Mortazavi, N. Alshurafa, and M.
Sarrafzadeh, “Dynamic computation offloading for low-power wearable
health monitoring systems,” IEEE Trans. Biomed. Eng., vol. 64, no. 3,
pp. 621–628, Mar. 2017.

[25] D. N. Jha and D. P. Vidyarthi, “A heuristic for security prioritized resource
provisioning in cloud computing,” in Proc. IEEE UP Sect. Conf. Elect.
Comput. Electron., 2015, pp. 1–6.

[26] A. Mendoza, E. Santiago, and A. R. Ravindran, “A three-phase multicri-
teria method to the supplier selection problem,” Int. J. Ind. Eng., vol. 15,
no. 2, pp. 195–210, 2008.

[27] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to
the Theory of NP-Completeness. New York, NY, USA: W. H. Freeman &
Co., 1990.

[28] M. Hirzel, R. Soulé, S. Schneider, B. Gedik, and R. Grimm, “A catalog
of stream processing optimizations,” ACM Comput. Surv., vol. 46, no. 4,
p. 46, 2014.

[29] T. L. Saaty, “How to make a decision: The analytic hierarchy process,”
Eur. J. Oper. Res., vol. 48, no. 1, pp. 9–26, 1990.

[30] L. Roberts, P. Michalák, S. Heaps, M. Trenell, D. Wilkinson, and P. Watson,
“Automating the placement of time series models for IoT healthcare
applications,” in Proc. IEEE 14th Int. Conf. e-Sci., 2018, pp. 290–291.

[31] N. Zhao, “Full-featured pedometer design realized with 3-axis digital
accelerometer,” Analog Dialogue, vol. 44, no. 6, pp. 1–5, 2010.

[32] “Average variable unit costs and standing charges for standard electric-
ity in UK,” [Online]. Available: https://www.gov.uk/government/uploads/
system/uploads/attachment_data/fi le/357808/qep_224.xls

[33] “Pay as you go rates on three,” [Online]. Available: http://www.three.co.
uk/Store/Pay_As_You_Go_Price_Plans

[34] PATH2iot-data. [Online]. Available: https://ln.sync.com/dl/278ca25a0/
4hnrq9ng-myq3f55n-qwaj9w69-mx3qe3n4

[35] ABMO. [Online]. Available: https://github.com/DNJha/ABMO/tree/
merge2path

Devki Nandan Jha received the M.Tech. de-
gree in computer science and technology from
Jawaharlal Nehru University, New Delhi, India,
in 2015. He is working toward the Ph.D. degree
in computer science with the School of Comput-
ing Science, Newcastle University, Newcastle
Upon Tyne, U.K.

His research interests include cloud comput-
ing, big data analytics, machine learning, and
Internet of Things.

Peter Michalák received the B.Eng. degree in
computer software engineering from the JAMK
University of Applied Sciences, Finland, in 2013,
and the B.Sc. degree (with distinction) in com-
puter engineering from the University of Žilina,
Slovakia, in 2012. He is currently working to-
ward the Ph.D. degree in computer science
with the EPSRC Centre for Doctoral Training in
Cloud Computing for Big Data, School of Com-
puting Science, Newcastle University, Newcas-
tle Upon Tyne, U.K.

He previously worked as an R&D Software Developer with Tieto Fin-
land Oy. His research interests include distributed computing, Internet
of Things, and real-time event processing.

Zhenyu Wen received the M.S. and Ph.D. de-
grees in computer science from Newcastle Uni-
versity, Newcastle Upon Tyne, U.K., in 2011 and
2015, respectively.

He is currently a Postdoctoral Researcher
with the School of Computing, Newcastle Uni-
versity. His current research interests include
multiobjects optimization, crowdsources, AI,
and cloud computing.

Rajiv Ranjan received the Ph.D. degree in com-
puter science and software engineering from the
University of Melbourne, Parkville, Australia, in
2009.

He is currently a Full Professor in Computing
Science with Newcastle University, Newcastle
Upon Tyne, U.K. Before moving to Newcastle
University, he was Julius Fellow (2013–2015),
Senior Research Scientist, and Project Leader
with the Digital Productivity and Services Flag-
ship of Commonwealth Scientific and Industrial

Research Organization (CSIRO – Australian Government’s Premier Re-
search Agency). Prior to that, he was a Senior Research Associate
(Lecturer level B) with the School of Computer Science and Engineering,
University of New South Wales.

Paul Watson received the Ph.D. degree in par-
allel computing from the Manchester University,
Manchester, U.K., in 1986.

He is currently a Professor of Computer Sci-
ence, Director of the Informatics Research Insti-
tute, and Director of the North East Regional e-
Science Centre, Newcastle University, Newcas-
tle Upon Tyne, U.K. He also directs the UKRC
Digital Economy Hub on “Inclusion through the
Digital Economy.” Prior to moving to Newcastle
University, Paul worked with the ICL as a Sys-

tem Designer of the Goldrush MegaServer parallel database server. He
was also a Lecturer with the Manchester University. His research inter-
ests include scalable information management, including data-intensive
e-Science, dynamic service deployment, and e-Science applications. He
has over 40 refereed publications, and three patents.

Authorized licensed use limited to: Newcastle University. Downloaded on February 17,2021 at 13:05:12 UTC from IEEE Xplore. Restrictions apply.

https://www.gov.uk/government/uploads/system/uploads/attachment_data/fi ignorespaces le/357808/qep_224.xls
http://www.three.co.uk/Store/Pay_As_You_Go_Price_Plans
https://ln.sync.com/dl/278ca25a0/4hnrq9ng-myq3f55n-qwaj9w69-mx3qe3n4
https://github.com/DNJha/ABMO/tree/merge2path

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

