5852

IEEE INTERNET OF THINGS JOURNAL, VOL. 7, NO. 7, JULY 2020

ESMLB: Efficient Switch Migration-Based Load
Balancing for Multicontroller SDN 1n IoT

Kshira Sagar Sahoo
Bibhudatta Sahoo

, Deepak Puthal

Abstract—In software-defined networks (SDNs), the
deployment of multiple controllers improves the reliability
and scalability of the distributed control plane. Recently, edge
computing (EC) has become a backbone to networks where
computational infrastructures and services are getting closer to
the end user. The unique characteristics of SDN can serve as a
key enabler to lower the complexity barriers involved in EC,
and provide better quality-of-services (QoS) to users. As the
demand for IoT keeps growing, gradually a huge number of
smart devices will be connected to EC and generate tremendous
IoT traffic. Due to a huge volume of control messages, the
controller may not have sufficient capacity to respond to
them. To handle such a scenario and to achieve better load
balancing, dynamic switch migrating is one effective approach.
However, a deliberate mechanism is required to accomplish
such a task on the control plane, and the migration process
results in high network delay. Taking it into consideration, this
article has introduced an efficient switch migration-based load
balancing (ESMLB) framework, which aims to assign switches to
an underutilized controller effectively. Among many alternatives
for selecting a target controller, a multicriteria decision-making
method, i.e., the technique for order preference by similarity to
an ideal solution (TOPSIS), has been used in our framework.
This framework enables flexible decision-making processes for
selecting controllers having different resource attributes. The
emulation results indicate the efficacy of the ESMLB.

Index Terms—Controller, software-defined network (SDN),
switch migration, technique for order preference by similarity
to an ideal solution (TOPSIS).

I. INTRODUCTION

HE POPULARITY of software-defined networks (SDN5s)
has been growing due to their unique characteristics,
i.e., the separation of the control plane from the forwarding
plane [1], [2]. The control plane can have a global view of the

Manuscript received September 1, 2019; revised October 13, 2019; accepted
November 1, 2019. Date of publication November 8, 2019; date of cur-
rent version July 10, 2020. (Corresponding authors: Kshira Sagar Sahoo;
Zhenyu Wen.)

K. S. Sahoo is with the Department of IT, VNRVIJIET, Hyderabad 50090,
India (e-mail: kshirasagar]12@gmail.com).

D. Puthal, Z. Wen, and R. Ranjan are with the School of Computing,
Newcastle University, Newcastle upon Tyne NE1 7RU, UK. (e-mail:
zhenyu.wen @newcastle.ac.uk).

M. Tiwary is with Core Cloud Platform, SAP Lab, Bengaluru 560066,
India.

M. Usman is with the School of SEIT, Federation University, Ballarat,
VIC 3350, Australia.

B. Sahoo is with the Department of Computer Science and Engineering,
National Institute of Technology Rourkela, Rourkela 769008, India.

B. P. S. Sahoo is with the Department of Electrical Engineering, National
Taiwan University, Taipei 10617, Taiwan.

Digital Object Identifier 10.1109/JI0T.2019.2952527

, Senior Member, IEEE, Mayank Tiwary, Muhammad Usman
, Zhenyu Wen, Biswa P. S. Sahoo

, and Rajiv Ranjan ", Senior Member, IEEE

whole network, which supports efficient control of the under-
lying forwarding planes. Nowadays, the edge computing (EC)
paradigm has become a trend that brings computational infras-
tructures and services closer to end devices, instead of relying
on cloud datacenters (CDC) [6], [7]. The decoupled character-
istics of SDN can bridge the gap between EC and CDC. The
combination of EC and CDC can lower the complexity of the
EC architectures and utilize the available resources more effi-
ciently. For instance, the control plane can act as a decision
maker on whether the incoming task should execute in edge
or forward to cloud [5]. Additionally, the programmability of
the network and multitenant capability of SDN improves the
resource utilization and network performance by resolving var-
ious application requirements. Fig. 1 gives an illustration of
multicontroller SDN architecture for IoT-based EC systems.
Despite all these impressive innovations, the key problem
faced by the controllers is to manage a large number of con-
trol messages during the peak hour of the day. In a mature
software-defined Internet of Things (IoT) system, huge data
transmission occurs which causes a bottleneck at the switch. In
turn, a massive volume of control requests makes the controller
unstable.

Load balancing techniques could be static or dynamic. The
static mapping between switches and controller creates reli-
ability issues and consequently degrade the performance of
the network due to the uneven load distribution among con-
trollers [9]. Dynamic approaches are always more effective
than static methods due to the load assignment process-based
on the traffic pattern of the network. In SDN, a controller is
overloaded primarily due to the packet_in control messages
sent by the switches. Different parameters are considered for
load balancing in SDN, such as resource utilization, through-
put, execution time, energy consumption, and peak load ratio,
etc. From the latest survey, load balancing approaches can
be categorized into two subcategories: 1) deterministic and
2) nondeterministic approaches [3]. The load migration, i.e.,
rerouting of the flows are some of the techniques of the
deterministic approach. The output is always the same for
the deterministic approach, whereas outputs always differs for
the nondeterministic approach. Response time optimization,
increased controller throughput are the primary advantages of
the deterministic approach.

From the literature, authors have used both approaches for
solving load balancing issues. But, in recent years, research
on switch migration-based load balancing is predominant
because it supports dynamic load management and flexible

2327-4662 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Newcastle University. Downloaded on February 17,2021 at 13:07:06 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-6435-5738
https://orcid.org/0000-0002-8332-278X
https://orcid.org/0000-0003-2165-4575
https://orcid.org/0000-0001-8273-9850
https://orcid.org/0000-0003-0038-3489
https://orcid.org/0000-0002-6610-1328

SAHOO et al.: ESMLB FOR MULTICONTROLLER SDN IN IoT

SDN
Controller

switch,
migrationy

OpenFlow
witch ™
\

————— Edge 8 : \
Acgess i R ‘:\" \ “
l N @7@ R e @;@
..‘“@**ﬁ g \p T g
| G O
Fig. 1. Multicontroller SDN architecture in IoT-based EC system.

deployment. In this article, a novel switch migration strategy
with a detailed process for the control plane load balancing is
proposed and implemented.

The major contributions of this article compared to other
related works are abstracted as follow.

1) With the thought of controller load balancing, the
efficient switch migration technique for load balanc-
ing (ESMLB) framework has been explored. Through
investigating the device migration process, the proposed
framework recognizes the under-utilized controller by
averaging the control plane load. In the meantime,
the candidate switch is elected based on a selection
probability.

2) For choosing the target controller, TOPSIS—a decision
analysis method—is used to rank the controllers based
on certain criteria, such as current memory usage, CPU
load, bandwidth status of the controller, and hop count.

3) The proposed framework has been tested over the
Mininet platform with Floodlight as the experimental
controller and later the result outcomes are compared
with previous relevant works.

The remaining part of this article is structured as follows.
Section II gives a summary of related work and motivation
to the research problem. In Section III, the proposed ESMLB
framework for SDN load balancing is outlined. The emulation
results of the ESMLB are presented in Section IV. Finally, the
conclusion and future directions are summarized in Section V.
In the rest of this article, the terms switch migration and device
migration are used interchangeably.

II. RELATED WORK AND PROBLEM MOTIVATION

This section outlines the up-to-date research progress of
load-balancing techniques in distributed controller environ-
ments that support the description of our research background
and its theoretical justification.

A. Related Work

Traditional SDN architecture relies on a centralized control
plane. Potential issues, such as scalability, performance, and
reliability of the control plane are faced by the centralized
architecture. Hence, researchers proposed distributed control
plane architecture, such as Onix, Kandoo, ONOS, etc. Although

5853

the distributed architecture solves the above mentioned issues,
it encounters several other limitations. In a distributed multi-
controller environment, the mapping between the switches and
controllers is static in nature. The unexpected network demand
and dynamic changing of the topology create an uneven load
distribution among controllers as well as synchronization of the
control events issues [11], [23]. For instance, in the deploy-
ment scenario of cloud and software-defined IoT (SD-IoT),
these issues may degrade the overall resource utilization of
controllers leading to suboptimal performance. A few load
balancing works are tabulated in Table I.

According to OpenFlow v1.3, a device can be attached to
multiple controllers; furthermore, it allows the load to be dis-
tributed among other controllers [4]. In order to address the
load imbalance problem in SDN, few authors have embraced
the device migration approach, and a few important works are
reviewed below. First, Advait et al. proposed device migra-
tion technique for load-balancing in SDN [12]. For switch
migration, the authors suggested the nearby controller for
transferring the load, with an expectation to reduce the migra-
tion time. The proposed technique was suitable for LAN
controllers but did not address the issues of the wide area
network. In the distributed load balancing approach (DALB),
for each controller, a threshold is defined. When the load of
a controller increases this limit, the load collection process
starts, and it goes to the load balancing phase [15]. In order to
achieve the optimal performance, deciding the threshold value
was the key issue of this approach. Liang et al. [14] sug-
gested a device migration-based load balancing approach for
a group of controllers. Although it supports controller failover,
at the same time the response time increases significantly.
In another work, Cheng and Chen [13] proposed a migra-
tion algorithm that randomly selects a switch for migration,
which could quickly lead to new load imbalance. Bari et al.
introduced a dynamic controller-provisioning framework that
minimizes the flow setup time. However, massive state syn-
chronization is required during the reassignment of the entire
control [10]. Yu et al. [24] proposed a mechanism based
on load information sharing strategy. In their work, each
controller reports its load status to other neighboring con-
trollers periodically. Moreover, it reduces the decision time
during an overloaded situation. Further, Cui et al. suggested
SMCLBRT, a load-balancing strategy based on the chang-
ing features of real-time response times [25]. This scheme
consumes high bandwidth and produces congestion due to
simultaneous switch migration by multiple controllers.

B. Motivation

In order to achieve optimal performance of the over-
all system, certain network parameters and heterogeneous
controller resources, such as CPU load, memory, band-
width, delay, and hop count, need to be optimized. During
optimization, specific criteria need to be maximized (such as
memory usage, CPU utilization), and other criteria need to
be minimized (such as latency, hop-count). In the above dis-
cussed state-of-the-art approaches of controller selection, all
the criteria are assumed to have equal weight. Such assump-
tions are unrealistic for real-time applications. Moreover,

Authorized licensed use limited to: Newcastle University. Downloaded on February 17,2021 at 13:07:06 UTC from IEEE Xplore. Restrictions apply.

5854

IEEE INTERNET OF THINGS JOURNAL, VOL. 7, NO. 7, JULY 2020

TABLE I
SELECTED LOAD BALANCING TECHNIQUES USED IN SDN

Authors/Year Techniques

Short Analysis

Dixit et al. [12], 2014 Elastic distributed controller architecture

through switch migration (Elasticon)

Better load balancing but response time increases after a certain
threshold value, and designed for small-scale networks.

Wang et al. [21], 2016 Switch migration based decision making

(SMDM) scheme

Improves the migration efficiency and enabling elasticity of controller
via switch migration. But, latency and throughput have not been
measured.

Cell et al. [22], 2017 BalCon (Balanced Controller) via switch

Increase the load balancing rate through migration decision but suitable

migration for small-scale network.
Kang and Choo [20], 2018 | SDN enhanced inter-cloud manager (S- | Reduce average response time in the congested network. The disad-
ICM) vantage is generating additional control messages and bottleneck.

Cui et al. [25], 2018 Multiple controller load-balancing strategy

based on response time (SMCLBRT)

This scheme increases the load balancing among the controllers. How-
ever, it consumes high network bandwidth and selecting appropriate
response time is difficult.

Hu et al. [19], 2019 Efficiency-Aware Switch Migration
(EASM) for balancing controller load

using Simulated Annealing technique.

Improves the load balancing rate, response time, throughput of the
control plane. Security and WAN issues are silent.

individual criterion is tested separately, and mutual effects
have not been discussed.

From the above challenges, the proposed ESMLB adopts a
multicriteria decision analysis method called the technique for
order preference by similarity to an ideal solution (TOPSIS).
It is a decision-making technique and most suitable where
there are limited numbers of choices, but each has a con-
siderable number of criteria (properties). In this context, it
enables a flexible selection of the suitable target controllers
with heterogeneous criteria related to the controller resources.

III. ESMLB FRAMEWORK FOR CONTROLLER
LOAD BALANCING

This section describes the proposed ESMLB approach for
scalable load balancing of controllers. The network topol-
ogy is presented by an un-directed graph, i.e., G = (V, E)
, where V = {V{,V,,...,V,} is a set of controllers and
switches. Let, C = {Cy, C3, ..., Ci} be the set of controllers

and S = {s1,52,...,5,} be the set of switches, in gen-
eral V = C[JS. The load on the controller is dynamic in
nature. Let, G¢, € S, represent the switch set managed by the

controller C;. When the controller gets overloaded, a set of
switches G'c;, i.e., G'¢, € G¢, migrate to target controller Cr.
The switches to controllers interconnection edges are assumed
to be full-duplex, represented by E = {er, ez, ..., e;}. In the
switch migration mechanism, after load shifting, the current
control domain becomes the new master domain whereas the
previous one automatically goes to the slave mode.

The load balancing scheme using the ESMLB framework
and the workflow of the proposed ESMLB are depicted in
Figs. 2 and 3, respectively. The step by step process, start-
ing from load measurement to load distributions are outlined
in the following sections. Each controller contains a copy
of the ESMLB framework, and it consists of four mod-
ules. For instance, Load_Measurement module is used for
the load measurement of a controller. The target controller
selection (TCS) module outlined in Algorithm 4, is desig-
nated for selecting a target controller, and candidate switch
selection (CSS) module selects a candidate switch for migra-
tion. Finally, the Switch_Migration module is responsible for
migrating the selected device to the target controller. The

ESMLB Framework

Switch
Migration
Load Estimator Comro_ller

adaption

Switch
Selection

‘ Logically global network view

|
| |
‘ e o o \
| Controller 1 Controller k |
|

|
|

|
|

|
|

Distributed SDN Controller

Fig. 2. Load balancing scheme using ESMLB framework.

Measure the load of controller

Controller is in
stable mode

collect load status of other
controller and find average load
Find ratio of individual
to average load
No
Overloaded controller

Yes

Find resource utilization
of switch i on controller j

Based on probabilty
distribution select switch
for migation

Select controller as lightly
loaded controller

Using TOPSIS,

rank the controllers

¥
Select target controller with
highest rank

Migration process start
from source to targert controller

Fig. 3. Flowchart of ESMLB framework.

notations used in ESMLB are listed in Table II. There are
some realistic assumptions made as follows while presenting
ESMLB.

Authorized licensed use limited to: Newcastle University. Downloaded on February 17,2021 at 13:07:06 UTC from IEEE Xplore. Restrictions apply.

SAHOO et al.: ESMLB FOR MULTICONTROLLER SDN IN IoT

TABLE II
NoOTATIONS USED IN ESMLB
Notations | Description
R Static relation between switch and controller.
T Resource utilization ratio.
9;.‘ ,6’? ,9; The weighted value of CPU, memory, bandwidth on
N N OR

UR;j Estimated resource utilization produced by s; on C;.
MCyx Message exchange cost.
MCy Increased load on controller.
L(C;) Current load status of controller C;.
@ Degree of current load to average load.
&’ Controller’s threshold.
Cuy Under-loaded controller list.

Algorithm 1 ESMLB Framework

Input: &

Output: control plane load balancing successful
1: if L(C.; > §') then
: Construct R and call Load_Measurement()

2

3 Construct D and call TCS()

4: For candidate switch selection call CSS()

5. Switch_Migration starts

6: Load status updation of both controllers

7: end if

8: return control plane load balancing successful

Assumption 1: In the network, switches can access and
migrate from one controller domain to another in order to
balance the control plane load.

Assumption 2: If a switch has elected for migration, it is
not allowed to return back to the former controller domain
until all control requests have been accomplished by the new
controller domain.

Assumption 3: Only one controller is allocated to each
switch as a master controller and the rest run in equal or slave
mode.

Assumption 4: All the controllers cannot be overloaded for
the time frame 7.

The description of different algorithms used by ESMLB is
abstracted below. Inside the main ESMLB module, the remain-
ing three algorithms have been called. If the current controller
load exceeds the & value, it calls the load measurement mod-
ule. Then both TCS and CSS modules call one after another.
The switch migration process conducted by Switch_Migration
module. The entire process is illustrated in Algorithm 1.

A. Load Measurement

Three parameters are considered for measuring the load
on the controller. The resource utilization becomes imbal-
anced in terms of CPU, memory, bandwidth due to the heavy
demand from the forwarding plane. The static connection
within switch s; and controllers C; can be designated by a
matrix R, where each entry, i.e., r;; € R is a binary value and

5855

it can be described as

1, if s eGe
o — :
Y 0, otherwise.

Let, n; be the packet_in counts generated by s; to controller
C; at time T. Due to packet_in requests, the total load of C;
can be defined as

L(C) = Y ni(D)ry ()

5;i€Cj

Let 7; be the estimated resource utilization of C;. The
resource utilization of C; expresses the consumed fraction
of resources on three different factors: CPU, memory, and
bandwidth. It can be expressed by using

5=y 1 2)

SiECj

7;; is the aggregate sum of calculated resource utilization
component created by s; on C;. It can be further expressed as

+9?n"*z") 3)

; i]
vj v

n; * X; n; * y;
T = log<9j‘ le ! +9]:V L

where the terms n; * x;, n; * y;, and n; * z; denote the CPU,
memory, bandwidth of controller utilized by s;, respectively.
The value 9]?‘ , Gj-y s 9]? denotes three different weights that satisfy
9/?‘ + 0}’ + Qf = 1. Additionally, u;, vj, and ; represent three
resource capabilities of C;.

To realize this process, Load_Measurement() measures the
current mean load of the network based on the above discussed
process

k
1
L= i ;L(Ci). 4)

Then, Load_Measurement() calculates ¢, which is the factor
of current load to the average load of the network, i.e.,
(Ci)
Y= 7 (5)
This ratio generates three cases.

1) ¢ < I: It shows the controller is in under utilized state.

2) @ = I: It shows the controller is in stable state.

3) ¢ > I: It indicates the controller is in overloaded state.
Considering these cases, all the controllers are listed in two
sets: 1) over provisioned controller set (Cp) and 2) under
provisioned controller set (Cy). It can be written as follows:

ch—19> 1, over provisioned
0= ¢ =1, stable

Cy = {(p < 1, under provisioned.

The overall working principle of the Load_Measurement
module is discussed in Algorithm 2.

Authorized licensed use limited to: Newcastle University. Downloaded on February 17,2021 at 13:07:06 UTC from IEEE Xplore. Restrictions apply.

5856

Algorithm 2 Load_Measurement
Input: C

Output: Cy

1: k=|C|

2: for controller i =1to k do
3 Fetch L(C;)

4: Sum = Sum + L(C;)

5: end for
6
7
8

. calculate L
: for contLroéler i=1to k do

==

9: ifg <L1 then
10: Cy < C;
11: else
12: Co < C;
13: end if
14: end for

15: return Cy

Algorithm 3 CSS

Input: Current Controller C;
Output: Candidate Switch set Q
1: Q < NULL
2: for Vs; € Cj do
3 for VFlows € S; do
4 Receivedpackets < s;.flowstats()
5: Estimate T using Equation (3)
6
7
8
9

end for
: end for
: Q < select switch based on Equation (6)
: return Q

B. Switch Selection

For selecting a switch, the CSS module follows

-7
e lfrij

—Tij

1—1j;
Zs;EC,' e v

where 7;; represents the utilization component which was dis-
cussed in (3). The switch which generates higher control
requests will bear additional overhead for state synchroniza-
tion. Hence, the selection probability of a switch is higher if
its 7;; value is smaller. In other words, a larger UR;; increases
the likelihood of s; for migration.

The entire process of switch selection is outlined in
Algorithm 3. At first, the algorithm obtains the packet counts
passing across each switch at time 7. Two control messages,
such as STATS_REQUEST and STATS_REPLY, are used for
packet count, designated by s.flowstats() (step 5). The module
runs across each attached device of an over-provisioned SDN
controller and meanwhile, it determines the estimated resource
utilization factor produced by the devices. Later, based on (6),
the module returns the candidate switch set Q. In step 1, the
switch selection array Q is set to NULL. The two loops from
step 2 to 7 collect the flow statistics and evaluate the resource
utilization ratio. After evaluation, the set Q keeps the switch
information according to the probability function UR;;.

IEEE INTERNET OF THINGS JOURNAL, VOL. 7, NO. 7, JULY 2020

C. Target Controller Selection

The prime objective of the ESMLB is to select a least
loaded controller in terms of CPU, memory, and bandwidth
resources. More precisely, our controller selection is based on
the technique for order of preference by similarity to ideal
solution (TOPSIS) which is an efficient multi criteria decision
making (MCDM) method [8].

Selecting the optimal target controller for switch migration
with different parameters is an optimization problem for a
large scale network. There are several dimensions, such as
CPU, memory, and bandwidth of the controller consider for
the optimal controller resource selection. Since a controller
can be overloaded, a metric has been defined consisting of
three different resources, that captures the combined load sta-
tus. Additionally, hop-count has been considered for controller
selection, which has a greater impact on large networks. This
method chooses an alternative which is as close as possible to
the ideal solution. The proximity of each performance param-
eter is measured in Euclidean distance with optional weight
value. For a single decision maker, the TOPSIS technique
involves the following steps.

Step 1) For solving a multicriteria decision-making

problem, TOPSIS starts with the construction of
a decision making matrix D. The decision matrix
can be expressed in the following way:

1 ¢ ... e
a, X1 X2 Xln
D=|a x1 x» Xon
am Xml Xm2 Xmn

where {aj,a,...,a,} are the possible alterna-
tives from which the decision maker has to
choose the suitable one based on the criteria set
{c1, c2, ..., cu). Moreover, x;; is the rating of alter-
nate a; with respect to criterion ¢;. The values of the
criteria for alternatives is used for order preference.
In this step, different attribute dimensions are
transferred to nondimensional attributes. Usually,
a different criterion has different measuring units.
Hence, the value of decision matrix D has trans-
formed into a normalized decision matrix R, which
is calculated as follows:

Step 2)

I ri2 . Fin
T I e I
R = 21 22 2n (7)

m1 "m2

where
Xij
rjj = —F/————. (8)
S X
i=1"ij

All the selection criteria may not have equal impor-
tance. Thus, adding weighted value quantify the
relative significance of the different selection crite-
ria. In this step, the weighting decision matrix (W)
is constructed by multiplying each element of R

Step 3)

Authorized licensed use limited to: Newcastle University. Downloaded on February 17,2021 at 13:07:06 UTC from IEEE Xplore. Restrictions apply.

SAHOO et al.: ESMLB FOR MULTICONTROLLER SDN IN IoT

with the value of the random weights. Each ele-
ment of the weighted normalized decision matrix
(vij) is computed as follows:

©))

where W; is the weight of the ith criterion and
Y Wi=1.

Calculate the positive ideal solution (A') and
negative ideal solution (A7). The A™ solution is
designated for maximizing the benefit criterion ()
and minimizing the cost criterion (J). On the other
hand, A~ solution is designated for maximizing the
cost and minimizing the benefit criteria. The form
of both the solutions can be defined as follows:

Vij = Wi X Fijj

Step 4)

A+:{V-1’—,...,V’T}
= {(max v,-j[jEI), (min VijUGJ)} (10)
A*:{vl_,...,v;}

= {(min viilj € 1), (max vijlj € J)} an

Step 5) This step determines the separation measure of

each alternative from both positive and negative
ideal solutions using Euclidean distance

n
2
i = Y (), i=12..m02)
=

" 2
T= Y (-vy) s i=12 L ma3)

N
Finally, determine the relative closeness (RC) to the
AT ideal solution using

Step 6)

d-
RC; L

=i 14
dt +d;- (14

Since d and d > 0, it is obvious that RC; €
[0, 1].
Sort the alternatives according to RC;. The higher
RC,;, is the better alternative.
Let us discuss some definitions and examples that support the
background and theoretical foundation of this article.
Definition 1 [Migration Cost (MC)]: Primarily two com-
ponents have been considered for MC. One component is the
total number of packet exchange during migration. The second
component is the additional load on the controller. When s;
migrates from C; to Cr, the MC MCj; ¢, can be expressed as

Step 7)

MCs,.c; = MCpyx + MCyy. (15)
Furthermore, MCj; can be formulated as follows:
MCj; = nj.(hj — hp) (16)

where, n; is the packet_in messages generated from s;,
h,, denotes the minimum hop count between s; and target
controller Cr.

Example 1: The importance of the TOPSIS technique
in the context of switch migration is outlined here. Let

5857

Algorithm 4 TCS
Input: Decision matrix D = (xjj)mn
Output: Target Controller C1

1: Ct < NULL
2: Calculate rj; using Equation (8).
3 R=rj
4: Calculate W and compute v;; using Equation (9).
5: Calculate AT and A~ using Equation (10), (11)
6: Calculate Euclidean distance df and d;
CRC. — 9
7RG = df +d;
8: sort(RC)
9: Ct < RCy
10: return Cr
TABLE III
DECISION MATRIX
. criteria
alternative =~ 50— T RAM Bandwidth | Distance
(GB) (Gbits/sec) | (Hop count)
C 1000 2 0.30 2
C, 1200 1 0.20 3
C3 900 2 0.40 3
Cy 1100 3 0.10 4
TABLE IV
NORMALIZED DECISION MATRIX
R criteria
alternative CPU;pqa | RAM Bandwidth | Distance
(GB) (Gbits/sec) | (Hop count)
C, 0.238 0.357 0.300 0.166
) 0.285 0.285 0.200 0.250
C; 0.214 0.142 0.400 0.250
C, 0.261 0214 0.100 0.330
TABLE V
WEIGHTED NORMALIZED DECISION MATRIX
R criteria
alternative ' —pp7—— AN Bandwidth | Distance
(GB) (Gbits/sec) | (Hop count)
C| 0.0595 0.0892 0.3000 0.0750
C, 0.0712 0.0712 0.0500 0.0625
C; 0.0535 0.0355 0.1000 0.0625
Cs 0.0652 0.0535 0.0250 0.0825

CPUjpad, RAM, Hop_counts, Bandwidth (BW) be the crite-
ria for the controller set {Cy, Ca, ..., Cs}. Let us assume Cs
is the overloaded controller. For switch migration, now Cs
has four alternatives with four different criteria. Each alterna-
tive C; is evaluated with respect to m criterion by Cj. Let
Table III represent the current status of the controllers in
the form of decision matrix. In Table III, CPUjoyq, RAM,
and BW denote the current consumed resources. The CPU
is typically the throughput bottleneck of a controller, and the
CPUjpqq is approximately proportioned to the arrival rate of
packet_in message. Hence, we calculate the total packet_in
messages reaching the controller at time T as the load. Then,
the normalized decision matrix can be in the form as given
in Table IV. The weighted normalized decision matrix can be
calculated as W; x r;, and it can be in the form as given
in Table V. For instance, for CPUjp,q the v;“ and v; are
0.0712 and 0.0535, respectively. Similarly, for bandwidth, 0.3
is the positive ideal value and 0.025 is the negative ideal
value. Then, the separation measure of each alternative using

Authorized licensed use limited to: Newcastle University. Downloaded on February 17,2021 at 13:07:06 UTC from IEEE Xplore. Restrictions apply.

5858

Euclidean distance is estimated. Finally, RC to ideal solutions
using (14) is calculated. The final RC values of the alternatives
are {0.9649, 0.1576, 0.2640, 0.5136}. So, the best alternative
controller is C; which has the highest RC toward the positive
ideal solution.

Lemma 1: During device migration, selecting a minimal
packet_in generated switch can realize good load balancing
performance.

Proof: The load balancing rate expresses the level of
closeness to the ideal load distribution. Let a static rela-
tion between controller and switches be represented as
<C; : switch set>. For instance, the current network is:
<Cp : s1,82,53>, <Cy : s4,585,56>, and <C3 : 57,58, 59>.
Let the incoming packet rate of switches to different con-
trollers be: <Cp : 30, 30, 30>, <(C, : 30, 30,40, 50>, and
<C3 : 30,40>. Assume the controller threshold is 120. At
time ¢, for the above scenario, the overloaded controller Cy
(i.e., load is 150) selects C3 as the immigrant controller. For
evaluation of LBR, the following equation has been utilized:

Y ILC) — L
kxL ’

From (17), it can be noted that LBR was 0.67 prior to
the migration. If controller C, selects s7, the balancing
performance will be 0.850 and if ss5 is chosen, it can be
enhanced to 0.921. This evaluation proves that choosing a
switch with fewer control events can improve the performance
of the network. |

LBR=1— (17)

IV. PERFORMANCE EVALUATION

The experiment was conducted over the Mininet plat-
form [16] with Java-based Floodlight controller which sup-
ports OpenFlow 1.3v. In order to conduct the experiment more
representatively, real-time network topologies have been con-
sidered from Topology-zoo website [18]. The emulation was
conducted on three separate topologies, such as NSF (nodes:
13, edges:15), BelNet (nodes: 22, edges: 43), and ARN (nodes:
30, edges: 29). For the testbed setup, five Floodlight controllers
installed in different computers and Zodiac FX OpenFlow
enabled switch have been used to establish the connection
between end hosts and controllers. Few nodes of the topol-
ogy are considered as switches and assigned to any of the five
controllers for their flow management. As far as the machine
configuration is concerned, Intel Core i7 processors with 32-
GB RAM are used for the experiment. The network behavior
is being monitored with the help of Iperf tool and Cbench tool
is used in throughput mode for measuring the average capacity
of the controller. Due to the loop-back problem of Mininet,
it is hard to overload an SDN controller. For this reason, the
controller capacity has been maintained as low as possible,
i.e., 3 kilosrequest per second, and the threshold value set
to 1 Kilorequest. However, in this experiment specifically the
average resource demand of packet_in events has been esti-
mated. For experimenting, many new flows are generated by
Iperf tool, and for each new flow, switches send packet_in
event to the controller. In the meantime the resource consump-
tion (e.g., x,y,z) caused due to packet_in is recorded. The

IEEE INTERNET OF THINGS JOURNAL, VOL. 7, NO. 7, JULY 2020

Controller 2
—— Controller 1

Average load

(50 100 150 200 250 300 o 50 100
Time(sec.)

(@) (b)

750 200 250 300
Time(sec.)

Fig. 4. Load distribution without and with ESMLB strategy. (a) Load dis-
tribution among controllers using SMCS strategy. (b) Load distribution with
ESMLB approach.

I EsvLB] svpM I DALB

M EsvLB [1svDM N DALB

N
5]

Migration cost (ms)
Response Time (in ms)

NSF BelNet ARN NSF

(a) (b)

BelNet ARN

Fig. 5. Average (a) MC and (b) response time using three strategies.

computational resources utilized by an event can be obtained
by (x/new flows) and (y/new flows). The average resource
utilization is estimated after 20-time emulation of the same
experiment.

A comparative study has been performed with other related
works. For evaluation purposes, a static mapping between
controller and switch (SMCS) scheme has been taken into
consideration. Additionally, two migration schemes—switch-
migration-based decision making (SMDM) and DALB—are
considered. Wang et al. [9] proposed the SMDM scheme,
which makes a migration efficiency model based on load bal-
ancing rate and MC. Zhou et al. [15] proposed DALB, which
uses device migration for load balancing of the controller.

A. Result Discussion

To verify the effectiveness of ESMLB, the emulation was
conducted for 15 min on BelNet topology. In the first exper-
iment, the proposed work was compared with SMCS, i.e.,
without adopting any switch migration technique. For this
experiment, a large number packet_ins are created by intro-
ducing new flows to the “Controller-1”. Fig. 4 demonstrates
the emulation result of the first 300 s, where Controller-1 is
under overloaded and rest of the controllers are under loaded
conditions. Fig. 4(a) illustrates the overloaded scenario with-
out using any load balancing strategy. Fig. 4(b) shows that
when the load-balancing operation starts, the proposed frame-
work effectively rebalanced the load of Controller-1. From
the final RC values [discussed in (14)], ESMLB determines
“Controller-5” bears the highest RC value. Hence, after mak-
ing the decision, G'¢, migrated to Controller-5 at 90 s. The
increasing trend of Controller-1’s load has been well dis-
tributed before 110 s. From Fig. 5(a), it is observed that MC

Authorized licensed use limited to: Newcastle University. Downloaded on February 17,2021 at 13:07:06 UTC from IEEE Xplore. Restrictions apply.

SAHOO et al.: ESMLB FOR MULTICONTROLLER SDN IN IoT

[Selection time
4.5| [switch migration time|

I Selection time
[C_switch migration time

Delay (sec)

2 10 2 10

4 6 8 4 6 8
Number of migrated switch Number of migrated switch

(a) (b)

Fig. 6.
(b) ARN.

Average execution time with varying number of switches. (a) NSF.

N Switch—to-Controller __] Controller—to-Controllet] [N Svith-to-Gontrollr] Controllerto-Gontole]

2000

1500

1000

‘Communication Overheaad (packets/sec)
Communication Overheaad (packets/sec)

SMCs DALB SMDM

@ (b)

Communication overhead. (a) NSF. (b) ARN.

ESMLB SMCs DALB SMDM ESMLB

Fig. 7.

of both ESMLB and SMDM shows a better result than the
DALB approach. The reason is obvious; the DALB frame-
work opts for a device that generates higher control requests,
whereas both ESMLB and SMDM select the switch that is
based on a probability function as defined in (6). As far as
response time is concerned, ESMLB outperforms the other
two approaches. It is also inferred that selecting the target
controller using the TOPSIS technique improves the migra-
tion ability. Additionally, it avoids new possible unevenness
among controllers, as illustrated in Fig. 5(b). In the next exper-
iment, the average execution time of the proposed scheme is
determined. During migration, notably, two factors need to be
considered: 1) decision-making time and 2) migration time.
The average execution time of the ESMLB framework with
varying number of migrated devices on NSF topology is illus-
trated in Fig. 6(a). The selection time is observed to be linear
in two topologies. However, in ARN-like larger networks the
switch selection time is higher as depicted in Fig. 6(b). As
the number of migrated switches increases, as a result, the
migration time also rises. Here, the state synchronization of
the controllers incurs an additional delay. The selection of the
target controller of ESMLB is based on the TOPSIS algorithm
which takes less time than the migration efficiency model
adopted by the SMDM scheme. The average load balancing
time is approximately 4 s [in Fig 6(a)] which is reasonably
good for running different network applications with the vary-
ing requirement. Moreover, the selection process of the target
controller has better performance in terms of resource uti-
lization than the other two approaches. In another analysis,
the overhead due to the controller-to-switch communication
and the controller-to-controller communication of different
approaches is explored. From the perspective of the switch-to-
controller communication, SMCS bears the highest overhead.

5859

‘ I sMCS [1DALB Il SMDM [ESMLB

BelNet
Topologies

NSF

ARN

Fig. 8. Load balancing rate in various topologies.

From the perspective of the controller-to-controller commu-
nication, DALB endures the highest overheads as depicted
in Fig. 7. Since SMCS does not follow any load balancing
scheme, the communication between controllers is minimal,
whereas the communication overheads between the switch and
the controller in SMCS is maximum. In terms of controller
communication overheads, ESMLB produces similar results
to SMDM. In this approach, the overhead reduced by approx-
imately 5% over SMDM and 14% over DALB, respectively, on
NSF topology as shown in Fig. 7(a). This framework reduces
the interaction among irrelevant controllers, which could lower
the communication overheads among controllers. From this
experiment, it is concluded that during controller load balanc-
ing, ESMLB bears least communication overhead as compared
to the other three approaches.

Essentially, the duration of device migration influences the
end-user QoS. The longer is the migration period, the more
degradation of QoS and vice versa. From the experiment, it
can be noted that ESMLB’s migration time is faster, hence, this
framework introduces less extra loads for the system. Finally,
using (17), a comparison of the load balancing rate with three
different topologies has been made. From Fig. 8, it can be
noted that as the network size grows, ESMLB and SMDM
schemes’s load balancing efficiency is in an agreeable limit.
With the increased size of the network, the load balancing
rate is increasing by applying ESMLB and SMDM. In case
of SMCS, the LBR is at the lowest level because it does not
follow any load balancing strategy. The above analysis summa-
rizes that the ESMLB is an efficient load balancing framework
that can imperially function in a scalable SDN system.

V. CONCLUSION

This article focused on solving the load imbalance problem
of the distributed control plane in SD-IoT. A novel load bal-
ancing scheme called ESMLB was proposed to overcome the
load imbalance in the control plane. For achieving better load
balancing, the proposed ESMLB monitors the real-time load
information of the control plane and decides whether to imple-
ment switch migration. A multicriteria decision technique
TOPSIS was introduced for choosing the target controller.
Following the selection process, the selected switch shifts
to the target controller domain. Finally, the proposed frame-
work has been validated on a Mininet—a virtual network

Authorized licensed use limited to: Newcastle University. Downloaded on February 17,2021 at 13:07:06 UTC from IEEE Xplore. Restrictions apply.

5860

environment, with real-time topologies. It has been found
that the proposed approach outperforms SMDM and DALB
approaches in relation to lower communication overhead and
reduced response time. Moreover, ESMLB achieves load bal-
ancing on a distributed control plane efficiently and quickly.
For the future scope of the work, this framework could be
implemented for large-scale IoT environments and switch
migration could happen based on the traffic demands.

REFERENCES

[1]1 F. Hu, Q. Hao, and K. Bao, “A survey on software-defined network and
openflow: From concept to implementation,” IEEE Commun. Surveys
Tuts., vol. 16, no. 4, pp. 2181-2206, 4th Quart, 2014.

[2] B. Qian et al., “Orchestrating development lifecycle of machine learning
based IoT applications: A survey,” arXiv: 1910.05433, 2019.

[3] A. A. Neghabi, N. J. Navimipour, M. Hosseinzadeh, and A. Rezaee,
“Load balancing mechanisms in the software defined networks: A sys-
tematic and comprehensive review of the literature,” IEEE Access, vol. 6,
pp. 1415914178, 2018.

[4] Y. Xu et al., “Dynamic switch migration in distributed software-
defined networks to achieve controller load balance,” IEEE J. Sel. Areas
Commun., vol. 37, no. 3, pp. 515-529, Mar. 2019.

[5] S. Garg, K. Kaur, G. Kaddoum, S. H. Ahmed, and D. N. K. Jayakody,
“SDN-based secure and privacy-preserving scheme for vehicular
networks: A 5G perspective,” IEEE Trans. Veh. Technol., vol. 68, no. 9,
pp. 8421-8434, Sep. 2019.

[6] S. Bera, S. Misra, and A. V. Vasilakos, “Software-defined networking
for Internet of Things: A survey,” IEEE Internet Things J., vol. 4, no. 6,
pp. 1994-2008, Dec. 2017.

[71 S. Garg et al., “Edge computing-based security framework for big
data analytics in VANETS,” IEEE Netw., vol. 33 no. 2, pp. 72-81,
Mar./Apr. 2019.

[8] C.-T. Chen, “Extensions of the TOPSIS for group decision-making under
fuzzy environment,” Fuzzy Sets Syst., vol. 114, no. 1, pp. 1-9, 2000.

[9] C. Wang, B. Hu, S. Chen, D. Li, and B. Liu, “A switch migration-based

decision-making scheme for balancing load in SDN,” IEEE Access,

vol. 5, pp. 45374544, 2017.

M. F. Bari et al., “Dynamic controller provisioning in software defined

networks,” in Proc. 9th Int. Conf. Netw. Service Manag. (CNSM), 2013,

pp. 18-25.

S. Garg, K. Kaur, S. H. Ahmed, A. Bradai, G. Kaddoum, and

M. Atiquzzaman, “MobQoS: Mobility-aware and QoS-driven SDN

framework for autonomous vehicles,” IEEE Wireless Commun., vol. 26,

no. 4, pp. 12-20, Aug. 2019.

D. Advait, F. Hao, S. Mukherjee, T. V. Lakshman, and R. Kompella,

“Towards an elastic distributed SDN controller,” ACM SIGCOMM

Comput. Commun. Rev., vol. 43, no. 4, pp. 7-12, 2013.

G. Cheng and H. Chen, “Game model for switch migrations in software-

defined network,” Electron. Lett., vol. 50, no. 23, pp. 1699-1700,

Jun. 2014.

C. Liang, R. Kawashima, and H. Matsuo, “Scalable and crash-tolerant

load balancing based on switch migration for multiple open flow

controllers,” in Proc. 2nd Int. Symp. Comput. Netw., 2014, pp. 171-177.

Y. Zhou et al., “A load balancing strategy of SDN controller based

on distributed decision,” in Proc. IEEE 13th Int. Conf. Trust Security

Privacy Comput. Commun., 2014, pp. 851-856.

Mininet Emulator. Accessed: Oct. 20, 2018.

http://mininet.org/

Floodlight ~ Supported — Switches. Accessed: Jun. 10, 2019.

[Online]. Available: https://floodlight.atlassian.net/wiki/spaces/

floodlightcontroller/pages/1343519/Compatible+Switches

The Internet Topology Zoo. Accessed: Apr. 01, 2019. [Online].

Available: http://www.topology-zoo.org/

T. Hu, J. Lan, J. Zhang, and W. Zhao, “EASM: Efficiency-aware switch

migration for balancing controller loads in software-defined networking,”

Peer-to-Peer Netw. Appl., vol. 12, no. 2, pp. 452-464, 2019.

B. Kang and H. Choo, “An SDN-enhanced load-balancing technique

in the cloud system,” J. Supercomput., vol. 74, no. 11, pp. 5706-5729,

2018.

W. Yong, T. Xiaoling, H. Qian, and K. Yuwen, “A dynamic load balanc-

ing method of cloud-center based on SDN,” China Commun., vol. 13,

no. 2, pp. 130-137, 2016.

M. Cello, Y. Xu, A. Walid, G. Wilfong, H. J. Chao, and M. Marchese,

“BalCon: A distributed elastic SDN control via efficient switch migra-

tion,” in Proc. IEEE Int. Conf. Cloud Eng. (IC2E), 2017, pp. 40-50.

[10]

(11]

[12]

[13]

[14]

[15]

[16] [Online]. Available:

[17]

(18]

[19]

[20]

[21]

[22]

IEEE INTERNET OF THINGS JOURNAL, VOL. 7, NO. 7, JULY 2020

[23] K. S. Sahoo, M. Tiwary, B. Sahoo, R. Dash, and K. Naik, “DSSDN:
Demand-supply based load balancing in software-defined wide-area
networks,” Int. J. Netw. Manag., vol. 28, no. 4, 2018, Art. no. e2022.

[24] J. Yu, Y. Wang, K. Pei, S. Zhang, and J. Li, “A load balancing mechanism
for multiple SDN controllers based on load informing strategy,” in Proc.
18th Asia—Pacific Netw. Oper. Manag. Symp. (APNOMS), 2016, pp. 1-4.

[25] J. Cui, Q. Lu, H. Zhong, M. Tian, and L. Liu, “A load-balancing mech-
anism for distributed SDN control plane using response time,” /IEEE
Trans. Netw. Service Manag., vol. 15, no. 4, pp. 1197-1206, Dec. 2018.

Kshira Sagar Sahoo received the Ph.D. degree in computer science and
engineering from the National Institute of Technology Rourkela, Rourkela,
India.

He is an Assistant Professor with the Department of IT, VNRVIJIET,
Hyderabad, India. His research interests are on performance and security in
software defined networks.

Deepak Puthal (SM’19) is a Lecturer with the School of Computing,
Newcastle University, Newcastle upon Tyne, U.K. His research spans sev-
eral areas in cyber security, blockchain, Internet of Things, and edge/fog
computing.

Mr. Puthal has received several recognitions and best paper awards from
IEEE. He serves on the editorial boards of top quality international jour-
nals, including the IEEE TRANSACTIONS ON BIG DATA, IEEE Consumer
Electronics Magazine, Computers & Electrical Engineering (Elsevier), the
International Journal of Communication Systems (Wiley), and Internet
Technology Letters (Wiley).

Mayank Tiwary is a Software Engineer, SAP Labs, Bengaluru, India.
His research interests are on cloud computing, Internet of Things, and
software-defined networks.

Muhammad Usman received the Ph.D. degree from the University of
Technology Sydney, Ultimo, NSW, Australia.

He is with the Swinburne University of Technology, Melbourne, VIC,
Australia. He is a Lecturer with the School of Science, Engineering and
Information Technology, Federation University, Ballarat, VIC, Australia. His
research interests are on Internet of Things and cyber security.

Bibhudatta Sahoo is an Associate Professor with the Department of
Computer Science and Engineering, National Institute of Technology
Rourkela, Rourkela, India. His research interests are on distributed computing,
cloud computing, Internet of Things, and software defined networks.

Zhenyu Wen received the M.Sc. and Ph.D. degrees in computer science
from Newcastle University, Newcastle upon Tyne, U.K., in 2011 and 2015,
respectively.

He is a Postdoctoral Researcher with the School of Computing, Newcastle
University. His current research interests include multiobjects optimisation,
big data processing, and cloud computing.

Biswa P. S. Sahoo is currently pursuing the Graduation degree with the
National Taiwan University, Taipei, Taiwan. His research interests are on
Internet of Things and 5G networks.

Rajiv Ranjan (SM’15) is a Chair Professor for the Internet of Things
Research with the School of Computing, Newcastle University, Newcastle
upon Tyne, U.K. He is an internationally established scientist with over 260
scientific publications. He has secured more than $12 million AUD (over
6 million GBP) in the form of competitive research grants from both pub-
lic and private agencies. He serves on the editorial boards for top quality
international journals, including the IEEE TRANSACTIONS ON COMPUTERS
from 2014 to 2016, the IEEE TRANSACTIONS ON CLOUD COMPUTING,
ACM Transactions on the Internet of Things, Computer (Oxford University),
Computing (Springer), and Future Generation Computer Systems.

Authorized licensed use limited to: Newcastle University. Downloaded on February 17,2021 at 13:07:06 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

