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The Internet of Things (IoT) is becoming a backbone of sensing infrastructure to several mission-critical

applications such as smart health, disaster management, and smart cities. Due to resource-constrained

sensing devices, IoT infrastructures use Edge datacenters (EDCs) for real-time data processing. EDCs can

be either static or mobile in nature, and this article considers both of these scenarios. Generally, EDCs

communicate with IoT devices in emergency scenarios to evaluate data in real-time. Protecting data

communications from malicious activity becomes a key factor, as all the communication flows through

insecure channels. In such infrastructures, it is a challenging task for EDCs to ensure the trustworthiness of

the data for emergency evaluations. The current communication security pattern of “communication before

authentication” leaves a “black hole” for intruders to become part of communication processes without

authentication. To overcome this issue and to develop security infrastructures for IoT and distributed Edge

datacenters, this article proposes a user-centric security solution. The proposed security solution shifts

from a network-centric approach to a user-centric security approach by authenticating users and devices

before communication is established. A trusted controller is initialized to authenticate and establishes the

secure channel between the devices before they start communication between themselves. The centralized

controller draws a perimeter for secure communications within the boundary. Theoretical analysis and

experimental evaluation of the proposed security model show that it not only secures the communication

infrastructure but also improves the overall network performance.
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1 INTRODUCTION

Distributed networks typically compose a network of geo-distributed connected devices with com-
putation and communication capacity. Today, the Internet of Things (IoT) is gaining lots of interest
in research, as its applications range from agriculture to battlefield applications [1]. Resource-
aware devices are deployed in the sensing area for sensing and lightweight computing. The term
“thing” in IoT infrastructure is not only considered in terms of sensors, but also sensing devices in
automobiles, bio-chemical sensing devices, and heart-monitoring devices inside of a human body
(wearable devices), to name a few. In fact, network devices are capable of collecting and transfer-
ring data across the network and are part of an IoT infrastructure.

There are several applications such as smart building management, environment control, e-
health monitoring, and so on, where IoT plays a key role in collecting data in real-time for further
processing (aggregation, analysis, and visualization) [2, 3]. In several applications, these low-power
sensing devices generate critical data to be evaluated in near real-time. Since IoT devices (IoTD) are
resource-constrained, i.e., limited computing power, memory, and storage, sensed data are often
transmitted to high-power devices or datacenters for evaluation [4]. However, due to resource
constraint features of IoTD, Edge computing increasingly plays a critical role. Edge datacenters
(EDCs) are often deployed at the network edges (at base stations or vehicles) to process IoTD
generated data streams in near real-time. As mentioned in References [3, 5], emerging IoT trends
are set to completely change the way businesses, governments, and consumers interact with each
other and transact in a data-driven economy.

As EDCs are deployed in unattended network edges, one important task is to build a secure
infrastructure for data communications on an end-to-end basis [6], where IoT devices need to
securely transmit critical information as well as sensitive information to EDCs for real-time eval-
uation. If we follow the traditional security approaches on communication networks to secure
current infrastructure, then we would communicate first and then authenticate [7]. In this sce-
nario an attacker gets a black hole to enter into the data transmission process before authentica-
tion happens. Diffie–Hellman key exchange is considered to be most secure and efficient initial
handshaking for secure communications [8]. In the Diffie–Hellman key exchange protocol, both
of the devices (i.e., sender and receiver or IoT device and EDC in our network scenario) initiate the
handshaking without authenticating themselves [27, 28, 30]. Both sender and receiver also invest
computational power to avoid the assumptions of an outside attacker [4].

A future-direction article (Reference [7]) discussed using the software defined perimeter (SDP)
to overcome the current security flaws by authenticating first before communication starts. The
concept of SDP was initially started by Cloud Security Alliance to securely access cloud resources
[9]. We have adapted this concept to develop a novel authentication model for IoT and edge net-
works. The proposed model consists of three major components: IoTD, EDC, and SDP Controller
(SC). The complete architecture and network model is shown in Figure 1. An SDP controller works
as a centralized controller and is deployed with a secure module, i.e., a TPM (Trusted Platform
Module). TPM is the trusted module of any hardware device that provides a cost-effective compu-
tation interface to the intruder. These were software-based encryption algorithms in earlier days
achieved by keeping secret keys in the host’s disc [4, 10], which provided hardware-based trust by
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Fig. 1. Network model of distributed EDCs and IoT.

keeping secret information such as network device ID, secret key, shared session keys, and so on.
In our proposed model, network devices store their ID and associated secret key while initializing
the network. According to the properties of the TPM, intruders cannot get the information from
it [10].

The authentication process always starts with IoTD by contacting an SC. As the SC works as a
fully trusted centralized controller, it authenticates the IoTD and EDC. If everything passes with
authentication, then the SC creates a session for handshaking between IoTD and EDC, followed by
establishing a secure channel for communications among themselves. This creates an environment
that avoids intruders from the first step of communications. This concept is called perimeter-based
security. The perimeter security level is determined by the individual user’s requirements. Accord-
ing to the user’s requirement, the SC initializes the secure channel establishment. The core features
of perimeter-based end-to-end security, and the main article contributions, are:

• A novel end-to-end security model for IoT and edge networks.
• A perimeter-based security model avoiding attackers from the first step of communications.
• Theoretical and empirical evaluation of the proposed model to observe the security strength

and performance in distributed networks.

The remainder of the article is as follows: Section 2 discusses related work and presents the problem
analysis. Section 3 gives the system overview with a network model and adversary model for
the proposed security model. Section 4 describes the proposed model with stepwise analysis. The
theoretical and experimental evaluations are presented in Section 5 and Section 6, respectively.
Section 7 concludes the article with future directions.

2 RELATED WORK AND PROBLEM ANALYSIS

This section presents the background studies of secure IoT infrastructures and analyzes the prob-
lems associated with current security solutions.

2.1 Related Work

The integration of IoT and Edge computing is gaining lots of interest, because it combines the
technology of sensing, communications, and real-time data processing [11, 31]. Cyber security
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is a basic requirement for this computing infrastructure. The security issues of IoT and EDC are
classified in References [11, 12], where researchers have classified the security threats and potential
solutions with respect to individual layers. The related work of secure IoT and EDC are defined as
follows:

Dorri et al. [5] outline the core components and functions of a smart home in the context of
IoT. Each home is deployed with high-resource devices that are capable of always being online,
termed as “miner,” i.e., EDC in the context of our proposed model. This EDC handles all commu-
nication in or out to the home network. The EDC preserves a private and secure block chain used
for communication auditing and controlling. A middleware architecture is designed for end-to-end
security infrastructure of cloud-fog communications in Reference [13]. Irregular security adapts
to unpredictable network connections, and adaptability is accomplished through security arrange-
ments that are custom-fitted to application needs. Hatri et al. [14] analyzed and proved the major
security flaw of the Authenticated Key Exchange (AKE) protocol that renders it insecure against
an impersonation attack. Current IoT systems and devices affected by distributed denial-of-service
attacks are discussed in Reference [29]. To address these issues, an optimized and scalable security
solution is required for IoT and botnets [15]. Miettinen et al. [16] proposed a model named IoT
SENTINEL, which is capable of automatically identifying those device types that are connected
to IoT or Edge networks. This can also enable rules to protect the system against vulnerable de-
vices entering into the networks. As a result, IoT SENTINEL minimizes damage resulting from
being compromised. Subsequently, the authors presented the implementation of IoT SENTINEL
protecting the user’s network from deployed vulnerable IoT devices [17]. IOT SENTINEL works
autonomously by identifying vulnerable devices automatically when they appear to the network
or in the communication system. Furthermore, IOT SENTINEL initiates rules for traffic filtering
to protect network devices for upcoming threats from vulnerable devices.

Software Defined Security (SDSec) introduces the biggest transformation by providing sustain-
able centralized security solutions transferring from hardware-based to software-based [18]. This
helps to identify the threats and evaluate security without depending on hardware. Al-Ayyoub
et al. [18] presented a novel experimental infrastructure for a virtualized real-time testbed envi-
ronment for SDSec implementation. This experimental setup is built over a Mininet simulator,
where the network components and devices are personalized to build an SDSec framework of
experimental simulation. Furthermore, they introduced a novel experimental framework named
SDDC by building a virtualized real-time testbed infrastructure for Software Defined Datacenter
(SDD) systems [19]. Even though the proposed model is built on a Mininet simulator, the network
components and the devices are customized to build the experimental setup for SDD.

From the related studies outlined above, it is concluded that there is lack of technology where
users authenticate before communication, and also security solutions should be designed based on
the network user. There is need for security solutions to draw perimeters dynamically according
to the user’s demand.

2.2 Problem Analysis

The Transmission Control Protocol/Internet Protocol (TCP/IP) is still being used and considered to
be appropriate for communications involving both private and public networks (i.e., the Internet)
[7]. IP security (IPsec) is one of the most prominent security protocols out of several solutions
implemented over TCP/IP protocol. The IPsec protocol aims to protect network devices and the
data flows between the devices. As a result, IPsec secures the network by focusing on the node and
data packet authentication and applies encryption techniques over data packets on an end-to-end
basis. Through data encryption, IPsec supports network-level data confidentiality, data integrity,
and peer authentications [14]. However, TCP/IP model security frameworks are not efficient in
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providing a strong foundation for security, as these security frameworks allow network devices
to start communication before they are authenticated by the handshaking process. As a result,
intruders get huge space to be part of the communication system before authentication happens.
This motivates us to focus on authentication of devices before a communication link is established.

To overcome this problem, SDP comes into the picture [7, 18], and devices are authenticated
first before communication starts. SDP follows perimeter-based security by avoiding attackers
becoming part of communications without authentication by drawing a perimeter. As a result, the
perimeter stops attackers from being part of communications.

3 SYSTEM OVERVIEW

This section presents the assumptions regarding system design, network model, attack model, and
preliminaries to the secure communications in IoT and distributed edges.

3.1 Assumptions

This article has taken some realistic assumptions while defining the security solution for IoT and
distributed EDCs. According to the assumptions, IoT devices are registered with SDP controller
(SC), i.e., the IoT devices at the time of deployment sense the environment to transmit data packets
to a datacenter for further processing. Registration of IoT devices includes the identity (device ID)
associated with the device secret key. EDCs follow the same procedure to register their identity
with SCs. This sensitive information is stored in the secure module (i.e., TPM) of the SC, to protect
from malicious user activities, where an SC is considered as fully trusted and no other devices
have unauthorized access to the information from SCs. Both IoT devices and EDCs are deployed
in the unattended environment, so it is considered as not to be fully trusted and subject to phys-
ical breaches. However, according to our system model, SCs are assumed to be fully trusted and
monitor the network continuously. Other device compromises can be detected in a bounded time.
Because of the properties of SC, we assume that the SC initializes the session key to establish
secure channels between IoT devices and EDC.

3.2 Network Model

The network model for our proposed security framework is shown in Figure 1. It includes the IoT
devices (i.e., sensors, mobile devices), SDP controllers, and edge datacenters. Figure 2 is the more
realistic and generalized version of Figure 1. The IoT devices consist of end devices with wireless
communication networks, whereas EDCs consist of both communication and computing facilities
[15]. Generally, all the end devices transmit data to a cloud for further processing. However, all the
stream data are evaluated in EDCs for emergency scenarios and real-time decision making. Hence,
all these real-time evaluations are based on highly sensitive and emergency scenarios. By following
Reference [7] and the CSA report [9], this article considered an SDP controller for establishing
a secure channel between IoTD and EDC for further interruption from outside attackers. IoTD
always initiates the process for EDC authentication and data communication requests. Then, an
SC takes responsibility for secure channel establishment. All the devices such as IoTD, SC, and EDC
are connected through wireless communication channels. An SC is considered to be a tamper-proof
device, i.e., fully trusted, and stores secret information.

All the IoT devices are equipped with network interfaces, support short-range communications
(IEEE 802.5.4), and an SC is equipped with Wi-Fi/GSM access for faster authentication, hence it
enables high-data-transfer rates with nominal latency. All the devices are considered to be syn-
chronized and can initiate the data communication process at any time [4].

The network performance is a key concept, and communication overhead plays a key role in
network performance. The communication overhead is always computed as a percentage, as in
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Fig. 2. Network model of distributed EDCs and IoT to develop security framework.

Equation (1) [20]. Communication overhead is computed by considering the number of commu-
nications (NC ) and the number of packets transmitted by its node (Ni ).

CO (%) =

(
NC × 74.125∑

n

1 Ni × 30

)
× 100 (1)

3.3 Threat Model

The types of attackers can be broadly divided into two types: internal attacker and external at-
tacker. It is already proved in Reference [21] that external attackers are more powerful compared
to internal attackers, because of the way they analyze the transmission medium. The external at-
tackers also have high computational power to analyze data transmission in real-time. As external
attackers are not part of the network model, it is impossible for them to decrypt the messages.
But they can acquire relevant information during data transmission using computational powers.
The external attacks might not be too successful in obtaining the session key to be part of secure
data communication between IoTD and EDC, but they may possibly eavesdrop on network or
traffic-related information to compromise the user’s privacy. Even though external attackers are
more powerful, they do not have access to the SC, which reduces the chances for them to get into
the data transmission process. However, internal attackers are either compromised IoT devices
in the source sensing area or compromised edge devices. Despite low resources, internal attack-
ers’ use of methods such as eavesdropping is effective, as they are part of the system and have
information related to shared secrets and time to update the keys.

Here, we present potential threats and attacks in our network and data communication modes.
An attacker can (a) introduce him/herself as the authenticated node, (b) drop or replay the data
packets, (c) inject fake data packets into the streams, (d) impersonate a legitimate IoTD and EDC,
(e) compromise the device associated with the network model, or (f) use distributed denial-of-
service attack. These are some possible attacks in our model that can be performed individually or
by a group of intruders. The proposed security model addresses all the above specified potential
attacks.

ACM Transactions on Cyber-Physical Systems, Vol. 4, No. 3, Article 32. Publication date: May 2020.



A User-centric Security Solution for Internet of Things and Edge Convergence 32:7

3.4 Adversary Model

We assume that a large number of IoT devices are deployed in the source area for the monitoring
purpose [22] where all of them are fully connected to communicate between themselves. The SC
works as a centralized controller for all the IoT devices accessed through the SC to reach the EDC.
According to the network model, SC is wary about the identity and associate secret keys of IoTD
and EDCs. The SC is treated as fully trusted and protected in our model with the TPM. Attackers
have several ways to get into data communications between IOTD and EDC:

• After the secure deployment of IoT devices, an attacker may capture the nodes and program
them to behave according to the attacker’s command. These types of attacks tend to attack
on authentication, black hole, and DDoS.

• Attackers may capture the data packets and utilize resources to break the security key and
encryptions. As a result, there is loss of confidentiality and data integrity.

• Attackers can capture the data packets and re-transmit them after some time to confuse the
destination EDC during data analysis.

Wireless network nodes can be easily compromised to behave maliciously in the network to drop
packets or tamper with data packets as they travel through insecure channels. From high level,
this is the most common type of possible attack in wireless infrastructure. Our adversary model
introduced many possible potential network attacks causing packet loss or security breaches. An
attack on data confidentiality is a passive attack and the most dangerous attack, as it takes your
confidential information. If EDC and associated IDS encounter packet loss, then that loss will be
investigated and we assume authenticated IoTD responds with the actual packet information and
packet sequence upon request from EDC. However, this article also relaxes the constraints and
focus on the method to detect the packet loss and attacks on data packets.

4 PROPOSED SECURITY MODEL

The presented security solution has taken some realistic assumptions to define a perimeter-based
framework for distributed networks as listed in the last section. There are three major types of
devices—IoT devices, EDCs, and SCs—to communicate between themselves. SCs work as a master
node to establish secure channels between IoT devices and EDC. IoT devices start the authenti-
cation process to establish secure channels with EDC for further communication. The notations
used in the model descriptions are listed in Table 1.

4.1 System Setup

All IoT devices initialized their ID and secret key with the SDP Controller (SC). SCs can be con-
sidered as the fully trusted and centralized control to the secure infrastructure building. SCs know
all the nodes’ (i.e., IoT devices and EDCs) IDs and the associated secret key, whereas SCs initiate
private public key pairs (KPR, KPB). Trusted Platform Module (TPM) can be used for secure key
generation if the SC is not fully secure. All the network devices and EDCs use the public key of
SC (KPB) to communicate with SC. Subsequently, all the IoT devices store their identity (IoT-I/J)
and secret key (KIoT) at the TPM of the SC. TPM is defined as the secured module of any device,
and it is already proved that no one can get the information from the TPM except the same device
[4]. Finally, the SC selects the destination node’s (IoTD or EDC) secret key for authentication and
secure communication.

In an emergency scenario, IoT devices initiate the process to send data to the nearest EDC to
evaluate data in real-time. To establish secure communication with the EDC, IoT devices initiate
the communications request (RQ) with the SC. The initial RQ packet contains the timestamp (T)
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Table 1. Notations Used in Model Descriptions

Acronym Description

SC SDP Controller
IoTD IoT Device
EDC Edge datacenter
ACK Acknowledgement
NAK Negative acknowledgement
PRN Pseudorandom number
E / D Encryption / Decryption
H () Hashing
KS Session key
KPR SC private key
KPB SC public key
KS Session key
KIE Shared key between IOTD and EDC
KIoT Secret key of IoT device
CH Challenge
RQ Request
RS Response
T/T’ Timestamp associate with the data packets

for maintaining the data freshness, source ID of the IoT device, and the destination EDC ID. All
this information is combined and encrypted with the SC’s public key (KP B ) to generate the secure
packet (EKP B

(T | |IoT − I | |EDC − I )) and send it to the SC. Subsequently, the SC uses its own private
key (KPR ) to decrypt the data packets and check the authenticity of both IoTD and EDC. Initially,
the SC checks the data freshness by evaluating the time between the packet generation time and
received time (ΔT ≤ T −T ′), where T is the packet generation time, T’ is the packet received time,
and ΔT is the estimated time to deliver request packets at the destination SC. Subsequently, the
SC checks the data from the TPM to get the information about IoTD and EDC.

DKP R
(T | |IoT − I | |EDC − I )

ΔT ≤ T − T′

COMPARE (IoT − I, IoT − I′)
COMPARE (EDC − I,EDC − I′),

where IoT-I/EDC-I are from IOT and IoT-I/EDC-I are from the TPM of the SC.
If the authentication matches, then the SC evaluates the rules associated with IoTD if both

devices are authenticated nodes, otherwise it simply drops the packets to overcome a Distributed
Denial of Service (DDoS) attack. The overall security model is depicted in Figure 3 and shows the
stepwise key exchange establishing the secure channel between IoTD and EDC.

4.2 SDP Controller Evaluation

The integration of IoT and Edge computing is gaining lots of interest, because it combines the
technology of sensing, communications, and real-time data processing [11, 31]. Cyber security
has become a basic need for this computing infrastructure. The security issues of the IoT and EDC
are classified in References [11, 12], where researchers have classified the security threats and
potential solutions with respect to individual layers.
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Fig. 3. Stepwise key exchange for the perimeter-based security approach.

If the source IoTD satisfies the rules of access of the recipient EDC, then the SC initializes the
sending of the communication request information of IoTD and EDC. The SC generates the packet
with source and destination ID and encrypts it with EDC’s secret key (EKEDC−I

) and sends it to
the recipient EDC. The packet is of form: EKEDC−I

(IoT − I | |EDC − I ). The EDC decrypts the packet
using its own secret key (KEDC−I ) to find the source IoT device ID (IoT-I). The EDC again checks the
associated rules of IoT-I and validates whether EDC sources are eligible for access by the IoTD. If
source IoTD satisfies the conditions to get access to EDC resources and current available resources
of corresponding EDC is more than 50%, then the EDC considers further steps for secure channel
establishment. We have considered the bottom line of the available resources as 50%, because EDC
should have enough resources to process the emergency data streams. After all the successful
verification, the EDC encrypts the acknowledgement (ACK) with the SC’s public key, i.e., with
format as EKP B

(ACK | |IoT − I | |EDC − I ) and sends it to the SC; otherwise, it sends the NAK packet
with the same format (EKP B

(NAK | |IoT − I | |EDC − I )). Subsequently, the SC uses its own private
key to check the response. The complete procedure to authenticate the IoTD and EDC by the SC is
shown in Algorithm 1. After receiving NAK , the SC forwards it to IoTD to notify the unavailability
of EDC for that device.

After receiving positive acknowledgement from the EDC, the SC generates two important keys,
such as session key (KS) to initialize the communication between IoTD and EDC, and shared
key (KIE) to create a secure communication channel between IoTD and EDC. After creation of
these two keys, the SC generates a secure packet for IoTD and EDC to initialize them with the
keys. The packet for IoTD looks like EKI oT−I

(T | |EDC − I | |KS | |KI E ) and packet for EDC looks like
EKEDC−I

(IoT − I | |KS | |KI E ), where both packets are encrypted with the destination’s secret key.
The importance of adding timestamps with individual packets is to maintain the data freshness,
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ALGORITHM 1: IoTD and EDC authentication by SC

Assumptions:

All the devices have a seed value

IoTDs, EDCs stored their ID and secret key at the TPM of the SC.

Output:

SC authenticates the IoTD and EDC for further communication between them.

Procedure:

IoTD generates a REQ packet

IoT→ SC {EKP B
(T | |IoT − I | |EDC − I )}

SC evaluates the ID of IoT-I and EDC-I

If (Authenticated)

SC→ EDC {EKEDC−I
(IoT − I | |EDC − I )}

SC← EDC {EKP B
(ACK )}

IoTD←SC{EKI oT−I
(PNR + 1| |EDC − I | |KS | |KI E )}

EDC← SC {EKEDC−I
(IoT − I | |KS | |KI E )}

Else

IoTD← SC {NAK }

which avoids unnecessary computation for both IOTD and EDC.

SC→ EDC {EKEDC−I
(IoT − I | |KS | |KI E )}

SC→ IoTD {EKI oT−I
(T | |EDC − I | |KS | |KI E )}

Both IoTD and EDC use their secret key (KIoT D−I and KEDC−I ), respectively, to decrypt the data
packets and extract the session key and shared key for further communication. After successful
extraction, the IoTD initiates direct communication with the EDC to establish the session.

4.3 Secure Channel Initialization

The IoTD generates a pseudorandom number (PRN) using a very random source such as time
of last sensed data, own ID (IoT-I), a challenge (CH) with initial seed value (SEED), and en-
crypts the session packet with the session key from SC (KS ). The generated packet is of the form
EKS

(PRN | |IoT − I | |CH | |KI E ) and is sent to the EDC. Upon receiving the packet, the EDC uses
the session key to decrypt the packet (DKS

(PRN | |IoT − I | |CH | |KI E )) and get the PRN and chal-
lenge. The EDC then solves the challenge (CH) using the seed value and prepares the response
(RS). The EDC hashes the shared key KS ′ = H (Ks ) and generates a new key to encrypt the re-
sponse to IoTD. Finally, the packet is of the form EKS′ (PRN + 1| |EDC − I | |RS ), including the PRN
value increased by 1. When the IoTD receives the packet, it first hashes the session key (Ks ), i.e.,
KS ′ = H (Ks ) and generates a new key to decrypt the incoming packet. After successful decryption
(DKS′ (PRN + 1| |EDC − I | |RS )), check the EDC ID (EDC-I) if it matches, then EDC checks the PRN
value and the response to validate the packet generator. If everything looks good, then the IoTD
generates an ACK packet and encrypts with the shared secret key for EDC, i.e., EKI E

(ACK )}. This
packet tends to be the beginning of secure communication between IoTD and EDC. The complete
procedure to establish the secure channel between IoTD and EDC is shown in Algorithm 2.

Subsequently, the SC updates the secret key after a certain period, i.e., before there is the pos-
sibility of getting the shared key compromised. We took the interval of the rekey process from
Reference [20]. After secret shared key generation (Say KIE’), the SC uses both IOTD and EDC
secret key to initialize them with the new shared secret key.

Now IoTD and EDC have a secure communication channel using shared key (KIE) to transmit
the data packets between themselves. The individual steps to establish the secure channel between
IoTD and EDC are defined in Algorithm 3.
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ALGORITHM 2: Secure channel between IoTD and EDC
Assumptions:

IoTDs and EDCs received the session key and shared key from SC.

Output:

Establish secure channel between IoTD and EDC

Procedure:

IoTD generates a REQ packet

IoT→ EDC {EKS
(PRN | |IoT − I | |CH | |KI E )}

EDC evaluates CH to generate RS and rules

If (rules evaluated)

IoTD← EDC {EK
S
′ (PRN + 1| |EDC − I | |RS )}

IoTD→ EDC {EKI E
(ACK )}

Else

DROP the packet.

ALGORITHM 3: Secure Channel Establishment Procedure

Description A user-centric security solution to establish a secure communication channel between IoT

device and EDC for data communications without attacker interference.

Input SC’s private public key pairs, IoTD and EDC registered with SC

Output Establish secure channel between IoTD and EDC

Step 1 Initial setup

IoTD initiates the packet to establish secure communication with EDC

1.1 IoT→ SC {EKP B
(T | |IoT − I | |EDC − I )}

SC decrypts with DKP R
(T | |IoT − I | |EDC − I ) and check

ΔT ≤ T −T ′ and IoTD ID for authentication

Step 2 SC Processing

After successful authentication of IoTD

2.1 SC→ EDC {EKEDC−I
(IoT − I | |EDC − I )}

2.2 SC← EDC {EKP B
(ACK )}

2.3 IoTD← SC {EKI oT−I
(PNR + 1| |EDC − I | |KS | |KI E )}

2.4 SC→ EDC {EKEDC−I
(IoT − I | |KS | |KI E )}

Step 3 Secure channel initialization

3.1 IoTD→ EDC {EKS
(PRN | |IoT − I | |CH | |KI E )}

3.2 IoTD← EDC {EK
S
′ (PRN + 1| |EDC − I | |RS )}

3.3 IoTD→ EDC {EKI E
(ACK )}

Now both IoTD and EDC use key (KI E ) for both encryption and decryption.

5 THEORETICAL ANALYSIS

This section gives theoretical validation of the proposed security method for IoT and distributed
EDCs.

5.1 Security Evaluations

This article follows References [4, 20] in defining the attack definitions as follows: Based on the
attack definitions and threat models from Section 3, this section proves theorems by analyzing
potential threats and ways to protect communication networks.

Definition 1 (Attack on Integrity). An intruder Mi is capable of monitoring the data commu-
nication between IoTD and EDC and capable of modifying and/or accessing the data packets in
transit.
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Definition 2 (Attack on Confidentiality). An intruder Mc is capable of viewing and accessing the
confidential data by reading data packets while in communication between IoTD and EDC.

Definition 3 (Replay Attack). An intruder Mr is an unauthorized device in the network, which
is capable of intercepting data packets and forwarding them later to EDC.

Definition 4 (Attack on Authentication). A malicious attacker Ma can potentially attack on au-
thenticity if it is proficient in network observation, intercepting, and subsequently introduces him-
self/herself as an authenticated node to be part of communication to EDC.

Theorem 1. An attacker Ma cannot establish a secure channel with EDC by introducing him-

self/herself as an authenticated node.

Proof. In the proposed method, SC has been considered as a fully trusted device with TPM. All
the network devices are registered with SC by storing their ID and secret keys at TPM of SC. If
any unauthenticated devices come into the picture, then SC can directly drop the request packet
(EKP B

(T | |IoT − I | |EDC − I )). Further, the SC decrypts REQ packets using its own private key (i.e.,
DKP R

) to find source identity (IoT − I ) and check in TPM. If a match is not found, then the SC drops
the REQ packet.

More importantly, EDC accepts request only through the SC policy checking and approval. As
a result, the attacker Ma is going to fail from the first step of authentication. �

Theorem 2. An intruder Mc cannot access or view the data communications between IoTD and

EDC.

Proof. The session key (KS ) and shared key (KI E ) in our method is initialized by the SC and
sent to IoTD and EDC by encrypting using their secret keys. Subsequently, IoTD initializes the
packet using session key (EKS

(PRN | |IoT − I | |CH | |KI E )). EDC responds to IoTD by generating a
new session key, i.e., KS ′ . The new key is the hash of the previous key (KS ′ ← H (KS )). The session
key is unknown to the network except IoTD and EDC, so it is hard for Mi to get the session key to
read the conversion.

After the secure channel is established, IOTD and EDC use the shared key (KI E ) for data com-
munications where key KI E is used for strong encryption. By following Reference [20], it confirms
that intruder Mc cannot get the data in less than two months’ time using the most advanced pro-
cessor.

Hence, it is proved that data cannot be viewed by Mc, as it does not have the shared secret key
to see them. �

Theorem 3. The intruder Mi cannot break the secure communications initialized by SC to capture

the data packets.

Proof. From Step 1 of Algorithm 1, we conclude that an intruder cannot be authenticated to
establish the unauthorized communication with EDC. Consequently, the intruder Mi only has the
chance to get access while initial handshaking between IoTD or during data transmission.

Step 2 of Algorithm 1 confirms that intruder Mi cannot get the key to read the data packets.
This means that Mi cannot make the logical changes in the data packets. Random changes by
applying a brute force method are not helpful, because each packet is associated with a message
authentication code (MAC). So, it is impossible for Mi to modify the contents of the packets. �

Theorem 4. During initial authentication, IoTD can easily identify the reply packets initialized by

a replay attacker (Mr) to break the secure communication between IoTD and EDC.

Proof. The replay attack is also popularly known as a playback attack, where attacker
(Mr) intercepts the data packets and forwards them later to the recipient EDC. To avoid
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this kind of attack, initialized packets include a timestamp (EKP B
(T | |IoT − I | |EDC − I )) or

EKI oT−I
(T | |EDC − I | |KS | |KI E ). The initial authentication process follows Algorithm 1. The value

T is defined as the packet generation time and T’ is the packet received time at destination, which
are compared at the destination to detect the playback attack (T’–T ≤ ΔT). If the value of ΔT
exceeds some threshold, then it is confirmed that the received packet is replayed by an intruder.

From Algorithm 3, we found that it is hard for intruder Mr to get the encryption key and edit
data packets. So, Mr does not have control to modify the value of T; hence, it is proved that the
proposed method avoids replay attack. �

Theorem 5. The proposed method works with low complexity and communication overhead.

Proof. Today, Diffie–Hellman key exchange is considered to be the most secure and efficient
initial handshaking [8]. The Diffie–Hellman method uses lots of computation, i.e., power functions,
modular functions and so on, whereas the proposed user-centric perimeter-based security method
does not give any responsibility to the IoTD. The SC computes everything in the secure module
with less computation, as we are not using public channel for key initialization. The authenti-
cation process and security evaluation happen in the secure module (i.e., TPM). Figure 5 shows
the efficiency of the proposed model compared with Diffie–Hellman key exchange due to the low
complexity. By reducing computational overhead, the proposed security model improved the sys-
tem scalability by extending IoT device life time. Also, the proposed method not only reduced the
complexity overhead but also the communication overhead. �

5.2 Forward Secrecy

The SC works as a centralized controller and takes responsibility to establish the secure channel
to data transfer between the IoTD and EDC. Once the SC authenticates the IoTD and EDC, it
generates a session for secure handshaking between IoTD and EDC and secret shared key for
secure communication between themselves. The shared key updates after a fixed amount of time
(i.e., for time t by following Reference [20]). As a result, previous secret shared keys are useless to
an adversary, as they are already updated by the SC after a fixed period of time.

6 EXPERIMENT AND EVALUATIONS

To evaluate the network performance and the security strength, the experiment is done in both
real-time testbed and simulation environment. The simulation experiment is run in the in-house
computational environment on an Intel (R) Core (TM) i5-6300 CPU @ 2.40 GHz 2.50 GHz CPU
and 8 GB RAM running on Linux environment (UBUNTU 13.04). First, the security verification
is evaluated in a real-time Scyther environment [23]. Second, the IoT device performance and
network performance is evaluated after applying proposed security method in COOJA simulator
in Contiki OS [24]. Finally, the proposed security solution’s compatibility in real-time network
scenarios is evaluated in real-time testbed deployment.

6.1 Security Verification

The proposed user-centric security model is experimented with in the simulation environment,
Scyther, where Scyther is written in Security Protocol Description Language (.spdl). Scyther aims
at evaluating the correctness of the security protocol in an automatic simulation tool by security
threat analysis. By following Scyther tool’s properties, we defined the roles of IoTD and EDC, as
the simulation environment needs the two devices to establish the communication. IoTD and EDC
are initialized with the session key and shared key information before running the experiment.
In this experiment, IoTD sends the encrypted data packets to EDC for further processing. The
EDC also prepares the responses for IoTD after data evaluation happens. Three types of attack
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Fig. 4. Scyther page for successful security verification.

have been initialized with the proposed security model. First, an adversary changes the network
packet while it is in public networks. In the second, an attacker tries to get the information from
IoTD to pretend to be an authenticated node and transmit packets to the EDC. Finally, an intruder
gets the network packets to analyze and tries to get the information and replay the packets. The
experiment is run 100 times with the 10 instance intervals.

Results: As defined above, the simulation run ranges from 0 to 100 instances in 10 instance in-
tervals for network data packet analysis. The data packet confidentiality and integrity is evaluated
after successful authentication. As the key initialization process is initialized by the SC, we assume
that none of the adversaries have the shared session and secret key information. We are using two
different keys, i.e., KS and KIE, for the packet encryption process, where the key KS is used for
initial handshaking and key KIE for secure communications. While evaluating the proposed secu-
rity solution, we did not come across any potential network threats between IoTD and EDC to
compromise the shared secret key, which concludes that the proposed solution is secure against
confidentiality attack and integrity attack. The Scyther simulation result of security verification
of the proposed model is shown as in Figure 4.

6.2 Network Performance

The network performance of the proposed security model is evaluated in a COOJA simulator in
Contiki OS (i.e., sensor power consumptions and communication overhead) [25]. Two common
types of sensor (i.e., Z1 and TmoteSky sensors) have been considered to evaluate network perfor-
mance and node performance with proposed security solution.

The sensors are low-power WSN modules, which deploy to design and develop the platform
for general purpose monitoring of daily life activities. These sensors are designed for maximum
backwards compatibility with improved performance. These are flexible with computational and
energy power, which are sustainable in terms of rough combination of power supplies, sensors,
and connectors. Finally, these sensors support the operating systems that are popular in WSN and
IoT communities, such as Contiki [24]. Contiki provides an excellent simulation platform named
COOJA, which is compatible with real-time sensor features to evaluate the sensor node and net-
work performance. Z1 sensor is always considered as the best sensor to get the network perfor-
mance. This is developed with low-power microcontroller MSP430F2617 and structures a power-
ful 16-bit RISC CPU @16 MHz clock speed, built-in clock factory calibration, 8 KB RAM, and a 92
KB Flash memory. TmoteSky is an ultra-low-power sensor and is developed with the low-power
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Fig. 5. Energy consumption during key generation.

microcontroller MSP430F1611, with built-in clock factory calibration, 10 KB RAM, and a 48 KB
Flash memory. Z1 and TmoteSky sensors are considered for the proposed experimental model: If
the proposed model works efficiently with these tiny devices, then they will be fine with other IoT
devices.

Starting from request packet generation to establish the secure channel, the power consumption
of the sensor devices, i.e., z1 sensor and TmoteSky sensor, has been evaluated in COOJA Simula-
tor. As mentioned in the related works section, the most common key initialization process today
is Diffie-Hellman key exchange [8]; so, the sensor node energy consumption for the proposed
method is compared with Diffie-Hellman. We found that the proposed security mechanism is sup-
ported by these low-power sensors. The performance in terms of energy consumptions during
key generation is shown in Figure 5. The performance tends to the normal power consumption
behavior while generating or updating the shared secret keys. From this experiment, we conclude
that the proposed perimeter-based security solution can also be easily applied to low-power sensor
devices.

For network performance in the COOJA simulation environment, a random area is deployed
with 101 nodes (i.e., 100 sensors and 1 EDC). The packet size of the simulation is 30 bytes of
interval.

We found that the proposed security model also extends the network lifetime considerably
compared to another standard security mechanism (i.e., AES 128-bit) with Diffie-Hellman key ex-
change. Network lifetime of any kind of network is measured by when the first node dies in the
network. We have experimented in three phases: without security mechanism, using AES 128-bit
technique, and the proposed security mechanism. While running the experiment, we found that
the proposed security method extends the network lifetime, as shown in Figure 6. This leads us
to conclude that the proposed solution not only secures the data communications but also im-
proves the network performance by extending network lifetime. The communication overhead is
computed by following Reference [20]. Subsequently, the communication overhead is computed
as a percentage (%) and the performance with respect to the variation of data packets as shown in
Figure 7. According to the network properties, the communication overheard is inversely propor-
tional to the number of data packets in the IoT infrastructure as shown in Figure 7.

Finally, the network performance is evaluated for the residual energy, i.e., complete network
energy. We have considered the Z1 sensor and initial power as 1 joule for the simulation [26].
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Fig. 6. First node dies in the network.

Fig. 7. Communication overhead as a percentage (%).

With this consideration, the experiment runs for 1K seconds and the reading is taken with 100-
second interval of time. To conclude and plot the results, we run the simulation five times and
take the average. The performance of residual energy is plotted in Figure 8. We have considered
the three phases as network lifetime (from last result), i.e., without security mechanism, using
AES 128-bit and using the proposed security mechanism. From Figure 8, we found that the exper-
iment result for residual energy performance is much better than traditional AES 128-bit standard
security solution and close to data communication without security framework. This concludes
the scalability of the proposed security solution. The overall network performance is scalable by
reducing communication computational overhead as concluded from Theorem 5. The Theorem
5 claim is validated with the simulation results as shown in Figures 5, 6, and 7. Figure 8 gives
the overall network scalability by finding network energy consumption, which is concluded from
the first node dying in the network (from Figure 6) and individual node performance depended
on the energy consumed during crypto key generation, as shown in Figure 5.
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Fig. 8. Residual energy consumption for the network.

Fig. 9. Real-time testbed scenario for proposed security framework.

6.3 Testbed Evaluation

The proposed security framework was also evaluated in the real-time testbed to see the com-
patibility. The testbed implementation scenario includes two Raspberry Pis and a computer (lap-
top) as shown in Figure 9. One Raspberry Pi connected with several sensors and this setup were
considered as an IoT device. The other Raspberry Pi works as the EDC and the computer as the
SDP Controller. The SDP Controller is a Dell computer with Intel Core i7 processor and 8 GB
RAM. The Raspberry Pi configuration is 1.2 GHz 64/32-bit quad-core ARM Cortex-A53 CPU, 1
GB LPDDR2 RAM at 900 MHz, and Broadcom BCM2837 system-on-chip. All the devices are con-
nected with each other through the Internet. Multiple sensors such as temperature, humidity, and
touch sensors are connected with Raspberry Pi (IoTD) to gather sensing information and contact
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to computer (SC) to establish secure channel with the other Raspberry Pi (EDC). SDP-Controller
is deployed with MySQL Server to store all the device ID and keys for authentication purpose,
whereas the IoTD Raspberry Pi is deployed with SQLite to store the sensed information. Figure 9
shows the complete setup for the testbed deployment.

The Raspberry Pi (IoTD) connects sensors to receive the continuous data streams. The IoTD initi-
ates the authentication process with SC by sharing its identity. Authentication follows the process
from Algorithm 1. Subsequently, the SC communicates to the EDC and gets the identification and
generates the shared key between IoTD and EDC. Once all the computation is done by SC, it shares
the shared secret keys with IoTD and EDC for secure communication between themselves by fol-
lowing Algorithm 2. In overall process, the deployed real-time testbed took 13 seconds starting
from IoTD initiation to the secure communication channel initialization between IoTD and EDC.
This time is subjective based on the medium of communications and computational power of the
SC. The testbed evaluation is mainly focusing on establishing the secure channel between the IoTD
and EDC for further communication. The complete testbed setup build follows the Algorithm 3
procedure. The subsequent network performance is considered from simulation results.

From the above theoretical and experimental studies, we conclude that the proposed security
framework not only provides secure infrastructure but also improves the communication and com-
putational overhead.

7 CONCLUSION AND FUTURE DIRECTIONS

This article proposed a user-centric security solution for IoT and Edge networks, where the se-
curity approach to secure complete systems is shifting from network-centric to user-centric. The
proposed security model uses a centralized controller named SDP Controller to authenticate the
IoT devices as well as EDCs. IoT devices always initiate the security process to establish secure
channels with EDCs for further data processing. The IoTD communicates with the SC and the SC
evaluates the IoT authentication and evaluates the associated properties to access a specific EDC.
If everything goes well, then the SC generates the shared secret key and initializes the IoTD and
EDC for further communication. As a result, the secure channel is established between source
and destination after agreement. The performance of the proposed security model is evaluated by
theoretical analyses and experimental evaluations. We found that our security solution provides a
significant improvement in network performance and prevents potential network attacks.

We will further develop the proposed security solution with symmetric-key encryption for bet-
ter network lifetime. We are also planning to apply the improved security framework to purely
distrusted networks for user-centric security solutions.
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