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Abstract
The current User Datagram Protocol (UDP) causes unfairness and bufferbloats to
delay sensitive applications due to the uncontrolled congestion and monopolization of
available bandwidth.This causes call drops and frequent communication/connection
loss in delay sensitive applications such as VoIP. We present a Responsive Control
Protocol using Bottleneck Bandwidth and Round trip propagation time (RCP-BBR)
as an alternate solution to UDP. RCP-BBR achieves low latency, high throughput, and
low call drops ratio by efficiently customizing Transmission Control Protocol (TCP)
Bottleneck Bandwidth and Round-trip propagation time (TCP-BBR) congestion con-
trol. We conducted comprehensive experiments, and the results show that proposed
protocol achieves better throughput over UDP in stable networks. Moreover, in unsta-
ble and long-distanced networks, RCP-BBR achieved smaller queues in deep buffers
and lower delays as compared to UDP, which performed poorly by keeping delays
above the call drop threshold.

Keywords Congestion control · UDP · Delay sensitive application · VoIP
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1 Introduction

RCP-BBR (Responsive Control Protocol-Bottleneck Bandwidth and Round-trip) is a
transport protocol that provides the efficiency of UDP (User Datagram Protocol) along
with an enhanced congestion control mechanism. The protocol provides a balanced
solution for delay sensitive applications which requires efficiency of UDP but do not
want a protocol that is un-responsive to congestion. The proposed protocol is based on
TCP-BBR (Transmission Control Protocol- Bottleneck Bandwidth and Round-trip)
congestion control algorithm proposed by Google [1]. TCP-BBR monitors available
bandwidth and minimum round trip time for the estimation of congestion whereas
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traditional TCP algorithms uses packet loss as a measure of congestion. RCP-BBR
follows the same approach for the detection of congestion however it provides a mod-
ified mechanism to handle the reliability of packet delivery. The modified mechanism
follows a UDP like behavior to achieve better than TCP’s efficiency, for this it sacri-
fices in-order delivery and packet re-transmission features. The proposed protocol is
well suited for applications that generate delay sensitive traffic such as voice service
over telephone but avoids to use UDP due to associated issues such as bufferbloat,
protocol unfairness, congestion collapse.

Recent advances in smart devices and cellular networks have introduced newbrands
of internet applications which generates real-time, delay sensitive traffic, such as
games, audio/video calling and social media apps. With every passing year this trend
is growing and it is estimated that by 2020, 50 percent of the internet applications
will be multimedia-oriented [2,3]. For example VoIP is one prominent and rapidly
growing delay-sensitive application of Internet that has been widely adopted as a new
way of voice communication [4]. It is also observed that there is a significant increase
in multimedia traffic over UDP [5,6] which is causing critical issues such congestion
collapse and protocol fairness [7,8].

In this changing situation the conventional transport protocol i.e. TCP/UDP needs
to be reconsidered to for enhanced efficiency and quality of service requirements
posed by these new applications. A recent study about the performance comparison
of TCP, UDP and STCP indicated that TCP is slow for mutlimedia applications [9]
while STCP is more efficient than UDP. TCP is a reliable transport protocol but this
reliability comes at the cost of extra delays [10,11] and traffic [12] shows that TCP
has largest delay in a simulated environment when compared with TCP, SCTP, DCCP
and UDP, it further explains that this long delay is due to TCP’s congestion control
mechanism. On the other hand UDP is very efficient however it is not only unreliable
but also is non responsive to congestion, furthermore it has some congestion issues
of its own . UDP has no congestion control mechanism and a sender can generate
unbounded network traffic which can easily overload a router and make it unavailable
for any other traffic. The objective of our proposed RCP-BBR protocol is to provide
efficiency comparable with UDP but without causing network congestion.

To efficiently estimate and avoid the network congestion, RCP-BBR adopts the
idea of using recent bandwidth and round-trip time from TCP-BBR, the protocol han-
dles congestion issues just like TCP-BBR. However in case of congestion or packet
loss the proposed protocol adopts a UDP like behavior and maintains efficiency by
not res-sending the lost packets, and hence do not need packet re-ordering service as
well. RCP-BBR not only solves issues related to delay-sensitive applications, but also
overcomes protocol fairness, bufferbloats [13], and network congestion problems. To
evaluate the proposed scheme we developed many simulations on NS2 (Network Sim-
ulator version 2) [14]. NS2 is an open source discrete event simulation framework
that supports modeling of variety of protocols including TCP, UDP and IP, along with
provision to develop custom network simulations. The tool is widely used by network
research community and is maintained by a variety of well know research organization
such as DARPA, Sun Microsystem etc. The performance of RCP-BBR is compared
with an efficient reliable transport protocol TCP-BBR and an unreliable transport pro-
tocolUDP. The performance ismeasured in terms of latency and throughput, as latency
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indicates efficient delivery of packets at destination while throughput indicates packet
loss and re-transmissions. Our simulation results indicates that proposed RCP-BBR
protocol is more efficient than TCP-BBR and offers better throughput as compared
to UDP. The Transmission Control Protocol (TCP) is a connection-oriented protocol
that guarantees reliable data transfer with congestion and flow control mechanisms.
TCP offers reliable data transfer with retransmission of lost packets, in-order delivery
of data, acknowledgments of received packets and congestion control mechanisms.
Internet applications (e.g., email, and file transfer) that require reliable data stream ser-
vices use TCP for data transportation. However, TCP requires additional delay when a
packet is lost or corrupted within the network [10,11]. On the contrary, delay-sensitive
applications (e.g., VoIP, online games, and real time streaming) employUserDatagram
Protocol (UDP), which is a connectionless and best effort delivery service protocol.
It provides a basic packet delivery service without the guarantee of packet delivery,
ordering or duplicate protection [11]. UDP does not provide congestion control or
packet recovery mechanisms. Thus, delay-sensitive applications opt for UDP due to
its speedy transmission. Moreover, applications prefer to use UDP when packet loss
up to a certain extent is acceptable and delays due to the retransmission of the lost
packets are not desirable.

1.1 Motivation

Recently, Internet has seen dramatic growth in the real-time traffic generated by the
emergence of various real-time applications (e.g., VoIP, online gaming, and real-time
broadcasting), which typically use UDP protocol [7,8]. By 2020, it is estimated that
50% of the Internet applications will be multimedia-oriented [2,3], which require
fast data transmission and reliable connection. VoIP is one prominent and rapidly
growing delay-sensitive application of Internet that has been widely adopted as a new
way of voice communication [4]. However, the use of UDP for VoIP can cause sever
congestion in real-time traffic, leading to call drops and frequent reconnections. Thus,
resulting in negatively affecting the users’ overall experience and satisfaction with the
application. Therefore, there is a need to develop a new protocol that achieves low
latency, high throughput, and low call drops ratio in delay-sensitive applications.

1.2 Problem statement

The increasing growth of the UDP-based real-time traffic could easily cause critical
issues, such as congestion collapse, VoIP call drops [5,6] and protocol fairness prob-
lems [7]. It could even prevent the traffic ofwell-mannered congestion-controlledflows
of TCP [15], and therefore, causes severe congestion and bufferbloat problems in deep
buffer [13]. Bufferbloat problem is the buffering of excessive packets inside a network,
causing congestion, unnecessary delay and reduced throughput [16]. Protocol fairness
requires that multiple competing flows receive equal shares of the available bandwidth
in a network. If any protocol obtains unfair capacity, it may tend to cause problems
such as congestion collapse [15]. This makes UDP less suitable for the transportation
of VoIP and other delay-sensitive applications due to its unfairness to TCP and other
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protocols, even with its own competing UDP flows. On the contrary, TCP has a built-in
congestion control mechanism, but it does not suit real-time applications because of
its complex retransmission mechanism.

1.3 Contribution

In this paper, we introduce an enhanced responsive transport protocol as an alternate
solution to UDP for delay-sensitive applications. Our protocol is based on the TCP-
BBR (BottleneckBandwidth andRound-trip) congestion controlmechanismproposed
by Google [17].We customize TCP-BBR congestion control framework to propose an
enhanced Responsive Control Protocol (RCP-BBR) by efficiently removing reliability
features to achieve low latency and high throughput. RCP-BBR solves not only delay-
sensitive applications issues, but also overcomes protocol fairness, bufferbloats [16],
and network congestion problems. Moreover, we focus on VoIP as a delay-sensitive
application for the analyses and evaluation of our proposed work.

1.4 Paper structure

The rest of the paper is organised as follows: Sect. 2 presents an overview of the TCP-
BBR protocol. Section 3 discusses our proposed approach. A proof of correctness
for the proposed approach is presented in Sect. 4. Section 5 reports the experimental
results. Finally, Sect. 6 concludes the paper.

2 Principles of BBR

TCP-BBR uses the recent measurements of bandwidth and round-trip Time (RTT)
to significantly improve the bandwidth utilization with a low latency [16]. Differ-
ent from a loss-based and delay-based congestion control mechanism, TCP-BBR
is practically rate-based rather than window-based [17]. When in-flight data size is
greater than the Bandwidth-Delay Product (BDP) of a path, a congestion occurs.
BBR keeps in-flight data in range with a path’s BDP. BBR only considers the bot-
tleneck’s bandwidth (the estimated maximum bandwidth available to a flow) and
RTT (estimated from minimum RTT from a moving window). BBR tries to attain
high throughput and low latency by estimating the above parameters. Rate balance
is achieved when the data size related to the in-flight packets becomes equal to the
BDP and that is the target operating point for BBR, as shown in Fig. 1. The changes
in bottleneck’s bandwidth and minimal RTT estimates are the congestion indicators
for TCP-BBR. TCP-BBR limits its sending rate in response to a decrease in bottle-
neck’s bandwidth. When a loss occurs, TCP-BBR goes into a recovery mode, but it
is less conservative than TCP-Reno [15] that reduces the congestion window by a
half.
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Fig. 1 Best operating point [18]

3 Proposed approach, TCP-BBR

In the standard TCP protocol, various overheads produce a delay in network trans-
mission. These delays mainly are: TCP buffer delay, retransmission delay, queuing
delay, packet re-ordering delay, Head of the Line (HOL) blocking, and delay related
to packet acknowledgments [19]. TCP-BBR reduces latency and provides higher
throughput without removing the aforementioned delay parameters (except reduc-
ing the queuing delay) as discussed in Sect. 2. Since the delay-sensitive applications
realize retransmission and packet reordering by themselves, we can remove the
features from the TCP-BBR sender’s side refers to accelerate the transmission.
From the receiver’s side, we apply TCP-QUICKACK, in which TCP passes the
received packets to the application layer as soon as it receives them. Afterwards,
it sends an acknowledgment of the last received packet to the sender, where in-order
delivery feature can be removed from receiver’s side to avoid head of the line block-
ing.

3.1 Sender’s sidemodification

We do the following modifications to TCP-BBR at the sender’s side.

3.1.1 Removing packet retransmission

In the standard TCP, when a packet is lost due to triple duplicates, Retransmission
Timeout (RTO) or any other reason, TCP retransmits the lost packet. In the proposed
approach, we remove this feature, because in delay-sensitive applications, we cannot
afford delays caused by lost packets retransmission and most applications have their
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solutions to solve the problem. Algorithm 1 provides the pseudo-code for removing
packet re-transmission.

Algorithm 1: Removing Packet Re transmission
Input: Re-Transmission Condition is set to false
/* Re-Transmission part */
Output: Modified TCP sender, will not re-transmit lost packets

1 Function Main(seqno, reason):
2 if (seqno == curseq) && (seqno > maxseq) then
3 idle()
4 if seqno > maxseq then
5 idle()

/* If the packet has not been transmitted */
6 else
7 ++nrexmitpack
8 nrexmitbytes= nrexmitbytes+ bytes
9 return true

3.1.2 Removing TCP Nagle

In the TCP, TCP Nagles [20] algorithm is used at the sender’s side and makes TCP
transmit a larger packet until its buffer is full. Since delay-sensitive applications
avoid any delay caused by waiting for the buffer to fill, we can remove TCP Nagles.
In the proposed mechanism, similar to UDP, we change the receiver’s behavior by
not waiting for the lost packets, and forward the received packets to the application
layer with no delay. Disabling TCP Nagles algorithm is also called TCP-NODELAY.
Algorithm 2 provides the pseudo-code for disabling TCP Nagle in the proposed
approach.

3.1.3 Modifying probe RTT state

Mostly, delay-sensitive applications (e.g., VoIP) have two states: the first one is ’burst’
period where the application data is sent in burst; and the second one is ’silent’ or
’idle’ period where the application is idle by not sending any data or very little data.
TCP-BBR estimates bandwidth and RTT based on the amount of data transmitted in
recent time periods. In ’burst’ period of VoIP, TCP-BBR gets an actual estimate of the
bandwidth but in an idle period, the estimate of the bandwidth becomes application-
limited. We maintain a variable for bandwidth estimation when the traffic suddenly
switches from ’idle’ state to ’burst’ state. We also modify the ’probe-RTT’ state of
BBR which is 10 s, in the ’idle’ state to not probe for RTT every 10s when the sending
rate is already low. The proposed approach keeps a record of the ’burst’ period, and
probes only for the RTT if the ’burst’ period continues for over 20 s. We use 20s
as the threshold because TCP-BBR probes for RTT after every 10s. If the ’burst’
period continues for over 20 s, it creates a queue. Thus, to drain the queue and find the
minimum RTT, we double the time of probe after 20 s.
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Algorithm 2: TCP-Nodelay replacing the TCP Nagle’s Algorithm
Input: TCP with Nagle’s Algorith
Output: Modified TCP with no Nagle’s Delay
/* TCP Nagle’s Algorithm waits for TCP buffer to fill. This

creates delay in VoIP. Hence, we need to disable Nagle’s
Algorithm, which by default is enabled */

/* Nagle’s Algorithm */
1 if there is no bufferd data to send then
2 if the window_size >= MSS and available data is >= MSS then
3 send complete MSS segment immediately
4 else
5 if there is still unconfirmed data in the buffer then
6 enqueue data in the buffer until an ACK is received
7 else
8 send data as quick as received

/* To remove TCP Nagle’s Algorithm which waits for TCP buffer to
fill. Here we remove If statement in second else statement */

9 else
10 if there is still unconfirmed data in the buffer then
11 enqueue data in the buffer until an ACK is received
12 else
13 send data as quick as received

First, we check whether the RTT value is higher than the last minimum-RTT. If yes,
we then check whether the RTT is less than 700ms. If it is so, we continue in idle state,
otherwise, we go for probe-RTT state. We use 700 ms as a threshold, because it is a
two-way propagation delay, and most delay-sensitive applications delay requirement
is to keep the delay below 400 ms. Taking 700 ms as a threshold is fair enough to
keep one-way propagation below the applications delay requirement. We take 700 ms
because in UDP, only one-way propagation delay matters. In our approach, we take a
two-way propagation delay into account. One-way propagation takes 350 ms if both
sending and receiving links take the same amount of time. As sending can take more
time because of the routing or congestion from the sender’s side, we reserve 100 ms
for this purpose. Even if a receiver takes 300 ms, the sender does not exceed 400 ms
in most cases.

3.1.4 Adding AppLimited variable

We propose maintaining the average BBR maximum bandwidth estimate (10 RTT)
to address the problem of switching state between the ’idle’ and ’burst’. Algorithm
3 provides the pseudo-code of all the listed modifications made to TCP-BBR on the
sender side.

AppLimited =
recent∑

i=bw

BtlbwMaxevery10Rtt
′s/n

/* where n is the number of recent max.bandwidth records
*/
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Algorithm 3: RCP-BBR
Output: Enabling TCP-NODELAY No Nagle Algorithm

1 if there is no bufferd data to send then
2 if the window_size >= MSS and available_data is >= MSS then
3 send complete MSS segment now
4 else
5 send data immediately

Output: Adding application limited variable
/* To use it when VoIP jumps from idle to burst mode */

6 Function App-limited(estimated.btlbw, recentMax .bw, state):
7 if estimated.btlbw >= 160 bytes && recentMax.bw>= 100 && state == ProbeBW then
8 burst-mode == true
9 recentmax-counter++

10 applimited-bandwidth += recent-Max.bw
11 if burst-mode then
12 app-limit = applimited-bandwidth / recentMax-counter
13 else
14 app-limit = 1
15 return Max(estimated.btlbw, app − limit);

Output: Checking for ProbeRTT state whether to probe or not
16 Function Check-ProbeRTT(estimated.r tt , recentmin.r tt , state):
17 if estimated.rtt >= 700ms && recentMin.rtt>= 700 && state==ProbeBW then
18 burst-mode == true
19 rttseconds++
20 if burst-mode then

/* Entering ProbeRTT state */
21 ProbeRTT()
22 rttseconds++
23 else
24 if !burst-mode && rttseconds < 20sec then
25 rttseconds++
26 else
27 ProbeRTT()
28 rttseconds = 0
29 return r ttseconds;

3.2 Receiver’s sidemodification

After the sender’s sidemodifications, nowwe discuss the receiver’s sidemodifications.

3.2.1 Applying TCP QUICKACK

We apply the modified TCP QUICKACK at the receiver’s end where TCP passes the
received packets to the application layer as soon as it receives them, and then sends
an acknowledgment of the last received packet to the sender, on which BBR depends.

3.2.2 Removing in-order delivery check

In the proposed approach, we remove the in-order delivery check from the receiver’s
side in order to remove the head of the line blocking, which creates seconds of lag in
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communication. Thus, we achieve all the functionalities of UDP through the modified
TCP-BBR with its acknowledgment feature.

Algorithm 4: QUICKACK
Output: QUICKACK and removing In-Order delivery
/* QUICKACK part */
Output: Modifying TCP reciever, to acknowledge newly received packet without waiting for other

packets
1 Function output(packet, lastack):
2 if (seq_no == cur_seq_)&&(seq_no > max_seq_) then
3 Duplicate();
4 if seq_no > max_seq_ then
5 sendACKtoSender()
6 passPacketToApplication()

/* If the packet the out of order */
7
8 else

/* Let the Application Handle it */
9

10 passPacketToApplication()
11 return true;

Figure 2 presents a complete view of the proposed methodology.

4 Proof of correctness

UDP has a less overhead for generating header information than TCP and it is free
from maintaining the variables that are needed for congestion and flow control (like
the variables maintained in TCP). The end-to-end path delays and other hop-to-hop
impairments that are added to the overall delay are the same for both TCP and UDP.
However, UDP has no control over the queuing delay in routers unlike TCP. This leads
to problems like bufferbloat and severe congestion. The overall delay for sending a
segment using UDP takes an amount of time that can be calculated by using Equation
I .

dudp =
N∑

i=1

{diproc + dqueuei + ditrans + diprop} (1)

dudp = End to end delay of a UDP packet

N = Total number of links between sender and receiver

dproc = Processing delay, the time elapsed between

arrival of a packet till it is assigned to outgoing queue.

dtrans = Transmission delay, time required to transmit the packet on medium

dqueue = Queuing delay at router

dprop = Propagation delay or travel time in the medium
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Fig. 2 A complete diagram of methodology

This delay should not exceed 400 ms threshold, otherwise, a VoIP application
discards the late packets. Equation I clearly formalises the delay involved in sending
a UDP segment. Standard TCP is not appropriate for delay-sensitive applications like
online gaming and streaming. In TCP, all reliability features such as retransmission,
buffering, in-order delivery etc. are considered. These produce a delay, which makes
TCP infeasible for delay-sensitive and streaming applications. Using Equation II, the
delay overhead of standard TCP can be calculated.
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dtcp = dNagle + dudp + drtx + drdr + dack (2)

dtcp = End to end delay of a single tcp packet

dNagle = Delay caused by Nagle algorithm

dudp = As given by Eq. 1

drtx = Re-transmission delay, time required to re-transmit a lost packet

drdr = Time spend in re-ordering packets at receiver

dack = Time elapsed at sender while it waits for acknowledgement

For a VoIP application, we do not need to retransmit the lost packets and also cannot
afford packet reordering at the receiver’s end, which creates head-of-the-line blocking.
To achieve UDP-like speed, we eliminate those delays, whichmake TCP infeasible for
delay-sensitive applications and hence, we propose modifications in TCP-BBR. The
proposed mechanism also achieves congestion control like in BBR, which accurately
estimates the available bottleneck bandwidth. In case of UDP, sending with more data
rate than available bandwidth causes packet loss and congestion in routers, which
is not handled by UDP. Hence by removing retransmission, in-order delivery from
TCP, and by keeping acknowledgment feature that BBR needs for estimation, we can
control packet losses, bufferbloats (severe congestion in deep buffers), and conges-
tion collapses. It also provides help and more intelligence for VoIP applications and
application developers to choose the right encoding scheme. By applying TCP-BBR
onVoIP and other delay-sensitive applications, we achieve more router-friendly traffic
unlike UDP traffic, which is by default blocked by most of the firewalls due to security
and other issues. These changes lead us to Equation I I I :

dRCP−BBR = dtcp + dack (3)

dRCP−BBR = End to end delay of a RCP-BBR packet

dtcp = As given by Eq. 2

dack = Time elapsed at sender while waiting for acknowledgement

Equation 3 makes the basis of the proposed approach. In the proposed approach,
the data is sent as quickly as it is sent by UDP (Fig. 3). The packet acknowledgment
feature is kept on with some addition of bitwise overhead of TCP header and TCP
variables states maintenance, which add little delay to the overall end-to-end sending
of the packet. All above TCP overheads are bitwise operations which do not exceed
over 5 ms. Normally, a VoIP application sends data every 20 ms. So, even if we
increase that interval to 25 ms, it has no impact on the overall quality of the VoIP
application. Applying this strategy controls the call drops by compromising a littl on
quality. Figure 3 shows how the proposed mechanism controls the call drops by not
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Fig. 3 Call drops after applying
above technique

Fig. 4 Network topology of NS-2 simulations

letting buffers to get full and to cause severe congestion.As a result, we get enough data
flowing which does not leave the VoIP application call drop threshold to be met [5,6].

5 Performance evaluation

We evaluate the proposed scheme using the NS2 network simulator.1 We used a dumb-
bell topology with multiple senders and receiver nodes on two sides of a single link,
each end of the link is connected to a router. This is consistent with the simulation
setups that are used in the related literature, e.g., [21], for the evaluation of VoIP and
Constant Bit Rate (CBR) traffics. The proposed scheme is compared with UDP and
TCP-BBR (NODELAY) using average end-to-end delay, throughput, jitter, and the
number of lost packets as the performance metrics.

To evaluate the proposed scheme we developed a number of simulations using
Network Simulator 2 (NS2), the simulation parameters are taken from a similar study
[21]. There are 4 senders, 4 receivers and two routers as show in the Fig. 4. The link
between routers is considered as the bottleneck link where we can see the effect of

1 https://www.isi.edu/nsnam/ns/.
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Table 1 Different configurations (some results are listed here; the remaining ones are shown in the figures):
Q: queue size, D: delay (ms), C: capacity (Mbps), N = number of lost packets, J = Jitter (ms)

Run Link b/w routers Other links BBR UDP RCP-BBR

# Q D C D C N J N J N J

1 25 3 1.92 5 1 0 0.00001 0 0.00001 0 0.00001

2 5 3 1.92 5 1 0 0.00001 0 0.00001 0 0.00001

3 50 90 0.50 30 1 2930 28 1956 25 1885 27

4 5 90 0.50 30 1 3015 0.21 2046 0.019 1975 0.020

5 20 290 0.30 30 1 3386 0.067 2603 0.057 2524 0.062

traffic load.We used a number of link capacities ranging from0.30 to 1.92Mbps for the
bottleneck link, this was done to study the behavior of traffic response of protocols. As
queues at routers plays an important role in packet delays and handling congestion,
we used a number of queue sizes in the routers ranging from 5 to 50 packets. The
queues acting as buffers are observed to detect the development of congestion, we
studied the effect of changing the size of these buffers. For performance evaluation
we simulated three candidate protocols TCP-BBR, UDP and our proposed protocol
RCP-BBR, for each simulation we calculated packet loss, jitter, delay and throughput
for each protocol. Throughput and latency here are linkedwith the workwhich is being
customized and are considered as standard terms used in TCP/UDP based networks.
Formally, the term latency here is used to represent the total time elapsed from sending
a packet by a source till its acknowledgment is received. Similarly throughput is taken
as number of successfully received packets.

5.1 Simulation setup

The CBR traffic flows run between three sender and three receiver nodes, whereas a
VBR traffic flow runs between the fourth sender and the fourth receiver nodes. The
simulation time is 12 s. The configuration of the links and the routers is given inTable 1.
We developed 5 simulation scenarios, which corresponds to five different networks.
The first two simulations are developed to simulate network condition where there is
no congestion and no packet is lost. We call it stable network condition, the other three
simulation represents networks with possible congestion and we refer these networks
as unstable networks. In simulation 3, 4 and 5 we changed the network conditions
such that there will be more congestion and increased packet loss, this is done to study
the performance of selected protocols in congested networks. We considered VoIP as
network traffic , each simulation is executed for 12 s and we recorded various network
parameters.

The five simulation scenarios/runs in Table 1 correspond to five different network
conditions. The simulation runs 1 and 2 provide the parameter values for a stable
network having large and small buffer sizes of the routers respectively. The runs 3 and
4 provide the parameter values for an unstable network having large and small buffer
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Fig. 5 Stable network scenario with large queues of routers (Run 1): throughput comparison

Fig. 6 Stable network scenario with large queues of routers (Run 1): latency comparison

sizes of the routers respectively. The run 5 provides the parameter values for a highly
unstable network.

5.2 Results and discussion

Simulation run 1 and 2 are designed for a no loss situation. The no loss scenar-
ios are developed to evaluate and compare protocol performances to determine their
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Fig. 7 Stable network scenario with small queues of routers (Run 2): throughput comparison

dependence upon network configuration and available resources. Also this is usually
taken as ideal behavior and is not considered as overall performance for all situations.
As shown in Figs. 5, 6, 7, and 8, all protocols performed almost in a similar way in
terms of throughput and latency. It is very encouraging that BBR performed similar
to UDP despite the fact that it has a congestion control mechanism which means extra
processing and delays where as UDP is free from such burdens. The benefit of BBR
is that it will attempt to handle congestion while keeping up the performance close to
UDP, whereas UDP will only worsens the situation.

Figures 9 and 10 show the results of an unstable network scenario with a large
queue (run 3) and packet losses in the network. In this scenario, the performance of
the proposed scheme (RCP-BBR) and UDP is similar. Although, as shown in Fig.
9, the throughput of BBR with TCP-NODELAY is similar but due to significant
number of packet drops, its performance is not satisfactory forVoIP and delay-sensitive
applications. With only a few milliseconds difference, UDP and RCP-BBR finish the
transmission within 13s. However, transmitting the same amount of data by BBR
takes over 16 s, which is not suitable for VoIP traffic.

Figures 11 and 12 show an unstable network scenario with a small queue (run 4). In
this scenario, the number of packet losses is more than those in run 3. Considering the
throughput, the performance of UDP and RCP-BBR is similar at the start (transient
state) but with the passage of time the performance of RCP-BBR becomes better
(steady state). Considering the latency, the performance of UDP is better at start only
(transient state), while the performance of RCP-BBR is better in the long run (steady
state).

Figures 13 and 14 show the results of run 5 for which there is a highly unstable
network having packet losses and high link delays. In this simulation, the performance
of BBR is worse than that of UDP and RCP-BBR. The performance of UDP and RCP-
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Fig. 8 Stable network scenario with small queues of routers (Run 2): latency comparison

Fig. 9 Unstable network scenario with large queues of routers (Run 3): throughput comparison

BBR is similar. Considering the latency, the performance of UDP is better than that of
RCP-BBR at the start (transient state) but with the passage of time (steady state), when
congestion occurs, UDP keeps network buffers full and that consequently createsmore
delays as compared to RCP-BBR. RCP-BBR handles network congestion and does
not overload a router’s buffer. In highly unstable networks, the proposed approach
keeps small buffers while UDP overloads the buffers and that consequently creates
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Fig. 10 Unstable network scenario with large queues of routers (Run 3): latency comparison

Fig. 11 Unstable network scenario with small queues of routers (Run 4): throughput comparison

buffering delays. Hence, it can be said that the proposed approach performs better in
a highly unstable network.

In stable networks, all the considered protocols are suitable for VoIP applications.
In unstable networks (Runs 3–5), TCP-BBR results in a significant packet loss, which
is not suitable for VoIP traffic. The proposed approach (RCP-BBR) performs better
than UDP in deep congested buffers (Runs 3–5) as the average latency of the proposed
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Fig. 12 Unstable network scenario with small queues of routers (Run 4): latency comparison

Fig. 13 Highly unstable network scenario (Run 5)

technique is less than that of UDP. Therefore, RCP-BBR performs better than UDP in
practical scenarios.
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Fig. 14 Highly unstable network scenario (Run 5)

6 Related work

Congestion in wide area computer networks such as internet has always been a very
active and dynamic area for researcher. As the network equipment, technology, type
and amount of traffic keeps of progressing, there are always new problems related to
congestion. Handling congestion is tricky as latency, throughput , and quality do not
adjust with each other easily and there is always a compromise and a balanced needed.
Each new solution brings up some new adjustments, in this section we are focused
at viewing the congestion issues of real time traffic specifically VoIP. For such traffic
throughput is usually a priority along with Quality of Service (QoS), UDP provides
good throughput but is poor at QoS, also it raises many congestion issues as well.
Following is a brief description of related work, a careful review of existing solutions
revealed that a better solution is possible.

Although, congestion control is a network layer problem, yet it could be addressed
from both network layer and transport layer. From network layer perspective, conges-
tion could be controlled either by using queue management (QM) or Active Queue
Management (AQM) [22,23]. However, AQM is more advance and adaptive than
queue management. Many QMs and AQMs have been introduced and deployed in
recent decades. Drop Tail [22,24] was introduced to work in FIFOmanner and operate
the network buffer as a FIFO queue. Later, when traffic increased on network routers,
Drop Tail could not perform well because of its nature of filling the buffer and leaving
no space behind, which caused persistent queues. Then, RandomEarly Discard (RED)
[24], a new queue management approach, was introduced which keeps some threshold
for dropping packets when congestion occurred. It does not access the network buffer
by keeping max-min threshold. RED performs well and still used by network routers.
With the passage of time several variants of RED were proposed [24]. Lately, another
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AQM was introduced for network routers called CoDel (control delay), which is an
adaptive queue management mechanism. Unlike RED, it performed extra calculation
to drop packets by calculating packet in-time and out-time differences to drop packets
randomly. It is an IETF implementation project which is an ongoing research [25,26].
A hybrid of RED and CoDel is a researched by [27] which provides a balance of these
two scheme and is efficient at handling the bufferbloat problem. A similar solution is
also proposed recently by Jim Gettys and his team [16] they addressed the problem
from network layer as well as transport layer perspective.

Congestion as transport layer problem has long been researched, initially, AIMD
[28] (Additive Increase andMultiplicative Decrease) was introduced on top of TCP to
provide some basic congestion control and flow control algorithms, such as slow start
and congestion avoidance. It introduced additive increase in normal transmission and
a multiplicative decrease in transmission when congestion is signaled. For quite some
period, this mechanism worked well, but as traffic and usage of Internet increased,
many problems occurred which AIMD could not handle. Therefore, many different
mechanisms introduced afterwards based on different congestion signals such as loss
based and delay-based mechanisms. Basically, they are called different TCP variants,
such as TCP-Reno, TCP-BIC, TCP-NewReno, TCP-Vagas, TCP-Cubic, Compound
TCP (Microsoft) [19,29–31] and later on TCP-BBR on which this paper is based.

Congestion control is not only discussed for TCP but there are some solutions pro-
posed for UDP such as [32] provides a low latency and high throughput datagram
control protocol, similarly a [33] provides a comparative study of high speed con-
gestion control protocols. These studies indicates that congestion can be handled at
network layer, by TCP as well as by a UDP protocol as well.

All ofmentioned congestion control algorithms are either loss/delay based or some-
times a hybrid of both such as Microsoft Compound TCP [29]. Recently, a new
congestion control frameworkwas introduced byGoogle called ’BBR’ [17] that stands
for “BottleneckBandwidth andRound-Trip Time” based on estimation and it precisely
estimated the available bandwidth and bottleneck bandwidth plus minimum Round-
Trip Time (RTT). It modeled the whole network path as a single bottleneck by which
BBR claimed that it provided high throughput and low delay. Initially, these claims
seemed to be promising. Google implemented this BBR on Google B4 WAN servers
andYouTube edge servers [34] that improved their performance up to 20%worldwide.
But in recent research [18], “Experimental evaluation of BBR congestion control” the
writers explained full and deep experimental evaluation of BBR at higher speeds and
different scenarios which varied in parameters such as number of flows, flows RTT
and different buffer sizes at bottleneck. Among other things, they evaluated it by con-
sidering the features like throughput, packet loss, fairness comparison between Cubic
and BBR. They used Linux kernel 4.9 for their experimental setup and tested on a
test-bed with 1 Gbps and 10 Gbps data rate at bottleneck. At the end of a rigorous
experimental evaluation Mario Hock and his team were able to conclude that BBR
had a lot of retransmission on small buffers compared Cubic TCP. They also stated
that with multiple flows BBR did not stay fair with Cubic TCP. As BBR is an ongoing
implementation and research Neal and his team did some modification to their frame-
work and called it BBR v2 [34] which solved the problems pointed by Mario Hock in
[18].
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7 Conclusion

In stable networks, both TCP and UDP protocols suit VoIP delay-sensitive appli-
cations perform, but in unstable networks TCP’s performance deems deficient due
to delays and reliability issues such as retransmission and in-order delivery delays.
UDP causes Quality of service QoS problem in unstable networks, such as frequent
call drops in VoIP and congestion and bufferbloat problems in networks. In order to
overcome this problem, we introduce RCP-BBR, a new responsive control protocol
that perform well in both stable and unstable networks. By removing retransmission,
in-order delivery and other overheads from modifying TCP-BBR and keeping the
receiver’s acknowledgment, we achieve a higher throughput in shallow buffers and a
lower delay in deep buffers. After evaluation of our proposed approach, we achieve
similar delay performance and up to 5% improvement in throughput over UDP in
stable networks, while in unstable and long-distanced networks, we achieve smaller
queues, and low delays where UDP performed poorly by keeping delays above VoIP
call drop threshold. Therefore, our approach performs similarly both in stable and
high-speed networks, and in unstable networks. Our approach keeps queuing delays
low to VoIP threshold in deep buffers while UDP keeps buffers full and delays high
which frequently met call drop thresholds.
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