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Abstract. Benchmarking the containerized web-applications across
multiple cloud gives web-application owners more chance to deploy their
applications on cheaper host while meeting their performance require-
ments. However, benchmarking a large number of cloud hosts (about
267 cloud providers in the world) to find a flexible deployment option
becomes a grand challenge. Users need to evaluate as many hosts as pos-
sible to find an option which offers expected performance at the lowest
price. It is also necessary to benchmark the hosts for longer duration so
that it can capture the uncertainty of cloud environment.

In this paper, we present Smart Docker Benchmarking Orchestrator
(SDBO), a general orchestrator that automatically benchmarks con-
tainerized web-applications in multi-cloud environment. At the same
time, SDBO is able to maximize the numbers of evaluated cloud
providers and type of hosts without exceeding users’ budgets. Moreover,
we propose a flexible execution module which enhances SDBO’s ability
to capture the performance variation of benchmark web-application for
longer period of time in the defined users’ budgets.

Keywords: Cloud computing · Benchmarking · Orchestrator ·
Web-application

1 Introduction

Evolution of microservice architecture that modularizes the application into
smaller independent components gives the flexibility for developers to imple-
ment each component as a standalone service. Every microservice component
in the web-application chain can communicate either via synchronous (HTTP/
HTTPS) or asynchronous (AMQP) network communication protocols depend-
ing on the level of desired component autonomy. Note that many cloud providers
such as Amazon and Microsoft offer containers virtualized at the operating sys-
tem level which facilitates the deployment of microservices i.e. each component of
the web-application can be encapsulated into a container. Since containers have
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many advantages including light-weight, fast start up/shut down, packaged; as
a result, users can move their web-applications fast and deploy them efficiently.

However, the multi-cloud environment provide diverse options for users to
deploy their web-applications, which means users have more chance to find
a cheaper host which still meets their deployment requirements such as cost,
throughput, latency. To this end, the users need to test the performance in these
hosts before actually deploying and publishing their web-applications. The com-
mon practice is to use the standard benchmarking applications to test the hosts
instead of using users’ own application. This is because these benchmarking
applications have the standard procedures to evaluate the performance of the
host, thereby obtaining more comprehensive results. Moreover, benchmarking all
the hosts from different cloud providers is very challenging as each provider has
their own architecture and programming interface [9]. Existing research [10,14]
focuses mainly on evaluating the benchmark web-application on different host
configurations alone. However, [3,6,13] discuss some frameworks that provide
the automatic systems to perform the benchmark across multiple clouds.

Web-application is a long running system and its performance must be guar-
anteed all the time. On the other hand, the underlying cloud environment is
very dynamic and resource preemption happens frequently in the virtualized
environment [8]. The performance is also affected by the interference caused
by other applications deployed on the same server [5]. Observing the perfor-
mance variation for a longer duration is an important task for benchmarking
web-application. Unfortunately, running the benchmark applications in various
hosts over different clouds for a longer duration (say at least 24 h) is very costly.
To the best of our knowledge, we could not find any study that considers cost
efficiency for benchmarking i.e. maximize the number of evaluated hosts and
benchmarking time within a defined budget.

In this paper, we aim to build a smart orchestrator for benchmarking con-
tainerized web-applications in multi-cloud. SDBO is designed to solve the com-
plexity of deploying benchmark applications in multi-cloud environment that
have different programming APIs and numerous ways to interact. To achieve
the cost efficiency, first, we develop an algorithm that maximizes the number
of evaluation hosts based on users’ budgets and pre-defined benchmarking time.
Then, the flexible execution module is designed to capture the performance vari-
ation of cloud environment by partitioning the pre-defined benchmarking time
into a set of slots. In summary, this paper makes the following contributions:

– We developed a novel orchestrator, SDBO that automates the definition and
execution of benchmarks for containerized web-applications. In particular, the
orchestrator allows the user to choose the benchmark applications and hosts
across different cloud providers.

– SDBO has a native feature of optimization that maximizes the utility of
user’s budget by maximizing the number of cloud providers and the hosts for
benchmarking.
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– Based on the optimized execution plans, we interact the plans with the flexible
execution module to run the benchmarks in a set of time interval thereby
capturing the performance variation for longer duration.

2 Related Work

The web-application benchmarks need to be deployed on various host configu-
rations in the multi-cloud environment. Orchestrating the systematic deploy-
ment consists of following steps [16]: (i) defining the benchmark with their
attributes and relationships, (ii) defining the host machine configuration (e.g.
CPU cores, location), (iii) instantiating the cloud host complying the applica-
tion requirements, (iv) monitoring the resources to ensure the QoS and SLA
parameters, and (v) controlling the overall processes. Performing all these steps
manually is tedious, error-prone and requires a lot of time and diverse knowledge
of architecture and accessing mechanism of all these environments. There are
different frameworks available that automate/semi-automate the orchestration
steps. [7,12] evaluated the performance of containers for scientific applications
where a few of them [17,18] evaluate for big data applications. However, most of
these works are intended for single cloud environment, without considering the
complexity of interacting with various APIs/SDKs provided by different cloud
providers.

There are few existing frameworks that handle the orchestration of bench-
marks in multi-cloud environment. CloudBench [13] and Smart CloudBench [3]
automates the benchmark execution in multi-cloud environment. However, it is
not easy to define the benchmarks using these frameworks. Also they are not
specific for containerized environment. Additionally, Varghese et al. proposed a
framework called DocLite [15] to evaluate the performance of VMs using con-
tainerized microbenchmarks. Microbenchmarks are executed on different VMs
and the ranking is evaluated by using the set of weights provided by the user
for different system parameters. This framework is specific for scientific appli-
cation and may not be applicable for web-application. Our proposed SDBO
orchestrates the benchmark for web-application while allowing users to define
and deploy the benchmark in a very interactive and user-friendly way.

Additionally, there are some commercial tools, e.g. CloudHarmony1 avail-
able that perform the benchmark for users but are not specific for particular
application. Also, they do not provide all the required metrics specific to that
particular application for making proper decisions before final resource selection
and provisioning. The limitations of the existing work are briefly summarized as
follows.

Limitations. The cloud providers offers shared computing resources to their
customers, which makes the cloud environments dynamic and the SLA very
hard to guarantee [11]. Moreover, the web-application is very sensitive to the

1 https://cloudharmony.com/.

https://cloudharmony.com/
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dynamically changing environment that directly affect user’s satisfaction. Cap-
turing or monitoring the changing behavior of the cloud environments requires
the users to run their benchmark applications over a considerable time, which is
very costly. Existing benchmark frameworks are not able to solve the trade-off
between the limited budgets and the long-time benchmarking experiments.

Additionally, the variety of cloud providers offer a massive configuration
choices of host. For instance, Amazon EC2 provide 43 types of host for their
customers excluding self customized hosts. It is not possible to run the bench-
mark applications over all available resources. The state-of-the-art systems do
not consider this case that provides an optimized recommendation to help users
in selecting the hosts from the massive number of available hosts spanned across
multiple cloud providers.

3 System Overview

This section discusses the architecture and system design details of SDBO.

3.1 SDBO Architecture

Figure 1 illustrates the architecture of SDBO and the dependencies of each
component. SDBO is implemented as a web-application that provides a User
Interface for users to interact, explore and manage their benchmarking exper-
iments. The User Interface allows the user to choose an existing benchmark
application or customize a new application. Moreover, users can easily select the
available hosts from different cloud providers, define the benchmarking time for
each selected host, and specify the total budget for running the experiments.
Next, this configuration information is stored in a relational Database.
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Fig. 1. System architecture of SDBO

The Optimizer is designed to create an optimized host list based on the
information provided by the user. It retrieves the necessary information (host
configurations, benchmark duration and budget) from the Database and applies
a heuristic algorithm to generate an optimized host list for running the bench-
marking experiments. More details about the Optimizer are given in Sect. 3.2.
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The generated host list is automatically stored in the Database. Next, users
can choose the flexible execution option for benchmark execution. If the user
chooses to execute the benchmark experiments, the Provisioner will be trig-
gered to provision the resources, deploy the benchmark applications and execute
the applications based on the user entered information and optimized host list.
The benchmark is executed for the specified interval of time and the completion
is notified to the Provisioner. The results are stored in the Database in real-time
for further evaluation and analysis. Finally, the user is notified after completion
of the benchmarking experiment and following that cloud resources are released.
The main steps of the execution workflow of SDBO is shown in Fig. 2.
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Fig. 2. SDBO execution workflow

3.2 SDBO Design

Optimizer and Its Formal Model. SDBO benchmarks containerized web-
application in a multi-cloud environment. Let N represent the number of cloud
providers Ci|i ∈ {1, N} where each provider Ci has T type of hosts vi,t|t ∈ {1, T}.
In our model, we assume a one-to-one mapping between host and container.
Consider C(vi,t) to be the unit cost of using vi,t, τi,t is the time units for which
vi,t is chosen to run and B is the user budget for the benchmark, finding an
optimal set of hosts for the benchmark is modelled as a Binary Integer Linear
Programming problem (BILP). The defined objective function is given in Eq. 1
subject to constraints as given in Eq. 1a–1c.

maximize:
N∑

i=1

T∑

t=1

xi,t + λ

N∑

i=1

(
T∑

t=1

xi,t − T) (1)
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N∑

i=1

T∑

t=1

(C(vi,t) × τi,t) ≤ B (1a)

∀i ∀t τi,t ≥ 0 (1b)

∀i
T∑

t=1

xi,t ≥ 1, ∀t
N∑

i=1

xi,t ≥ 1 (1c)

Where, xi,t|xi,t ∈ {0, 1} is a binary variable which represents whether vi,t is
selected or not. The first factor of the optimization problem is to comprehend
maximum selection of hosts and the second considers a penalizing factor to boost
the spanning of maximum number of cloud providers. λ is a tunable parameter
which is incorporated to maintain a balance.

Constraint 1a states that the total cost of benchmarking different containers
running inside the host must be less than the defined budget. Also, the cost is
calculated only if xi,t is 1 with a positive execution time for host vi,t (constraint
1b). Finally constraint 1c enforces the selection of at least one cloud provider
and at least one host configuration.

We developed and implemented a heuristic algorithm for the Optimizer to
solve the problem formalized above. The algorithm generates an optimized list
of hosts while satisfying all the defined constraints. The details about how to
create an optimized list of hosts is discussed in Algorithm 1. It first calculates
the total cost, CT (vi1,t1) for each selected host, vi1,t1 (line 4). It then performs
a local sorting (using merge sort) for each selected cloud provider, i1 according
to the increasing host cost and stores it in a temporary list, Listi1 (line 6).
Following that it selects a host with minimum cost globally and adds to the final
host list, V 2 (line 14, line 24) until the final cost is less than budget, B (line 8).
To maintain the fairness and diversity among different cloud providers, there is
a provision to add a penalty if the cloud has been selected (line 17). A host is
selected only if the penalty imposed to that cloud is less than a defined value
(100 for our case) or if there is no other providers left for selection (line 10).

Provisioner. Once the Optimizer generates a benchmark plan, the users can
decide whether they want to submit the plan for execution via the user friendly
web interface. If the user agrees to perform the experiment, the functions imple-
mented in Provisioner will be triggered. First, the Provisioner will check the
connection and the requirement of the resources on different clouds. Next, it
uses a background process application, Hangfire to create and launch the hosts
on the selected cloud providers.

Flexible Execution. SDBO offers two types of execution strategy (a) solitary
execution and (b) manifold execution. Solitary execution is the basic strategy
where users can set a particular time interval for evaluating the benchmark on
the desired host configuration. The performance evaluation in this case is limited
as it executes only for the particular time interval. We know that the host’s
QoS performance is highly dependent on the system parameters, e.g. current
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Algorithm 1: optimizer
Input: V 1 - list of hosts vi1,t1 selected by the user, τi1,t1 - time for executing

the benchmark on host vi1,t1, C(vi1,t1) - unit cost of using host vi1,t1, B
- budget

Output: V 2 - optimized list of hosts
1 ∀i1 finei1 = 0, V 2 = [], final cost = 0
2 for each selected provider i1 do
3 for each selected host type t1 do
4 CT (vi1,t1) = C(vi1,t1) × τi1,t1
5 end

6 Sort the host vi1,t1 in ascending order of total cost CT (vi1,t1) using Merge
sort and store in a list, Listi1

7 end
8 while (final cost ≤ B) do
9 Search the first element of all list and find the host vi1′,t1′ with smallest cost

10 if (finei1′ > 100 & ∀i1 (!empty(Listi1))) then
11 Skip Listi1 from current calculation
12 continue

13 else if (finei1′ ≤ 100 & ∀i1 (!empty(Listi1))) then
14 Add vi1′,t1′ to V 2
15 Delete vi1′,t1′ from the list Listi1′

16 final cost = final cost + CT (vi1′,t1′)
17 finei1′ = finei1′ × 10
18 for (∀ i1 <> i1′) do
19 if (finei1 ≥ 10) then
20 finei1 = finei1/10
21 end

22 end

23 else
24 Add vi1′,t1′ to V 2
25 Delete vi1′,t1′ from the list Listi1′

26 final cost = final cost + CT (vi1′,t1′)

27 end

28 end

workload, network state, etc. which may vary with time [4]. This variation is
especially significant for the web-applications due to the continuous execution
and the resource preemption in the virtualized environment.

To capture this variation, we propose manifold execution strategy that exe-
cutes the benchmark application in the same host but in multiple time intervals.
The user is asked to define the number of iterations along with other parameters
for the optimizer. The optimizer then generates an optimized list of hosts which
is associated with the execution timestamps. As a result, the Provisioner can
schedule the deployment and execution based on the host configurations and its
associated execution timestamps.
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4 Metrics Profiling

SDBO can support benchmarking for different type of web-applications includ-
ing e-commerce, social media and banking system. It does not only capture the
basic web-application features, e.g. response time, throughput illustrated in Sect.
4.1, but also supports more complex and advanced metrics (see Sect. 4.2).

4.1 Basic Metrics

Response Time (ΔT ). Response time is the total time taken by the web-
application to process a request and generate its response. It is a basic metrics
to evaluate the performance of any web-application. Normally, response time
depends on many factors varying from the host infrastructure, scheduling policy
and the current load on the system to the host capability and network capacity
to handle a user’s request. Average response time μ(T ) and standard deviation
of the response time σ(T ) are used frequently to measure the performance of the
web-applications. Lower response time represents better performance.

Throughput (TP ). Throughput represents the host performance in terms of
number of requests that can be handled per unit time. Consider that there are
total N number of sample requests which are successfully executed in Δt time
interval where Δt = (Start time − Finish time), throughput is calculated as
TP = N/Δt.

CPU Usage (CPU). It gives the percentage of CPU used by the container
while executing the process. We obtain this information from docker stats APIs
[1] embedded with our orchestrator.

Memory Usage (Memory). Docker stats APIs also allow us to obtain per-
centage of memory used by the monitored container.

Network Throughput (Net). This metric indicates how much data can be
transferred from a client to the target container in a unit time interval and is
represented in Mega bits per seconds (Mbps).

Block I/O (I/O). Block input/output refers to the amount of data written
to or read from the block storage devices in a unit time interval and is also
represented in Mbps. We collect Net and I/O also from Docker stats APIs.

4.2 Advanced Metrics

Based on the collected basic metrics which are stored in our database, users can
perform more complex queries to profile the complex systems.

Apdex Score. Apdex (Application Performance Index)2 is considered as an
open standard developed to standardize the methods for benchmarking, tracking

2 http://www.apdex.org/index.html.

http://www.apdex.org/index.html
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and reporting the application performance. It utilizes the Response Time (ΔT )
to check the user satisfaction level for an application’s performance. Based on a
defined threshold for the response time T, Apdex defines three acceptable zones
namely Satisfied, Tolerated or Frustated.

An Apdex score is calculated using the number of requests satisfied and
tolerated out of the total requests received. The contribution of satisfied and
tolerated requests for the user satisfaction level is 100% and 50% respectively.
Let NR, SR and TR be the total number, satisfied number and tolerated number
of requests respectively, an Apdex score is calculated as given in Eq. 2. The value
of an Apdex score lies between 0 and 1 with higher values representing better
satisfaction levels.

Apdex Score = (SR + TR/2)/NR (2)

Host Stability. Stability of host machine is the metric to measure the con-
sistency of the system performance. It is defined as the inverse of variability
experienced by different basic metrics. Given the average μi and standard devi-
ation σi for ith basic system metric (i ∈ M) executed for time T , variability is
calculated as given in Eq. 3.

V ariability = 1/T

T∑

t=0

M∑

i=0

(σi,t/μi,t) (3)

Thereby, host stability is calculated as Host Stability = 1/V ariability. Hosts
with smaller stability values show that the performance is inconsistent and is
not suggested for execution.

Host Suitability. Host suitability metric represents the worthiness of a host in
terms of performance and cost. It is computed using Eq. 4.

Host Suitability = TP/Cost (4)

where, TP is the throughput, Cost is the per unit execution cost for that par-
ticular host. The higher the value of host suitability the better is the host.

5 Evaluation

To illustrate the effectiveness of SDBO, we performed a case study using a simple
web-application benchmark. The details are presented in the section below.

5.1 Experiment Setup

SDBO is tested both in simulation and on a real testbed. The simulation is to
test the scalability of our proposed optimization algorithm, and the real testbed
is to evaluate the system performance. The experiment setup is detailed as fol-
lows.

Scalability Evaluation. Our algorithm is tested on a Lenovo PC with Intel(R)
Core(TM) i5-6200U CPU @2.3 GHz - 2.4 GHz with 16 GB memory and 512 GB
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Table 1. Experiment host configuration

CSP Host Type CPU cores Memory Disk Price/hr($)

AWS

t2.nano 1 0.5 EBS 0.0066
t2.micro 1 1 EBS 0.0132
t2.small 1 2 EBS 0.026

t2.medium 2 4 EBS 0.052
t2.large 2 8 EBS 0.1056
m4.large 2 8 EBS 0.116
t2.xlarge 4 16 EBS 0.2112
c4.xlarge 4 7.5 EBS 0.237
m4.2xlarge 8 32 EBS 0.464
c4.2xlarge 8 15 EBS 0.476

Azure

Standard B1s 1 1 2 0.0118
Standard B1ms 1 2 2 0.0236
Standard B2s 2 4 4 0.0472
Standard F2 2 4 8 0.119

Standard B2ms 2 8 4 0.0944
Standard D2 v3 2 8 4 0.116
Standard B4ms 4 16 8 0.189
Standard A4 v2 4 8 8 0.222
Standard B8ms 8 32 16 0.378
Standard D8 v3 8 32 16 0.464

SSD. We collected 20 host configurations from AWS and Azure as the input
dataset as shown in Table 1.

Benchmark Application and Its Deployment. SDBO is published on
Google Cloud App Engine (B2 instance class) London (europe-west2). There-
fore, the users can access to the system from any place and run their benchmark-
ing applications via the user interface. PostgreSQL Database is associated with
the SDBO, and stores different configuration of hosts and benchmark images
for running the experiments. The database is also deployed on a Google cloud
n1-standard-2 instance with 2 vCPUs, 7.50 GB memory, 128 GB disk. All these
components are running independent following the microservice architecture.

We utilized a popular benchmark application, TPC-W3 with SimplCommerce
that emulate the activities of a sample e-commerce web-application. This appli-
cation is containerized and used to benchmark various type of hosts on AWS
and Azure as shown in Table 1. The load on the web-application is created by
Apache JMeter4 according to the test plans defined by the user. To emulate
real traffic, JMeter is not configured on the same cloud where the benchmark
applications are running. The containerized load generator is deployed on Digital
Ocean cloud and the host is a Standard droplet machine with 6 vCPUs, 16 GB
memory and 320 GB SSD disk.

3 https://cs.nyu.edu/∼totok/professional/software/tpcw/tpcw.html.
4 https://jmeter.apache.org/.

https://cs.nyu.edu/~totok/professional/software/tpcw/tpcw.html
https://jmeter.apache.org/
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5.2 Cost Optimization

In this section, we evaluate the performance of our optimizer which aims to
maximize the number of hosts within the constraint of users’ budgets and pre-
defined benchmarking time.

To highlight the advantages of the optimizer, we considered 20 host configu-
rations from AWS and Azure (see Table 1). Moreover, we assume that the user
would like to run their benchmarking experiment for 3.5 h, with four different
budgets $ 0.5, $ 1.0, $ 1.5 and $ 2.0. We compared the performance of our
optimized selection method (Opt) with the random selection method (Rand).

Figure 3 demonstrates that the optimized option selects the higher number
of host in all the cases, compared to the random selection method. The reason
is because the optimizer always selects the host with lower price first and then
it moves to higher cost host. This is based on the logic that a user wants to
deploy their web-application on the cheapest hosts that can meet their QoS
requirements. Our algorithm design fits to this logic very much. However, the
random selection method selects any host which may not be cost optimized.
In addition to this, our method can provide a more stable numbers of hosts as
shown in Fig. 3, where the Opt has much smaller variance than Rand.

Fig. 3. Comparing the optimized result
with random selected result

Fig. 4. Schematic diagram showing the
execution time complexity of the Opti-
mizer

We also evaluate the scalability of our algorithm by simulating a scenario
with varying number of cloud providers with each provider having 50 different
host configurations available. Figure 4 shows the execution time of different cases
with increasing number of cloud providers varying from 1 to 30. The result shows
that the execution time only increases linearly as the number of cloud providers
increases. Moreover, the maximal execution time is 5.7 ms for 30 cloud providers,
which is comparatively very small as compared to the deployment time.

5.3 Basic Metrics Profiling

In this subsection, we present the benchmark results of an optimized test case.
We select a subset of the hosts from Table 1 as the input to our optimizer that
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then generates 6 hosts (highlighted with gray color in Table 1) for benchmarking
experiments.

To obtain the throughput of each deployed benchmark application, we emu-
lated the bursty request, i.e. we send the maximal number of requests to the web-
applications simultaneously without causing any response error. In other words,
the web-applications are fully saturated. Table 2 shows the maximal number of
requests for each selected host. Figure 5 illustrates the value of basic metrics (as
specified in Sect. 4.1) of the selected hosts, collected from the experiments.

Table 2. Number of requests to saturate the host

CSP Seq Host No. of req
(to saturate)

CSP Seq Host No. of reg (to
saturate)

AWS A t2.small 300 Azure D Standard B1ms 300

B t2.medium 600 E Standard B2s 600

C t2.xlarge 1500 F Standard B4ms 1500

CPU Usage. Figure 5(a) shows the CPU usage of each selected host. The result
clearly shows that CPU usage decreases as we increase the size of host. Also, the
more powerful hosts have less variation of CPU usage. For example, the variance
of the CPU usage for the big size hosts C and F is only 7% and 5% and that for
small host A and D reaches 24% and 12% respectively. Except for small sized
hosts, the performance of AWS to Azure is almost comparable. For the small size
host, there is a huge performance difference (52.5% degradation) as Azure has
less CPU usage compared to AWS for processing the same number of request.

Memory Usage. The memory usage (Fig. 5(b)) also shows the similar trend
except the variation which is much less (highest is 0.76 for host E) as compared
to CPU usage. Highest memory usage is noticed for host D followed by host
A with 16.1% and 15.3% respectively. Note that the memory usage is varying
only in the initial phase, after that the usage is almost constant. It is caused by
the property of the Docker container, the memory once allocated is not released
back until the container is terminated or restarted.

Network Throughput. The result in Fig. 5(c) shows that the hosts from Azure
have about twice the network throughput, compared to the hosts from AWS. The
hosts from the same cloud provider have the same network throughput except
for host B from AWS where the throughput is much less (487.2 Mbps) than
others A (889.2 Mbps) and C (869.2 Mbps).

I/O Throughput. As compared to the above three basic metrics, block I/O
shows different trends (see Fig. 5(d)). The I/O throughput of AWS hosts is very
random which is because of the selected hosts that offers EBS support. Thus,
the throughput is also affected by the time elapsed between the I/O requests and
EBS server [2]. Moreover, our benchmark application is block I/O intensive, so
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(a) CPU Usage (b) Memory Usage (c) Network (d) Block I/O

Fig. 5. Basic container system metrics while specifying the workload to 300 requests
per second with ramp up period as 0 s. CPU and memory usage are given in percentage
while network and block I/O throughput are in Megabits per second (Mbps). Black
bar on top represents the standard deviation.

(a) Throughput (b) Response Time

Fig. 6. System throughput and response time. Fig. 7. Workload pattern for contin-
uous and optimized execution

the collected statistics are not the maximal I/O throughput of each host. This
is demonstrated very well in Azure hosts (see D, E, F in Fig. 5(d)) that the I/O
throughput increases with the increase in the number of requests.

System Throughput. Figure 6(a) illustrates the throughput of different hosts.
It is clearly depicted from the figure that the throughput increases linearly with
the capacity of the host and AWS hosts have comparatively better through-
put than Azure for similar sized machine except for host B. The reason of
lower throughput for host B is the degraded network throughput as depicted
in Fig. 5(c). Therefore, the network becomes the bottleneck in this case. The
highest throughput achieved by AWS host is 8.93 requests per second (host C).

Response Time. Figure 6(b) shows the results of the response time. The results
show that the response time is significantly affected by the network throughput
and the number of requests. Figure 5(c) show that host B has the worst net-
work throughput which causes the significantly higher response time as shown
in Fig. 6(b), i.e. 252.2 s. If the network throughput is constant, the response time
increases with the increase of number of requests. Note that we try to saturate
the web-application until it reaches the maximal number of requests that it can
handle without causing errors. Thus, a large number of requests are queuing
and waiting for being processed, and this is the main reason that causes the
high response time for many requests.
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5.4 Advanced Metrics Profiling

In this subsection, we compute different advanced metrics based on the collected
basic metrics that can help in selecting the cloud provider and the hosts for the
actual deployment.

Apdex Score. We calculate the Apdex score for same case as discussed in Sect.
5.3. Since we are considering the case of a saturated system where the response
time is high, we set the threshold for the response time to 50 s. The higher the
Apdex score, the better users’ satisfaction. Table 3 shows the Apdex score for
all selected hosts. The result clearly shows that smaller hosts have better Apdex
scores as compared to larger hosts. We have explained why the smaller hosts
have lower response time ( see Sect. 5.3 Response Time). The lowest score of
0.15 is noticed for host B due to its bad network throughput (see Fig. 5(c)).

Table 3. Advanced metrics profile

CSP Host

seq

Apdex

score

Host

stability

Host

suitability

CSP Host

seq

Apdex

score

Host

stability

Host

suitability

AWS A 1 1.115 286.399 Azure D 0.8 0.921 109.979

B 0.15 0.790 36.313 E 0.5 0.772 104.470

C 0.5 0.834 42.311 F 0.4 0.846 32.042

Host Stability. A host with a higher stability value is considered best as it
signifies less performance variation with the elapsed time. The result in Table 3
shows that the stability of small and large host instances are higher. The highest
value is for host A with stability index of 1.115 followed by host D with the index
of 0.921. The worst stability index is for host E with the value of only 0.772.

Host Suitability. Host suitability is computed as discussed in Eq. 4. A host with
higher suitability value is considered to be better as it provides better throughput
to cost ratio. The suitability index for the selected hosts show a downward trend
with increasing size. For both AWS and Azure, smaller machines have better
suitability values as shown in Table 3.

5.5 Flexible Execution

Continuous execution of a benchmark for longer duration is the best way to
capture the performance variation. However, the benchmarking cost in this case
is very high. To capture the performance variation of changing environment in
a defined budget, SDBO offers the flexible execution module.

We do not have access to the cloud hypervisor, therefore, we are not able
to emulate the resource changing or preemption of the hosts. As an alternative,
we emulate the performance variation of our web-application by changing the
number of requests in a period of time. If our tool can observe the performance



A Cost-Efficient Multi-cloud Orchestrator 421

variation with the changing number of requests, it can also capture the variations
that may be caused by other reasons.

To this end, we define 9 test plans, each plan is defined with a timestamp
and the number of requests need to be sent as shown in Fig. 7 depicted by
Cont. For example, the first plan is to send 15 requests starting at 00:00 min
timestamp. Following that, the second plan sends 50 requests starting at 30:00
min timestamp. We keep the web-application (benchmark application) running
for 360 min to cover all timestamps from the test plans. For the Opt case,
we randomly selected 5 test plans and sort them based on the timestamp as
shown in Fig. 7 and Table 4. The web-application (benchmark application) is
executed for 10 min, if and only if the timestamp is reached. The above described
two experiments were executed simultaneously with the same host configuration
(AWS t2.medium).

Table 4 shows response time and throughput collected from both scenarios.
The result clearly shows that SDBO can capture the same performance with a
maximal variation of 15% in Case I for response time and 5.9% in Case III for
throughput. The cost for the optimized method is much less than continuous
way of deployment as the total time of deployment for Opt is only 50 min as
compared to 360 for Cont.

Table 4. Comparison of Optimized; Opt and Continuous; Cont method for Response
time and Throughput. Values in [] represent standard deviation.

Case No. of req Response time (sec) Throughput (req/sec)

Cont. Opt. Cont. Opt.

Case 10 0.684 [±0.29] 0.789 [±0.36] 6.71 6.54

Case II 15 2.114 [±0.10] 2.122 [±0.15] 6.23 6.17

Case III 50 4.105 [±0.13] 4.441 [±0.18] 10.49 9.87

Case IV 200 21.381 [±1.34] 22.482 [±2.04] 6.90 6.59

Case V 300 23.463 [±6.13] 24.649 [±4.18] 7.56 7.25

6 Conclusion

To facilitate web-application benchmarking in multiple cloud with cost effi-
ciency and flexibility, we proposed SDBO which is the first cost-efficient web-
application benchmarking orchestrator. SDBO provides the smart user interface
that expedites the handling of benchmark even for a non-expert user. Also, the
cost optimization offered by the orchestrator helps the user to select a variety of
hosts while flexible execution captures the long time performance variation in a
limited budget.

Future work. The flexible execution module allow users to execute their bench-
mark applications at any pre-defined timestamp. We can leverage this feature
and develop an advanced sampling method to collect the system metrics that
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can feed to some machine learning methods to have a better observation of
the uncertainty in cloud environments. Moreover, we will extend our orchestra-
tor to benchmark other applications such as stream processing and big data
applications.
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