
Priority-based Fair Scheduling in Edge Computing

Arkadiusz Madej1, Nan Wang2, Nikolaos Athanasopoulos1, Rajiv Ranjan3, and Blesson Varghese1

1Queen’s University Belfast, UK; 2Durham University, UK; 3Newcastle University, UK
E-mail: amadej01@qub.ac.uk; nan.wang@durham.ac.uk; n.athanasopoulos@qub.ac.uk;

raj.ranjan@ncl.ac.uk; b.varghese@qub.ac.uk (Corresponding E-mail)

Abstract—Scheduling is important in Edge computing. In
contrast to the Cloud, Edge resources are hardware limited and
cannot support workload-driven infrastructure scaling. Hence,
resource allocation and scheduling for the Edge requires a
fresh perspective. Existing Edge scheduling research assumes
availability of all needed resources whenever a job request is
made. This paper challenges that assumption, since not all job
requests from a Cloud server can be scheduled on an Edge
node. Thus, guaranteeing fairness among the clients (Cloud
servers offloading jobs) while accounting for priorities of the
jobs becomes a critical task. This paper presents four scheduling
techniques, the first is a naive first come first serve strategy and
further proposes three strategies, namely a client fair, priority
fair, and hybrid that accounts for the fairness of both clients and
job priorities. An evaluation on a target platform under three
different scenarios, namely equal, random, and Gaussian job
distributions is presented. The experimental studies highlight the
low overheads and the distribution of scheduled jobs on the Edge
node when compared to the naive strategy. The results confirm
the superior performance of the hybrid strategy and showcase
the feasibility of fair schedulers for Edge computing.

Index Terms—edge computing, fair scheduling, priority
scheduling, fog computing

I. INTRODUCTION

Edge computing is a relatively recent distributed computing

paradigm that leverages resources at the edge of the network

for improving the overall performance of an application [1]–

[3]. Edge resources may include routers or base stations, or

dedicated micro clouds located at the network edge.

Typically, an application may be offloaded from the Cloud

to the Edge or from end user-devices to the Edge [4]. In the

former case of offloading, a service hosted in the Cloud is

brought closer to user-devices at the Edge for minimising

communication latency [5], [6] and reducing the volume of

data transferred to the Cloud [7]. The computational resources

available on the Edge are hardware limited (small form factor,

limited power, processing cores and storage) when compared

to large amounts of hardware available in a Cloud data

center [8]. In the latter case of offloading, computational jobs

that cannot be processed on battery powered user devices

are offloaded to Edge nodes that are powered via main

lines and consequently can host more resources with more

computational capacity than available on the device [9], [10].

This paper considers the case when services of an applica-

tion are offloaded from the Cloud to the Edge; these offloaded

services are explicitly referred to as a ‘jobs’ in this paper.

Edge computing jobs are different from traditional Cloud

workloads in that they are not entire applications, rather a

subset of the services of an application that may be latency

critical/bandwidth intensive. Executing these jobs on the Edge

will result in an improvement in the Quality-of-Service (QoS)

of the entire application. Incoming jobs to the Edge will

need to be efficiently scheduled on to the resources. Although

there is a large body of research that tackles scheduling for

different parallel and distributed systems, such as Grids [11],

Clusters [12], and Clouds [13], scheduling on the resource

constrained Edge is more challenging [14]. Due to limited

hardware resources available on the Edge, it is not easy to

adopt the aforementioned approaches for Edge computing.

There are various scheduling strategies that are considered

for computing systems. In all cases, ensuring fairness is a

key prerequisite as many unwanted situations can otherwise

occur. Consider for example when higher rates of incoming

jobs from a specific application are scheduled on the Edge

and deny access (or queue) to the ones that are less frequent.

A large proportion of existing Edge scheduling research

implicitly assumes that all job requests can be successfully

scheduled on an Edge node; because resources are available

whenever a request is made. However, this paper makes the

assumption that not all incoming job requests from a Cloud

server can be scheduled on the Edge node. This is because

Edge resources are hardware limited. Therefore, there will

be significant competition to gain access to these resources.

Developing scheduling strategies that ensure fairness among

clients, which is the objective of this paper, becomes essential.

Cloud and Edge resources are likely to be owned by differ-

ent operators or service providers; this translates to Cloud ap-

plication owners having to pay for using Edge resources [15].

Assuming a cost model in which users pay for Edge resources,

priorities will need to be accounted for since users may pay for

premium service (higher priority execution) on the Edge [15].

Although fair scheduling has been extensively studied in

Cloud computing [16], [17], it needs to be revisited within the

context of Edge computing [18]. This is because, as already

highlighted, Edge resources are hardware limited and therefore

it is a very hard task to dynamically auto-scale. For example,

some edge nodes, such as routers, will already host a traffic-

routing service and may only be able to host some offloaded

workloads from the Cloud for a small amount of time.

In this paper, we consider fair scheduling for a large number

of relatively short running incoming job requests at the same

time to an Edge resource that need to be scheduled by taking

39

2020 IEEE 4th International Conference on Fog and Edge Computing (ICFEC)

978-1-7281-7305-4/20/$31.00 ©2020 IEEE
DOI 10.1109/ICFEC50348.2020.00012

Authorized licensed use limited to: Newcastle University. Downloaded on February 17,2021 at 14:39:38 UTC from IEEE Xplore. Restrictions apply.

priorities of jobs into account without being unfair to any

specific type of incoming jobs. Given a number of clients

that own different jobs, the scheduler proposed in this paper

determines which jobs of a client can be scheduled on to an

Edge node to ensure fairness among all clients. The research

presented in this paper is concerned with the fairness of the

scheduling strategy on a single Edge resource. Nonetheless,

it is noted that the proposed fair scheduling strategies can

be easily extended to undertake cooperative and fair load-

balancing across multiple Edge resources.

Four scheduling techniques are presented - the first come

first serve strategy used as a baseline and three additional

techniques are proposed that account for different notions of

fairness. They are: (i) a client fair strategy that accounts for

the fairness of the client submitting the job, (ii) a priority fair

strategy that accounts for the fairness of the priorities of the

job, and (iii) a hybrid strategy that accounts for priorities of

incoming jobs and the client submitting them. An experimental

study is carried out on a target platform to identify the

overheads and distribution of jobs. Preliminary investigation

confirms the feasibility of the proposed scheduling technique

and suggests the superior performance of the hybrid strategy.

This paper is organised as follows. Section II presents the

proposed scheduler. Section III considers job management by

taking fairness of the client and priorities of the job into

account. Section IV presents experimental results obtained.

Section V discusses the related work. Section VI concludes

this paper by presenting opportunities for future work.

II. FAIR SCHEDULING ON THE EDGE

To effectively employ Edge computing, a research ques-

tion that needs to be answered is how to schedule different

workloads offloaded from multiple Cloud applications such

that they can share hardware resources on an Edge node in

a fair manner. This section investigates the requirements for

fair scheduling in Edge computing and proposes an ‘Edge Fair

Scheduler (EFS)’ that can operate at the edge of the network.

A. Architecture

The proposed EFS is designed to be integrated in a three-

layer Edge architecture that consists of the Cloud layer, the

Edge layer and the User layer [19]. With such an architecture,

a part or all of a Cloud application is offloaded from the

Cloud layer to the Edge layer when Edge computing services

are requested. When the offloaded application is deployed on

Edge nodes, the users connect to the Edge nodes instead of

the Cloud, which reduces the latency in communication by

allowing data to be processed closer to the users. Figure 1

shows the EFS architecture. The EFS is required on each Edge

node to provide fair scheduling to all workloads that intend to

use Edge computing services on this Edge node.

The Cloud servers will host long-running applications, and

in this paper they are considered as clients of Edge computing

services. A client script is provided for each Cloud server to:

(i) request a new job to be started on an Edge node; (ii) deploy

an application onto an Edge node; (iii) terminate an application

Fig. 1: Architecture of EFS in an Edge computing environment

that is currently running on an Edge node. The applications

are hosted in Docker containers for the purpose of isolation.

When requesting to use the Edge service on an Edge node, the

client can decide to either deploy all or a subset of workloads

of the Cloud application using containers.

The user device layer consists of end users devices that

communicate with the deployed applications on Edge nodes.

The users will be redirected from the Cloud to the Edge node

on which the application has been deployed. The redirection

of users from the Cloud to Edge nodes is the responsibility of

the clients (i.e. the Cloud server) deploying the applications.

The main components of the EFS on an Edge resource

comprises: (i) a request handler that listens to new requests

from any of the authorised clients, (ii) a scheduler that decides

which request will be processed next, (iii) a monitor that

detects and terminates idle jobs, and (iv) a number of appli-

cation servers deployed in Docker containers. The Edge layer

will realistically comprise a large number of Edge resources.

However, in this prototype of EFS, only a single Edge node

is considered. EFS on multiple nodes is not within the scope

of this paper. The EFS components in detail are:

(i) Request Handler: this component handles all the incom-

ing client requests to the EFS. It only accepts new connections

that have the correct Secure Sockets Layer (SSL) certificates

to authorise the client. This allows client identification and

tracking of the frequency of client job execution. The handler

will then perform the necessary action based on the request

type, for instance to start, deploy, or terminate a job. Any new

job requests are queued in a database and are then further

40

Authorized licensed use limited to: Newcastle University. Downloaded on February 17,2021 at 14:39:38 UTC from IEEE Xplore. Restrictions apply.

handled by the Scheduler. Requests to terminate jobs are also

queued in the database and then further processed by the

Monitor. All invalid requests are ignored and the client will

be notified that an invalid request has been made.

(ii) Scheduler: performs the scheduling of queued job

requests. It monitors the database queue and schedules the

next job if the queue is not empty and resources are available.

The scheduling strategy is specified by a config file. Based on

the selected scheduling strategy a corresponding algorithm is

executed to determine which job is the next to be executed. The

different scheduling strategies considered in EFS are discussed

in the next section. This component will also notify the clients

that the requested job is being started and will set up password-

less SSH access for the client to the container.

(iii) Monitor: this component is responsible for the manage-

ment of already running job containers on the Edge node. It

detects idle containers, which will be queued for termination

once detected. The second function is to monitor the termi-

nation queue and to terminate any of the queued containers.

The containers to be terminated may be the idle, which were

detected by the Monitor, or the jobs which have been requested

for termination by the client from the Cloud.

(iv) Job Containers: this component is the pool of running

Docker containers that host the jobs offloaded from the Cloud.

These containers provide an isolated and safe execution envi-

ronment for the applications. Appropriate networking allows

for the services in the containers to be accessible by the end

users. A client is only allowed to access its corresponding con-

tainer which is handled by the Scheduler when the container

is booting up. Once a container is terminated it is deleted

alongside all the data footprint on the node.

III. JOB MANAGEMENT IN THE SCHEDULER

The proposed EFS has three functionalities, namely job

request handling, the scheduling of jobs and the monitoring of

jobs. Request handling refers to managing incoming requests

from authorised clients and handling them. Scheduling jobs

is a main task of the EFS and the associated scheduling

strategies decide which queuing jobs are next executed. In

general, job scheduling on a distributed system is an NP-

Complete problem and this assumption holds true for the Edge

computing scenario. Monitoring jobs in the containers is to

release compute resources from containers that are either idle

or requested to be terminated. Table I presents the notation

used in the algorithms presented in this section.

A. Request Handling

Algorithm 1 demonstrates the request handling process of

the EFS on an Edge node. This allows the clients to make job

related requests to the Edge node. When the EFS is first started

it reads a configuration file which stores the required values

such as the maximum number of jobs that can be supported

by an Edge node maxjobs (Line 1). Once the configuration

is loaded then the request handling service starts running

continuously until being terminated by a SIGINT signal. The

service listens for any new incoming requests from any of the

Algorithm 1: Request Handling

Data: service, maxjobs, Jq , Jqmax, Cn, Cip, Cp, Jp,

Jports, Jid
Cpuu,Memu,maxjobs, Jqmax = read config;

while service == True do
accept new connection;

get client SSL;

if SSL valid then
request = get request;

if request = ”New Job” then
if Jq.length() < Jqmax then

Jid = queue

job(Cn, Cip, Cp, Jp, Jports);

notify client(Jid);

else
notify client of no space;

end
else if request = ”Terminate” then

if JidinJq then
remove from queue(Jid);

notify client();

else
queue for termination(Jid);

notify client();

end
else

notify client of invalid request;

end
else

close connection;

end
end

clients. When a new HTTP socket connection is established

(Line 3) the client is then asked for an SSL certificate (Line 4)

which should have previously been acquired from the Edge

service provider (i.e. Edge node owner) for establishing a

secure encrypted connection. The creation and distribution of

SSL certificates is the responsibility of the service provider.

The provider can either choose to sign the certificates using

OpenSSL or a third party SSL certificate signing authority.

Since the certificates are distributed to clients individually they

assist the identification of which client is connecting. Once a

secure connection is established using valid SSL certificates

the request handler awaits request from the client (Line 6).

There are two valid requests – to start a new job (Line 7) or

to terminate a job (Line 14). If the client requests a new job to

be started (Line 7), the service first checks if there is any space

left in the queue for anther job (Line 8). If a space is available

the job is added to the database, with the job requirements

received in the initial request to start this job. Once the job is

queued the client is notified of the job ID which can be used

in the future to terminate the job (Line 10). If there is no space

in the queue, the client is notified of rejection due to the lack

41

Authorized licensed use limited to: Newcastle University. Downloaded on February 17,2021 at 14:39:38 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Notation used in the proposed Edge Fair Scheduler

Symbol Description Source
service Flag to indicate if the scheduler is running
maxjobs Maximum number of jobs allowed to run at one time on the node
Cpuu Single unit of CPU assigned to each job; each unit can be set by EFS
Memu Single unit of RAM memory assigned to each job; each unit can be set by EFS
Cn Client name
Cip Client IP address
Cp Client port for communications Request Handler
Jp Job priority
Jports Ports required by the job
Jid Job ID
Jqmax Maximum number of jobs allowed in the job queue
Jq Job queue
Jr Number of currently running jobs on the Edge node
Cl List of waiting clients in the job queue
Cf Key-value store containing frequencies per client
Pl List of priorities of jobs that are waiting in the queue Scheduler
Pw Key-value store containing the weights associated with each priority
Pf Key-value store containing percentages of jobs executed per priority
Pc Number of jobs executed for a specific priority
Total Total number of all jobs executed in the past
Tq Termination queue
C Docker container
Cr List of running containers
prevstats Key-value store of CPU usage for each container at start of monitoring period Monitor
currentstats Key-value store of CPU usage for each container at end of monitoring period
percentages Key-value store of the percentages of CPU usage per container
idle List of idle containers

of available space (Line 12). If the request is to terminate a job

(Line 14), the job will be removed from the queue if it is in the

queue (Lines 15-16). Jobs that are already running on the Edge

node will instead be queued for termination (Lines 18-19).

Then the client is notified that the request has been accepted

successfully (Lines 17 and 20).

B. Job Scheduling

The job scheduler is responsible for firstly identifying the

next job to be executed, and secondly provisioning hardware

resources of an Edge node for executing the job. The decision

of which job is the next job to be scheduled affects the fairness

of the Edge resources. Four scheduling strategies are presented

in this paper; the first is the First Come First Serve (FCFS),

and the three remaining are proposed for EFS, namely the

fairness for the clients (referred to as Client Fair), fairness for

the jobs (referred to as Priority Fair), and a hybrid strategy.

1) First Come First Serve: FCFS is a popularly adopted

baseline strategy in Edge research [20], [21]. This strategy

uses the time sequence of the jobs arrived to select the next

job to be executed. When the FCFS strategy is applied, the

scheduler considers fairness on the basis of the time of job

request submission. It looks up the oldest entry in the job

queue, along with the job requirements. This entry in the

database is then moved from the queue into the history table.

All of the job requirements are then passed to the scheduler

for launching an appropriate container for the job.

The FCFS-based scheduler does not consider where a

request is coming from. There may be a case that one user

sent 100 jobs to an Edge node slightly before the second user

tries to use Edge resources for its first job. With the FCFS-

based scheduler, the Edge node would be exhausted by jobs

submitted from the first user, leaving the second user in an

unfair competition. Therefore, the origin of the job requests

(or users of the Edge) need to be considered.

Algorithm 2: Client Fair

Data: Jid, Cn, Cip, Cp, Jp, Jports, Cl, Cf

Cl = get waiting client list;

for Cn in Cl do
Cf [Cn] = get client frequency(Cn);

end
Cn = argmin(Cf);

Jid, Cn, Cip, Cp, Jp, Jports = fetch oldest entry in

queue for client(Cn);

move job from queue (retrieved in line above) to job

history;

return Jid, Cn, Cip, Cp, Jp, Jports;

2) Client Fair strategy: Different from the FCFS strategy

above, this strategy considers fairness for all users of an Edge

node. This concept of fairness was initially proposed to ensure

that all users of a computing node will have a fair share of the

processing resources [22]. In the Edge computing environment

targeted in this paper, when the fairness for the client strategy

is applied, the scheduler ensures that between all of the clients

who request jobs on the Edge node an equal amount of jobs

from each client are executed providing sufficient requests are

made. This strategy prevents clients who make frequent job

requests from being favoured and allows new clients get a

chance of using Edge resources.

Algorithm 2 implements the fairness for the client strategy

in the EFS, referred to as the Client Fair algorithm. Initially

42

Authorized licensed use limited to: Newcastle University. Downloaded on February 17,2021 at 14:39:38 UTC from IEEE Xplore. Restrictions apply.

a list of the currently waiting clients is created (Line 1). For

each of the clients in the list, the frequency of job executions

is calculated (Line 3). The client whose jobs have been least

frequently executed is then selected (Line 5). The oldest entry

in the job queue for that client is then selected along with the

job requirements (Line 6). The job is then moved from the

queue into the job history (Line 7) before the job requirements

are returned to the scheduler (Line 8).

This Client Fair algorithm aims to provide equal frequency

of executing jobs for all users on an Edge node. However,

it does not distinguish the jobs (i.e. all jobs are assumed as

equally important). There could be a case that a client whose

jobs are all highly important is not executed on the Edge

node because by this algorithm another client whose jobs are

not important at all needs to be fairly treated. Therefore, the

next scheduling strategy focuses on the importance of jobs by

prioritising them. The complexity of the algorithm is O(1),
which is a constant assuming that the job queue is up-to-date

and queues the job in descending order of job arrival time.

3) Priority Fair strategy: In contrast to the above strategy,

this strategy considers fairness on the basis of jobs with

different priorities. Algorithm 3 demonstrates how fairness

is ensured for all jobs on an Edge node, referred to as the

Priority Fair algorithm. In particular, three levels of priorities

are considered for the jobs to be executed on the Edge node.

Firstly the scheduler assigns a weight to each of the priority

levels (Line 1). Starting at the highest priority value of 3 to the

lowest of 1, the weighting is set as follows: 50%, 35%, 15%.

This is necessary because only using the three priority levels

may cause a starvation problem for low-priority jobs when

there are too many high-priority jobs. By applying weights,

jobs with the lowest priority level will have a chance to use

Edge resources and meanwhile the probability of executed jobs

will still follow the pre-defined three priority levels.

Similarly to the previous Client Fair scheduling strategy,

a list of waiting priorities is constructed (Line 3). For each

of the priorities in the constructed list, a job frequency

percentage is calculated (Lines 5-9). Then the scheduler selects

an appropriate priority level, from which a job will be further

selected as the next job to be executed. To identify the priority

level, the selected job priority is firstly initialised with a value

of −1 (Line 12). Then starting at the highest priority level, the

frequency of jobs having been executed for each priority level

is compared against the priority weightings. If a priority level

is below the weighting threshold configured, then this priority

level is selected (Lines 14-15). Such a searching process for

the appropriate priority level is repeated until a valid priority

value is obtained. In the case that the waiting priorities list is

exhausted, the highest priority level is selected as the next to

be executed (Lines 16-17). This is because the priority level is

assumed to be purchased by clients and the more times high-

priority jobs are executed the more revenue can be generated

for the Edge service provider.

Once the next priority level of jobs to be executed is

selected, the oldest entry in the job queue for that priority

level is then selected and its job requirements are retrieved

Algorithm 3: Priority Fair

Data: Jid, Cn, Cip, Cp, Jp, Jports, Pc, Pw, Pl, Pf , T otal, index =
0

Pw = set priority weighting;

Total = get number of all past jobs;

Pl = get waiting priorities list;

for Jp in Pl do
Pc = get number of jobs executed for specific

priority;

if Pc > 0 and Total > 0 then
Pf [Jp] = Pc/Total;

else
Pf [Jp] = 0;

end
end
Jp = −1;

while Jp == −1 do
if Pf [Pl[index]] < Pw[Pl[index]] then

Jp = Pl[index];
else if index = len(Pl)− 1 then

Jp = Pl[0]
else

index++;

end
end
Jid, Cn, Cip, Cp, Jp, Jports = fetch oldest entry in

queue for priority(Jp);

move job from queue to job history;

return Jid, Cn, Cip, Cp, Jp, Jports;

(Line 22). The job request entry is then moved from the job

queue into the job history table (Line 23). Following this the

job requirements are returned to the scheduler for starting the

job (Line 24). The complexity of the algorithm is O(P), where

P is the number of priority levels considered in EFS.

Priority Fair is different from Client Fair as it focuses on the

importance of jobs and aims to ensure the relative priorities

of jobs while giving a reasonable share of Edge resources to

low-priority jobs. However, the priority fair algorithm does

not consider where these jobs come from, and thus there is

no guarantee of fairness for different users of an Edge node.

A hybrid fair scheduling strategy is developed to consider the

fairness of both the clients and the jobs,

4) Hybrid strategy: To provide fairness for both the clients

and the priority of the jobs at the same time, this Hybrid Fair-

ness scheduling strategy combines the design of the Client Fair

and the Priority Fair strategies, as illustrated in Algorithm 4.

When this strategy is applied, the scheduler firstly identifies the

appropriate priority level of jobs to be executed next (Line 1).

Then instead of directly choosing the oldest entry in the job

queue for that priority level, the Hybrid Fairness scheduler

calculates the frequency of executed jobs for all clients. Only

jobs submitted by the client having the least number of jobs

being executed is then further considered (Line 2). Finally the

43

Authorized licensed use limited to: Newcastle University. Downloaded on February 17,2021 at 14:39:38 UTC from IEEE Xplore. Restrictions apply.

oldest entry in the job queue for the selected priority level and

the selected client is scheduled to be executed next (Lines 3-4).

By doing so the probability of executing high-priority jobs is

kept and the clients are satisfied because no users of an Edge

node will receive a larger share of the resources than others.

The complexity of the algorithm is the sum of the complexities

of the priority fair and client fair algorithms presented above.

Algorithm 4: Hybrid

Data: Jid, Cn, Cip, Cp, Jp, Jports, Pc, Pw, Pl, Pf , T otal,
Cl, Cf

run Lines 1-21 of the Priority Fair algorithm;

run Lines 1-5 of The Client Fair algorithm;

Jid, Cn, Cip, Cp, Jp, Jports = fetch oldest entry in

queue(Jp, Cn);

move job from queue to job history;

return Jid, Cn, Cip, Cp, Jp, Jports;

After the next job to be executed is identified, the scheduler

provisions Edge resources for the job and continuously polls

the database to check if there are any queuing jobs. A new

job will be executed if the maximum number of jobs that can

be supported on the Edge node is not exceeded and there are

resources available on the Edge node. The selection of this

new job is done by the EFS using one of the four scheduling

strategies presented above. Each strategy considers fairness in

a different way to demonstrate that fairness is subjective.

Once the next job has been selected a container is started

and all the requested ports are forwarded. The container

automatically binds the ports to all available interfaces on the

Edge node. An SSL session is established with the client. Then

the client is notified of the container being started along with a

key-value store of the port mappings. In return, the client sends

the EFS a public SSH key that is appended to the authorised

hosts file within the container for secure access. Following this

set-up the client installs any dependencies, copies necessary

files and starts the application in the container.

This section presents job scheduling in the EFS. The

scheduling strategies presented in this paper are executed on

the Edge nodes and they have been carefully designed to not

exhaust resources on the Edge node. The jobs to be executed

on the Edge are expected to be short-running jobs due to

the dynamic nature of the Edge computing environment [5].

Therefore, the EFS Monitor is presented in the next section to

control the life cycle of the running jobs on an Edge node.

C. Monitoring and Terminating

The Monitor has two functions. Firstly, it monitors all

running containers on an Edge node and identifies inactive

ones for termination in a later stage, as shown in Algorithm 5.

To not overload the Edge node, the monitoring process is per-

formed every two minutes (Line 20). Each time the monitoring

process is carried out, CPU statistics of all the containers

running for at least one minute is gathered (Line 4). The

one minute period allows clients to set up and deploy Edge

applications in the container. There is a 10-second interval

between the initial and updated CPU measurements for all

containers that have been running for at least one minute

(Line 9). The CPU utilisation (in %) is obtained for all

containers that have valid CPU statistics in the key-value

stores previously and currently (Line 11). Containers with a

utilisation of less than 10% are appended to a list of idle

containers (Lines 12-14). Containers in the idle containers list

are queued for termination (Lines 16-19).

Algorithm 5: Stop Idle

Data: service, C,Cr, prevstats, currentstats,
percentages, idle

while service == True do
for C in Cr do

if C.uptime >= 1 minute then
prevstats[C] = get CPU stats(C);

end
wait 10s;

for C in Cr do
if C.uptime >= 1 minute then

currentstats[C] = get CPU stats(C);

end
percentages = compare stats(prevstats[],

currentstats[]);

for C in percentages[] do
if percentages[C] < 10.0 then

idle.append(C);

end
if idle.len() > 0 then

for C in idle[] do
queue for termination(C);

end
sleep 2 minutes;

end

Secondly, the Monitor stops containers in the termination

queue, either because of the Stop Idle process described above

or requested by the client directly. When terminating a job,

the container is stopped with a default timeout of 10 seconds

before forced termination by the SIGKILL command and

removed. The termination request is then removed from the

termination queue and the client is notified of the successful

termination. The complexity of Algorithm 5 is O(p) where p
is the number of active containers.

IV. EXPERIMENTAL STUDIES

The experimental set up, the scenarios used for evaluating

the fairness strategies, and the results obtained from the

experimental studies are presented in this section.

Experimental Setup - The experimental hardware platform

and the evaluation scenarios are considered.

1) Experimental Platform: : The experimental setup for the

proposed fair scheduler includes (i) a cloud virtual machine

(VM) that uses an eight core Intel Xeon CPU at 2.40 Ghz

44

Authorized licensed use limited to: Newcastle University. Downloaded on February 17,2021 at 14:39:38 UTC from IEEE Xplore. Restrictions apply.

TABLE II: No. of job requests per client based on a gaussian

distribution

Client A B C D E F
No. of job requests 15 45 90 90 45 15

processor and 16 GB RAM running Ubuntu 16 LTS, (ii) an

edge resource that is an Odroid C2 single board computer that

has ARM Cortex-A53 (ARMv8) 1.5 Ghz quad core CPUs, 2

GB DDR3 SDRAM, running Ubuntu 16.04. A 16 GB microSD

card is used to install the OS and the software is developed

in Python 3.5. SQLite 3.11 is used for the database required

for the job entries. Docker 3.6 is used for the containers.

2) Workload distribution scenarios: The experiments as-

sume six clients that can make job requests. The jobs sub-

mitted to the scheduler may be assigned the following three

priorities: (i) Priority level 1 (PL1), which is the lowest priority

that can be assigned to a job. Jobs with this priority occupy

15% of the hardware resources, (ii) Priority level 2 (PL2),

which is a regular priority and jobs with these priority occupy

35% of the hardware resource on the edge, and finally (iii)

Priority level 3 (PL3), which is the highest priority and jobs

with this priority occupy 50% of the hardware resource.

Three scenarios using the above priorities are considered

for evaluating the scheduling strategies:

(i) Scenario 1 - Equal job distribution: each client requests

50 jobs comprising 17 PL1 and PL2 requests and 16 PL3 in

a testing window of one hour.

(ii) Scenario 2 - Random job distribution: each client

requests up to a maximum of 50 jobs generated at random time

intervals. There is no prior knowledge of the rate of arrival

of jobs. The results will be evaluated on the amount of jobs

executed per client and for each priority as indicated above.

(iii) Scenario 3 - Gaussian job distribution: assuming there

are six clients, the clients make jobs as per a gaussian

distribution as shown in Table II. The total requests are made

within a one hour window. Clients A and B start making

requests in the second half of a one hour window. Clients

C and D make requests continuously during the test window.

Clients E and F make their last requests at the beginning of

the test window. Priorities are randomly assigned to the jobs.

3) Assumptions: In this paper, we make the following four

assumptions for the experimental studies: (i) The scheduling

strategies operate for a single Edge resource. The execution

of the scheduling strategies on multiple Edge resources will

be considered in the future. (ii) Each job requires the same

amount of CPU and memory resources on an Edge node.

This is assumed since we use synthetic workloads to evaluate

the feasibility of EFS. To change the resource allocation for

individual incoming job requests, the corresponding data for

each job will need to be included in a configuration file of

EFS. (iii) Each individual job does not execute for more

than 10 minutes on the Edge node. This is assumed because

workloads offloaded from the Cloud to the Edge are not

anticipated to be long running [23]. (iv) EFS has three priority

levels for jobs as considered above. The priorities in the

Fig. 2: Overheads observed for the fair scheduling strategies

with respect to the number of job entries

experiments presented aim to highlight how priorities are taken

into account. Additional priorities can be defined in EFS.

Results - The results obtained from the experimental studies

are organised as follows. Firstly, the overheads of the schedul-

ing strategies are considered. Next, the results for the different

scenarios considered above, namely for equal, random and

Gaussian job distributions, are presented. The results highlight

the number of job requests of each client serviced and the per-

centage of jobs executed based on priorities by the scheduler.

4) Overheads: The overheads associated with each

scheduling strategy are firstly considered. A key contributing

factor to overheads are the database operations to manage the

job history, which increases as more entries are added to the

job history. The overheads obtained for up to a million entries

in the job history are shown in Figure 2.

It is immediately observed that the hybrid scheduling strat-

egy has the largest overhead of 2.8 seconds for a job history

of a million entries. This is because the number of database

look-ups in the job history is twice when compared to the

other strategies. The Client Fair (CF) and Priority Fair (PF)

strategies both have an overhead of approximately 1.5 seconds

(they require only a single look-up). The First Come First

Serve (FCFS) strategy has constant overhead of 0.015 seconds

as it retrieves the oldest entry in the job queue.

If it is assumed that the time between scheduling jobs is

in the order of minutes, then the current overheads would not

significantly impact scheduling. The results above are obtained

on a single board computer, which in the experimental set up

is an Edge node. The overheads can be reduced further if there

are additional resources available for scheduling on the edge.

5) Scenario 1 - Equal job distribution: Figure 3a and

Figure 3b show the number of jobs and the percentage of

jobs executed based on priorities when each client makes an

equal number of job requests. The FCFS strategy does not

schedule jobs in a fair manner as it selects the first job request

and executes it. If one client made a large number of requests

during the testing window, then a large proportion of jobs from

this client would be executed. No job requests from Clients D,

E, and F were satisfied. Although PL3 is the highest priority

more jobs from PL1 are executed than PL3.

In relation to the client fair strategy it is observed at the end

of the testing window that an equal distribution was achieved

among all clients. In the client fair strategy, no jobs with

priority PL3 were executed. If we consider the priority fair

45

Authorized licensed use limited to: Newcastle University. Downloaded on February 17,2021 at 14:39:38 UTC from IEEE Xplore. Restrictions apply.

strategy, then a larger proportion of jobs from Client A were

executed compared to the others; there is a steady decrease

in the number of jobs executed and no jobs from Client E or

Client F were executed. However, jobs with higher priorities

were executed; 50% of jobs with PL3 were executed, when

compared to the 15% and 35% of jobs with PL1 and PL2

respectively. Both the client fair and priority fair strategy have

either not executed jobs of clients or have completely executed

jobs with certain priorities. This is not ideal for a scheduler.

Considering the hybrid strategy for which it is observed

that jobs from all clients were executed and jobs with a

higher priority (PL3) have been executed in larger proportions

when compared to PL1 and PL2. This strategy achieves the

combined benefit of the client fair strategy (all clients executed

their jobs) and of the priority fair strategy (larger number of

jobs with higher priorities are executed).

6) Scenario 2 - Random job distribution: Figure 4a and

Figure 4b show the number of jobs executed and the per-

centage of jobs executed based on priorities when each client

makes a random number of job requests. It is observed that

there is more similarity in the outcome for different strategies.

This may be because the random pattern generated for each

client over time is the same. In the FCFS strategy, Client A

has made more requests than other clients and hence a larger

number of jobs is executed. Client F has fewer jobs executed.

An equal percentage of jobs with different priorities have been

executed. This would naturally be unfair given that higher

priorities have not been executed more frequently.

Considering the client fair strategy, it is observed that the

number of jobs executed are nearly the same for all clients. The

percentage of jobs executed for different priorities is nearly the

same as the FCFS strategy. Although the FCFS and client fair

strategies execute nearly equal number of jobs from all clients,

they do not account for jobs of different priorities. The priority

fair strategy on the other hand executes more jobs with higher

priorities, but at the same time has a larger variation in terms

of the number of jobs executed for different clients.

The hybrid strategy (similar to Scenario 1), shows that an

equal number of jobs are executed for different clients with

a smaller variation, and also executes more number of jobs

with a higher priority. When compared to other approaches,

the hybrid strategy is more fair for all clients and priorities.

7) Scenario 3 - Gaussian job distribution: The requests in

Scenario 3 are distributed less evenly both in terms of the

job requests and the time when the requests arrive. Figure 5a

and Figure 5b shows the number of job requests scheduled

and the percentage of jobs executed for different priorities.

Only a small proportion of jobs from Client A and Client

B are scheduled in the FCFS strategy. Similarly, FCFS is

less capable of discriminating between different priorities;

eventually fewer jobs with higher priorities are executed.

The client fair strategy demonstrates more fairness across

jobs executed for all clients. However, with regard to the

percentage of jobs with different priorities, it is similar to

FCFS; fewer jobs with higher priorities are executed. The

priority fair strategy in contrast to client fair executes very

few jobs of Client A and Client B while executing a higher

proportion of Client C, Client D and Client E. A higher

proportion of jobs with higher priorities are executed.

The hybrid strategy achieves a better balance, similar to

observations for previous scenarios. However, even with the

best approach considered, more than 50% of the jobs of

Client C and Client D are not executed (the Odroid-C2

cannot accommodate all the jobs). Further optimisations will

be required to maximise the throughput of the scheduling

strategies, which is not considered in this paper.

8) Summary: It is observed that EFS is suitable for hard-

ware limited Edge resources since there are negligible over-

heads for up to a 100,000 past job entries. For a million job

entries and beyond the overhead is 2.8 seconds for the hybrid

strategy. This could be ignored if the time between scheduling

jobs is in the order of minutes. For any job distribution, the

hybrid strategy has superior performance by combining the

benefits of both the client fair and priority fair strategies.

V. RELATED WORK

Scheduling is commonly explored in distributed systems to

find a mapping between job requests and resources. Numerous

strategies are proposed for clusters [12], clouds [13], and

more recently for cloud-edge (Fog) systems [14]. The aims

of scheduling are load balancing [24], maximising resource

utilisation [25] and energy efficiency [26], optimising execu-

tion costs [27], and maximising performance [28].

The need for scheduling arises when services need to be

successfully offloaded. In edge computing research, services

can be offloaded either from the user devices to the edge or

from the cloud to the edge [4]. In the case of offloading from

user devices to edge resources, there is recent research that

develops mathematical models for reducing the job response

time, which is defined as the time between releasing a job to

an edge node and the arrival of results on the user-device [29].

The scheduling strategies required for offloading from the

user devices to the edge is vastly different from offloading

services from the cloud to the edge. The assumptions are

different in both cases. For example, it is unlikely that the

same user device would need to offload multiple jobs at the

same time. In the research presented in this paper, the focus

is on the scheduling strategy required when offloading occurs

from the cloud to the edge. The same cloud server (client) can

offload multiple short running services (jobs) on to the client.

In addition, it is anticipated that edge resources will be

resource limited when compared to clouds. Therefore, if there

is a large influx of job requests from clients (cloud servers for

offloading), then given the limitation of resources there will be

competition for resource allocation, which requires that there is

fairness in the scheduling strategies. Existing edge scheduling

research does not consider this, but is the focus of this paper.

A score-based edge scheduling algorithm for video stream-

ing is proposed to determine the best mapping between ser-

vices and resources [14]. Cloud solutions and content delivery

networks are considered, but assumes that edge resources are

always available and do not consider fairness.

46

Authorized licensed use limited to: Newcastle University. Downloaded on February 17,2021 at 14:39:38 UTC from IEEE Xplore. Restrictions apply.

(a) No. of jobs executed by each client (b) Percentage of jobs executed based on priority

Fig. 3: Jobs executed on each client and based on priority in Scenario 1

(a) No. of jobs executed by each client (b) Percentage of jobs executed based on priority

Fig. 4: Jobs executed on each client and based on priority in Scenario 2

(a) No. of jobs executed by each client (b) Percentage of jobs executed based on priority

Fig. 5: Jobs executed on each client and based on priority in Scenario 3

Sample-based scheduling is a technique for load balancing.

For this, multiple edge resources are probed to find the existing

workload before scheduling another application [24]. Energy

efficiency is a parameter considered for scheduling. This is

explored in the context of edge micro-clouds [26].

Application priorities are used for edge scheduling by

assuming all job requests can be scheduled [27]. Priorities are

used for optimising against response time and overall running

costs. However, fairness of the jobs is not considered.

Evolutionary approaches to scheduling tasks on the edge

is proposed, specifically bag of task applications [28]. The

parameter optimised is application performance and overall

costs. Large amounts of computational resources are required

to run the evolutionary approaches and are hence unsuitable to

be run on the edge. The scheduler of an edge node will need

to be located outside the node or will need to have significant

amount of resources. The scheduling strategies presented in

this paper operate from within resource constrained resources

and ensures fairness to clients submitting jobs to the edge.

Containers are explored for scheduling on the edge given

that they are lean deployment mechanisms [25]. Although

resource utilisation is maximised, fairness is not considered.

Existing research considered in this section implicitly as-

sumes that all job requests made for execution on an edge

resource can be successfully scheduled; because resources are

available whenever a request is made. This paper makes the

assumption that not all incoming job requests from a cloud

server can be scheduled on the edge node. This is because

edge resources are resource constrained and therefore there

will be significant competition to gain access to these edge

resources. Existing research used for scheduling on the edge

does not consider fairness among the clients or the priorities of

47

Authorized licensed use limited to: Newcastle University. Downloaded on February 17,2021 at 14:39:38 UTC from IEEE Xplore. Restrictions apply.

the incoming jobs. Given a number of clients that own different

jobs, the scheduler proposed in this paper determines which

jobs of a client can be scheduled on to an edge node to ensure

fairness among all clients while considering their fairness. The

research presented in this paper is concerned with the fairness

of the scheduling strategy on a single edge resource.

VI. CONCLUSIONS

In this paper, the problem of scheduling jobs of different

clients from the cloud on a single edge server is presented.

Fair scheduling in edge computing is not explored properly

although it has been investigated for traditional computing

systems. It is essential that fair scheduling is revisited for

edge computing to meet the paradigm specific challenges. This

paper presented four scheduling strategies, including the first

come first serve, client fair, priority fair, and hybrid. Although

each strategy has pros and cons, the hybrid approach appears

to be more suitable as it combines fairness both in terms of

the clients and the (given) priorities of jobs to be offloaded.

The strategies were tested in three different workload profiles

having equal, random and Gaussian job distributions in a test

bed comprising a single board computer as an edge resource.

The current research is a first attempt towards fairness in

Edge computing and considers single Edge nodes. Scheduling

across multiple Edge nodes can enable load balancing (not

considered in this paper). In addition, synthetic workloads with

similar execution times are considered. Workloads of varying

execution time will need to be considered.

In the future, it will be formally shown that: (i) the client

fair strategy asymptotically serves equally the clients, (ii) the

asymptotic serving percentages of the priority fair approach

coincide with the preassigned priorities. Further, we aim to

address the challenge of fairness in scenarios with the choice

to offload to multiple edge servers.

ACKNOWLEDGMENT

B. Varghese is supported by a Royal Society Short Industry

Fellowship and by Rakuten Mobile, Japan.

REFERENCES

[1] B. Varghese and R. Buyya, “Next Generation Cloud Computing: New
Trends and Research Directions,” Future Generation Computer Systems,
vol. 79, no. 3, pp. 849–861, 2018.

[2] M. Satyanarayanan, “The Emergence of Edge Computing,” Computer,
vol. 50, no. 1, pp. 30–39, 2017.

[3] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge Computing: Vision
and Challenges,” IEEE Internet of Things Journal, vol. 3, no. 5, pp.
637–646, 2016.

[4] C. H. Hong and B. Varghese, “Resource Management in Fog/Edge
Computing: A Survey on Architectures, Infrastructure, and Algorithms,”
ACM Computing Surveys, 2019.

[5] N. Wang, B. Varghese, M. Matthaiou, and D. S. Nikolopoulos,
“ENORM: A Framework for Edge Node Resource Management,” IEEE
Transactions on Services Computing, 2017.

[6] Z. Chen, L. Jiang, W. Hu, K. Ha, B. Amos, P. Pillai, A. Hauptmann, and
M. Satyanarayanan, “Early Implementation Experience with Wearable
Cognitive Assistance Applications,” in Workshop on Wearable Systems
and Applications, 2015, pp. 33–38.

[7] T. H. Luan, L. Gao, Z. Li, Y. Xiang, G. Wei, and L. Sun, “Fog
Computing: Focusing on Mobile Users at the Edge,” arXiv preprint
arXiv:1502.01815, 2015.

[8] P. Liu, D. Willis, and S. Banerjee, “ParaDrop: Enabling Lightweight
Multi-tenancy at the Network’s Extreme Edge,” in IEEE/ACM Sympo-
sium on Edge Computing, 2016, pp. 1–13.

[9] E. Cuervo, A. Balasubramanian, D. Cho, A. Wolman, S. Saroiu,
R. Chandra, and P. Bahl, “MAUI: Making Smartphones Last Longer
With Code Offload,” in International Conference on Mobile Systems,
Applications, and Services, 2010, pp. 49–62.

[10] S. Deng, L. Huang, J. Taheri, and A. Y. Zomaya, “Computation
Offloading for Service Workflow in Mobile Cloud Computing,” IEEE
Transactions on Parallel & Distributed Systems, vol. 26, no. 12, pp.
3317–3329, 2015.

[11] N. D. Doulamis, A. D. Doulamis, E. A. Varvarigos, and T. A. Varvarigou,
“Fair Scheduling Algorithms in Grids,” IEEE Transactions on Parallel
and Distributed Systems, vol. 18, no. 11, pp. 1630–1648, 2007.

[12] M. Schwarzkopf, A. Konwinski, M. Abd-El-Malek, and J. Wilkes,
“Omega: Flexible, Scalable Schedulers for Large Compute Clusters,” in
8th ACM European Conference on Computer Systems, 2013, pp. 351–
364.

[13] G. Lee, B. G. Chun, and R. H. Katz, “Heterogeneity-aware Resource
Allocation and Scheduling in the Cloud,” in 3rd USENIX Conference
on Hot Topics in Cloud Computing, 2011.

[14] V. Scoca, A. Aral, I. Brandic, R. D. Nicola, and R. B. Uriarte,
“Scheduling Latency-Sensitive Applications in Edge Computing,” in 8th
International Conference on Cloud Computing and Services Science,
2018, pp. 158–168.

[15] N. Wang, M. Matthaiou, D. S. Nikolopoulos, and B. Varghese,
“DYVERSE: dynamic vertical scaling in multi-tenant edge
environments,” CoRR, vol. abs/1810.04608, 2018. [Online]. Available:
http://arxiv.org/abs/1810.04608

[16] G. Wei, A. V. Vasilakos, Y. Zheng, and N. Xiong, “A Game-theoretic
Method of Fair Resource Allocation for Cloud Computing Services,”
The Journal of Supercomputing, vol. 54, no. 2, pp. 252–269, 2010.

[17] W. Wang, B. Liang, and B. Li, “Multi-resource Fair Allocation in Het-
erogeneous Cloud Computing Systems,” IEEE Transactions on Parallel
and Distributed Systems, vol. 26, no. 10, pp. 2822–2835, 2015.

[18] Z. Hao, E. Novak, S. Yi, and Q. Li, “Challenges and Software Archi-
tecture for Fog Computing,” IEEE Internet Computing, vol. 21, no. 2,
pp. 44–53, 2017.

[19] B. Varghese, N. Wang, S. Barbhuiya, P. Kilpatrick, and D. S. Nikolopou-
los, “Challenges and Opportunities in Edge Computing,” in Proceedings
of the IEEE International Conference on Smart Cloud, 2016, pp. 20–26.

[20] L. F. Bittencourt, J. Diaz-Montes, R. Buyya, O. F. Rana, and
M. Parashar, “Mobility-Aware Application Scheduling in Fog Comput-
ing,” IEEE Cloud Computing, vol. 4, no. 2, pp. 26–35, 2017.

[21] A. Singh, N. Auluck, O. Rana, A. Jones, and S. Nepal, “RT-SANE:
Real Time Security Aware Scheduling on the Network Edge,” in 10th
International Conference on Utility and Cloud Computing, 2017, pp.
131–140.

[22] J. Kay and P. Lauder, “A Fair Share Scheduler,” Communications of the
ACM, vol. 31, no. 1, pp. 44–55, 1988.

[23] M. Tortonesi, M. Govoni, A. Morelli, G. Riberto, C. Stefanelli, and
N. Suri, “Taming the IoT Data Deluge: An Innovative Information-
centric Service Model for Fog Computing Applications,” Future Gener-
ation Computer Systems, 2018.

[24] L. Lin, P. Li, J. Xiong, and M. Lin, “Distributed and Application-Aware
Task Scheduling in Edge-Clouds,” in 14th International Conference on
Mobile Ad-Hoc and Sensor Networks, 2018, pp. 165–170.

[25] L. Yin, J. Luo, and H. Luo, “Tasks Scheduling and Resource Allocation
in Fog Computing Based on Containers for Smart Manufacturing,” IEEE
Transactions on Industrial Informatics, vol. 14, no. 10, pp. 4712–4721,
2018.

[26] S. Mendes, J. S. ao, and L. Veiga, “Oversubscribing Micro-clouds with
Energy-aware Containers Scheduling,” in 34th ACM/SIGAPP Sympo-
sium on Applied Computing, 2019, pp. 130–137.

[27] T. Choudhari, M. Moh, and T. S. Moh, “Prioritized Task Scheduling
in Fog Computing,” in Annual ACM Southeast Conference, 2018, pp.
22:1–22:8.

[28] H. T. T. Binh, T. T. Anh, D. B. Son, P. A. Duc, and B. M. Nguyen,
“An Evolutionary Algorithm for Solving Task Scheduling Problem in
Cloud-Fog Computing Environment,” in 9th International Symposium
on Information and Communication Technology, 2018, pp. 397–404.

[29] H. Tan, Z. Han, X. Li, and F. C. M. Lau, “Online Job Dispatching
and Scheduling in Edge-Clouds,” in IEEE Conference on Computer
Communications, 2017, pp. 1–9.

48

Authorized licensed use limited to: Newcastle University. Downloaded on February 17,2021 at 14:39:38 UTC from IEEE Xplore. Restrictions apply.

