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ABSTRACT
WedemonstrateAHOM, a system that canActivelyObserveHazards
via Monitoring Social Media Streams. AHOM proposes an active
way to include the human in the loop of hazard information ac-
quisition for social media. Dierent from state of the art, it sup-
ports bi-directional interaction between social media data process-
ing system and social media users, which leads to the establish-
ment of deeper and more accurate situational awareness of hazard
events. We demonstrate how AHOM utilizes Twitter streams and
bi-directional information exchange with social media users for
enhanced hazard observation.
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1 INTRODUCTION
Eective response [1, 3] to crises and hazard events such as land-
slides, oods, res, hurricanes, tsunamis, and man-made hazards is
dependent on the availability of historical data as well as on the ef-
fective real-time integration and utilization of data streaming from
social media feeds (such as Facebook, Twitter, and Weibo). How-
ever, the existing social media data processing and/or acquisition
methods are solely based on Machine Learning (ML) and Natural
Language Processing (NLP) classiers, while lacking the capabil-
ity to include the human experts who can contribute to the data
collection and processing loop in the real-time (i.e., while hazard
event is unfolding).

This leads to following drawback: the information extracted by
pre-dened ML and NLP classiers may miss the information about
antecedent hazards that leads to full-edged disaster. To illustrate
this shortcoming, let us consider the following real-world example
from our research project (http://www.landslip.org/) where a twit-
ter user posts a message to report hazards such as leaning utility
poles, trees cracking, or collapsed road beds in their village. Given
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these events, the social media data analysis system can potentially
predict the likelihood of the occurrence of a more serious hazard,
such as landslide, if some further contextual information can be
collected from the Twitter user (human in the loop) such as the
location of the village and whether there have been rainfall and
ooding events in the past few hours/days.

In order to study how the social media users and human experts
can more actively contribute to data analysis (collection and pro-
cessing) loop for natural hazard response and planning, we develop
the AHOM system, which has the following unique features that
dierentiate it from previous social media data analysis systems.
Human in the loop AI system. To enable bi-directional interac-
tion with the social media users, AHOM uses a novel ontology [7],
namely the Landslip Ontology (LO), that abstracts the landslide
experts’ knowledge showing the relations among landslip, land-
slip warning signs, and other potential occurrence of hazards. This
enables a new generation of interaction between data processing
systems and social media users, based on various “what if” scenar-
ios modeled by the ontology-based data integration and querying
engine. This way the exhaust of social media is used to develop
more deep situational awareness of disaster events.
Integrative data management pipeline. As a proof of concept,
we develop a social media data processing pipeline (systems) which
comprises of a Stream processing engine (Kafka), NoSQL data-
base (Elastic search), Natural Language Processing (NLP) engine
(spaCy1), and a novel Landslip Ontology for data integration and
querying (an Ontology-based data integration and querying (Triple-
store) engine). While Kafka and Elastic search are capable of accom-
modating real-time and historical social-media feeds respectively.
spaCy is used and interacted with Kafka stream processing APIs,
passively extracting information from social media platforms in
real-time. LO , which is hosted in an ontology database, Triplestore,
enables the generation of automatic and interactive follow-up ques-
tions based on various “what if” scenarios modeled by the ontology.
A running version of our system is available at GitHub2, and the
live demo is available at here3.

2 SYSTEM OVERVIEW
2.1 System architecture
Essentially, AHOM is a loosely-coupled run-time system that allows
the human experts to participate in the information acquisition. As
shown in Figure 1, there are four main components in AHOM: Stor-
age system, Stream processing,Humanmachine interaction
and AHOM API. First, social media data streams from various

1https://spacy.io/
2https://github.com/ncl-iot-team/active-hazard-monitoring
3https://bit.ly/2V9MkG4
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Figure 1: AHOM architecture

sources are injected into the Storage system where Apache Kafka
is used to

consume the input streams. Next, the Stream processing com-
ponent applies a set of machine learning models (mainly NLP mod-
els) to process the injected streams and the outputs of the models
are stored in an Elastic Search Database for further queries. The
machine learning models are containerized as microservices that
are easy to plug-in and plug-o to AHOM via the Kafka publish/sub-
scribe message system. The details of each machine learning model
are illustrated in §2.2. When the pre-dened antecedent hazard
events are detected and the number of the detected events exceeds
a threshold, theHumanmachine interaction framework utilizes
the LO that we developed in [7] to strengthen the awareness of
the situation that domain experts and/or the hazard managers may
seek further information from the social media users based on au-
tomated follow-up questions generated by our system (see §2.3).
Thus, the higher resolution information particularly interested by
human experts can be collected from users’ replies with a few iter-
ations. Finally, AHOM API provides a dashboard to visualize the
information of the detected events, extracted from massive social
media data.

2.2 Data processing pipeline
In this section, we discuss the details of each machine learning
model and its execution workow. First, the data streams are fed
to User Classiers that identify who is posting this message. In this
demo, we only consider the classication of two type of users: one
is an ocial account such as Meteorological Oce; the other is for
normal users. In general, the information provided by ocial ac-
counts is more reliable compared with normal users, but the normal
users can provide richer information. Since Twitter and Facebook
already provide the user information, we use the Twitter handle to
classify the users based on a dictionary. Next, the Event Classiers
are used to identify whether a message relates to landslide hazard
and antecedent hazard events (i.e., warning signs). These classiers
are developed by using spaCy a NLP framework. To this end, we
collect a small amount of labeled data and then use the dataset to
retrain spaCy’s convolutional neural network (CNN) models [5, 8]
to improve the accuracy of detecting events (these models will also
be used to support the Human machine interaction in §2.3). Obtain-
ing the geolocation information from the mentions in the message
is also essential for analyzing landslides. This task consists of two
steps: Information Extraction and Location Identication. The Infor-
mation Extraction component aims to extract the named entities of

a message via en_core_web_lgmodel (available on spaCy), a CNN
model trained on OntoNotes[4]. These extracted named entities are
the inputs of the Location Identication that classies the named
entities as including geolocation information or not. If yes, these
geo-names are converted to geo-coordinates by OpenStreetMap
(OSM) datasets 4 using geocoding method5. A single geo-name may
have multiple entries in the OSM dataset. For this demo purpose we
take the rst entry from the OSM dataset. As future work we will
seed the module with the location of interest. Finally, all the outputs
are published to Kafka and stored in Elastic Search Database for
further analysis.
Scalability. Data processing pipeline runs on Apache Kafka[6]
which provides parallelism using data partitioning and consumer
groups. In the demonstration system, for the Twitter topic, we used
3 partitions with the Twitter handle as the partition key. The system
can be scaled easily by increasing the number of partitions. The
number of workers for each processing step in the data processing
pipeline can be scaled up to the number of partitions for the given
topic. Kafka cluster consists of multiple brokers and a degree of
replication ensuring scalability and resilience.
NLP model accuracy evaluation. In this demo, we trained our
models with a small dataset of 5000 tweets. The data is collected
using Twitter streaming API using keywords landslide and ood.
Wemanually labeled the dataset in two regards: 1) we labeled tweets
related to landslide and its antecedent hazard events; 2) for each
tweet, we extracted the geolocationnamed entities e.g., country,
state, street etc. The trained models have very good accuracy, where
the Event detection model only for landslide hazard achieves 92%
accuracy and the Geolocation extraction model extracts geolocation
named entities with 87% accuracy.

2.3 Human machine interaction
Key idea. Based on input obtained from domain experts, LO is a
knowledge model representing information about natural hazards,
including hazards such as landslide, ood, rockfall, and earthquake;
hazard warning signs such as rainfall and leaning utility poles; and
observers such as social media users. The actual events detected or
collected from social media can be mapped to the LO . LO , together
with the actual events, acts as a knowledge base that can be queried
and used for decision making. Based on the mapping, the “hot
zone” of the knowledge base can be identied, which represents
information that is of special interested to the decision makers and
human experts. Next, the missing knowledge in this “hot zone” can
be used to generate the follow-up questions for social media users
to obtain further contextual information vital for decision making.

To this end, we develop a framework of human-machine in-
teraction based on LO and the knowledge base discussed above
and shown in Figure 1. This framework utilizes machine learn-
ing techniques implemented in the stream processing component
to understand and extract landslide-related information from a
large number of social media users and then proactively acquire
the missing landslide related information from specic users. The
framework consists of three main steps.

4https://wiki.openstreetmap.org/wiki/Downloading_data
5https://nominatim.org/
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Figure 2: Humanmachine interaction framework and its ex-
ecution ow

MessageClassication—event classiers developed in the stream
processing component are utilized to collect the tweets related to
the context of landslide hazard and landslide warning signs.
Information Extraction — allows the machine to extract actual
contents from a tweet using the NLP techniques. For example, we
use the location identier to extract the geolocation information.
The essential information for landslide events extracted from the
social media includes location, time and warning signs. This in-
formation will be used in the next process to investigate missing
pieces of landslide related information.
Semantic Querying — provides more comprehensive information
about events for decision making. In AHOM, we present three types
of information using NLP techniques and ontology based querying:
i) essential information about an event (such as location, time, and
observation of events), ii) warning signs to indicate potential occur-
rence of landslides, and iii) potential occurrence of other hazards
that could act as triggers for landslide. The aim is to provide as
much relevant information as possible to support human experts in
making informed decisions. AHOM uses LO , to provide information
about warning signs and other related hazards to enable human
experts to predict the likelihood of the occurrence of landslides with
increasing certainty. As can be seen from Figure 2, vital information
about warning signs and related hazards is obtained from LO .

We use the following example to explain the process depicted in
Figure 2. Using NLP techniques, it can be determined that a user
has tweeted about a leaning pole (step 1 in Figure 2). The system
then seeks further clarication from the user by asking if they have
noticed or observed anything else such as rainfall (step 2). The
observations from the user’s replies are extracted (step 3) and fed
into LO to determine the relation of these observations (leaning
pole and rainfall) with landslide and also to extract further relevant
information. For each observation extracted from the tweet and
the user’s subsequent replies, SPARQL query [2] is used to ask the
LO whether it is an indicator (warning sign) for landslide (natural
hazard) (step 4). The shortened query is presented below:

ASK { ? o b s e r v a t i o n : i sWarn ingS ignFor ? l a n d s l i d e }

If the answer to the query is ‘true’ (yes), then the information
about the warning sign is returned to the human expert (step 5).
For example, in this case, the leaning pole is a warning sign for
landslide as modeled in the LO and hence the answer would be
true. If, however, the answer obtained is ‘false’ (no) then for each
observation in question, LO is further queried to determine if the
observation is an indicator for any other hazard(s). For example,
since rainfall is not by itself an indicator of landslides according
to the relationship modeling in LO , the answer obtained for the
above query for rainfall would be ‘false’. In this case, the following
question is asked of LO to determine if rainfall is an indicator of
any other hazard (step 6):

SELECT ? hazard
WHERE { : R a i n f a l l : i sWarn ingS ignFor ? hazard }

If the query yields an answer (step 7), which in this case would be
ood and rockfall, then follow-on questions are asked of the LO
about the hazards identied. In this example, the questions would
be whether ood and/or rockfall can trigger landslides (step 8):

ASK { : F lood : t r i g g e r s ? l a n d s l i d e } and

ASK { : R o c k f a l l : t r i g g e r s ? l a n d s l i d e }

If the answer is ‘true’, then the information about the type of hazard
is returned to the human expert (step 10). In parallel with step 8,
the user is also asked whether the hazard(s) (obtained as answer to
the query in step 7, which in this example are ood and rockfall) are
occurring or have occurred in their location (step 9). If the answer
is ’true’, then this information is presented to the human expert
(step 10). Thus, in this example where the hazard of interest is
landslide, in addition to the location and time of each observation,
the following critical information is presented to the human expert
with the help of LO : i) Leaning pole has been observed, which is a
warning sign for the occurrence of landslides and ii) rainfall has
been observed, which is a warning sign for ood, which in turn can
trigger landslides. Further, the user has conrmed there is ooding
in their location (see §3.2).

The human expert thus receives information about possible indi-
cators or warning signs for a natural hazard as well as information
about other hazards that may eventually lead to the hazard in ques-
tion. This example demonstrates how rich semantic querying with
LO can help to identify further relevant information, which may
not have been otherwise directly available, thereby providing more
comprehensive knowledge that is essential for informed decision
making.

3 DEMONSTRATION
This section gives a demonstration of AHOM, with experiments
conducted with Twitter via its commercial APIs.

3.1 Experiment setup
The core parts of AHOM (i.e., Stream processing and Semantic query)
were implemented in the Python language, and deployed on an
Ubuntu server with 20 cores (Intel(R) Xeon(R) Silver 4114 CPU @
2.20GHz) and 64 GB memory. The Storage System was deployed
on another server with the same conguration. The Kafka cluster
was set up using Apache Kafka 2.12, the Elastic Search Database
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Figure 3: Execution pipeline

Figure 4: Screenshot of stream monitoring

Figure 5: Screenshot of Twitter interaction

and Knowledge Base were developed by using Elastic search 7.6 and
Stardog respectively.

3.2 Execution sequence
This subsection illustrates the execution sequence of our AHOM to
demonstrate its ease-of-use and support for disaster management
(see Figure 3).
Stream monitoring. The Twitter stream APIs are used to pull
tweets, using a set of subscribed keywords generated by landslide
experts, e.g., landslide, landslip and land movement etc [9] (see Step
1). Then, the user accounts are identied in Step 2. Step 3 leverages

the trained NLP models to classify landslide related events. If the
tweet is related, in Step 4 and 5, the geolocation name entities are
extracted (if they exist), via the models discussed in §2.2. Finally, all
processing results are stored in Elastic Search Database (Step 6) and
visualized in real-time as shown in Figure 4, where the size of cycle
represents the number of tweets i.e., the bigger size the higher the
number of tweets. Moreover, our system can monitor and visualize
over a dened geographical area. For example, the right side of
Figure 4) shows the number of tweets related to landslide within
a 200KM radius of Newcastle upon Tyne. If the number of tweets
exceeds the predened threshold (i.e., 50 in this demo), the system
will randomly select some tweets and ask some questions (see Step
7).
Semantic query. Figure 5 is a snapshot of the human-machine
interaction system in action. The series of questions posed here for
the user and the reasoning behind them is explained in Semantic
query in §2.3 with reference to Figure 2. The process described in
Figure 2 corresponds to steps 8 - 11 in Figure 3, which gives the
big picture view of the execution pipeline. These steps in Figure
3 represent the bidirectional interaction of the interaction engine
with LO (steps 8 and 9) and of the engine with the social media user
(steps 10 and 11).

4 CONCLUSION
Social media and other unstructured data are increasingly impor-
tant for natural hazard management by augmenting traditional data
sources used by, for example, landslide scientists. This demo paper
shows that our AHOM is able to process massive amounts of data
from social media to provide meaningful content to emergency
responders, planners and local and national decision makers. Addi-
tional benets accrue by enhancing the completeness of a dataset
through automated question-based information gathering which in
turn improves perceived trust and reliability in the data collected.
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