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Abstract—Big data processing systems, such as Hadoop and Spark, usually work in large-scale, highly-concurrent, and multi-tenant
environments that can easily cause hardware and software malfunctions or failures, thereby leading to performance degradation.
Several systems and methods exist to detect big data processing systems’ performance degradation, perform root-cause analysis, and
even overcome the issues causing such degradation. However, these solutions focus on specific problems such as stragglers and
inefficient resource utilization. There is a lack of a generic and extensible framework to support the real-time diagnosis of big data
systems. In this paper, we propose, develop and validate AutoDiagn. This generic and flexible framework provides holistic monitoring of
a big data system while detecting performance degradation and enabling root-cause analysis. We present an implementation and
evaluation of AutoDiagn that interacts with a Hadoop cluster deployed on a public cloud and tested with real-world benchmark
applications. Experimental results show that AutoDiagn can offer a high accuracy root-cause analysis framework, at the same time as
offering a small resource footprint, high throughput and low latency.

Index Terms—Online analysis, Outliers, Root-cause analysis, Big data systems, QoS, Hadoop, Performance
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1 INTRODUCTION

The rapid surge of data generated through sectors like
social media, financial services and industries has led to
the emergence of big data systems. Big data systems enable
the processing of massive amounts of data in relatively
short time frames. For instance, the Netflix big data pipeline
processes approximately 500 billion events and 1.3 petabytes
(PB) of data per day, further, during peak hours, it processes
approximately 11 million events and 24 gigabytes (GB) of
data on a per-second basis. Facebook has one of the largest
data warehouses in the world, capable of executing more
than 30,000 queries over 300 PB data every day. However,
the enormousness and complexity of the big data system
runs in heterogeneous computing resources, multiple tenant
environments, as well as has many concurrent execution of
big data processing tasks, which makes it a challenge to
utilize the big data systems efficiently and reliably[1]. For
example, Fig. 1 shows that the performance degrades at
least 10% when the resources are not utilized efficiently with
Setting 2.
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Fig. 1. Six big data applications are executed in a cloud-based Hadoop
cluster with two settings: 1) the input data and jobs are allocated in
the same node; 2) the input data and jobs are allocated in different
nodes. In Setting 2, the execution time of each application is delayed
by transmitting data across nodes.

To overcome this, it is imperative to continuously mon-
itor and analyze all available system resources at all times
in a systematic, holistic and automated manner. These re-
sources include CPU, memory, network, I/O and the big
data processing software components.

Most of the commercial [2][3][4] and academic big
data monitoring systems mainly focus on visualizing task
progress, and the system’s resource utilization [5]. How-
ever, they do not focus on the interaction between multiple
factors and performing root-cause analysis for performance
degradation [6][7]. Moreover, works such as [8], [9] aim to
find the best parameters to optimize the performance of
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big data processing systems, they do not focus on the root-
cause analysis that may indicate the viable reasons behind
performance degradation and may provide intuitions for
parameter tweaking.

Mantri [10] presents a systematic method that catego-
rizes the main reasons causing outliers in a big data system.
The authors’ work was focused on the MapReduce pro-
gramming framework in the Hadoop system; they do not
discuss how Mantri can be applied to other big processing
frameworks (e.g., Apache Spark1, and Apache Flink2). Gar-
raghan et al. [11] proposed an online solution to detect long-
tail issues in a distributed system. However, these solutions
were built for specific scenarios with much scope left for
analyzing a variety of problems that can exist in a large
scale big data processing system.

To the best of our knowledge, there is a lack of a generic
and comprehensive solution for the detection of a wide
range of anomalies and performance of root-cause analysis
in big data systems. Developing a general and extensible
framework for diagnosing a big data system is not trivial.
It requires well-defined requirements which could enable
the broader adoption of root-cause analysis for the big
data systems, flexible APIs to interact with an underlying
monitoring system and integration of multiple solutions for
detecting performance reduction problems while enabling
the automatic root-cause analysis. In this paper, we tackle
this research gap, and design and develop AutoDiagn to au-
tomatically detect performance degradation and inefficient
resource utilization problems, while providing an online
detection and semi-online root-cause analysis for a big data
system. Further, it is designed as a microservice architecture
that offers the flexibility to plug a new detection and root-cause
analysis module for various types of big data systems.

The contributions of this paper are as follows:

• An online and generic framework: We develop a general
framework called AutoDiagn which can be adapted
for the detection of a wide range of performance
degradation problems while pinpointing their root-
causes in big data systems.

• A case study: We develop a novel real-time stream
processing method to detect symptoms regarding
outliers in a big data system. After that, we develop
a set of query APIs to analyze the reasons that cause
the outlier regarding a task.

• A comprehensive evaluation: We evaluate the feasibility,
scalability and accuracy of AutoDiagn through a set
of real-world benchmarks over a real-world cloud
cluster.

The paper is organized as follows. The design require-
ments and idea are outlined in §2. In §3, we illustrate the
high-level system architecture. §4 presents a case study that
we implemented and the case study is evaluated in §5. §6
discusses the limitations of this paper and highlights our
further work . Before drawing a conclusion in §8, we discuss
the related work in §7.

1. https://spark.apache.org/
2. https://flink.apache.org/

2 REQUIREMENTS AND DESIGN IDEA

In this section, we analyze the key requirements of the
real-time big data diagnosis system, extracting the essential
features from the literature. Next, we present the key idea
of the framework design.

2.1 Fundamental prerequisite for diagnosing big data
processing systems

In order to design a generic framework for diagnosing big
data processing systems, we classified the fundamental re-
quirements of building a diagnosis system on such systems
as follows:

• Infrastructure monitoring: Collecting the informa-
tion about the underlying system, such as network
conditions, CPU utilization, memory utilization, and
disk I/O status.

• Task execution monitoring: Collecting the task infor-
mation, including execution time, progress, location,
location of its input data, input data size, output
data size, CPU/memory usage, and process state
(running, waiting, succeeded, failed, killed).

• Abnormal behavior or fault detection: Detecting
abnormal behaviors in big data processing systems,
such as slowing tasks, failed tasks, very high/low
resource usage, and experiencing very high response
time for the requests.

• Root-cause analysis: Finding the root cause of per-
formance reduction in big data processing systems,
such as the reasons why: tasks are slowing down,
resource utilization is low, the response time is high,
or when the network latency is high.

• Visualization: Visualizing the collected metrics and
the results of root-cause analysis of any failures caus-
ing performance reduction in the cluster with a user-
friendly interface in real-time.

2.2 Key design idea

Motivated by the above-mentioned requirements and in-
spired by medical diagnosis, we highlight the design idea
of root-cause analysis for big data processing systems as
shown Fig. 2, which aims to provide holistic monitoring
and root cause analysis for big data processing systems.
First, a set of Symptom Detectors is defined and developed in
Symptom Detection to detect the abnormalities of the big
system by processing collected system information stream
in real-time. Once a symptom (abnormality) is detected,
the Diagnosis Management may launch the corresponding
Diagnosers to troubleshoot the cause of the symptom. One
symptom may correspond to root causes. Finally, the deci-
sions are made based on the root-cause analysis results.

2.3 The generalizability of AutoDiagn

Modern big data processing systems consists of two main
types: Big data analytics (e.g., Hadoop, Spark) and Stream
processing (e.g., Flink, Spark Stream). Based on our de-
sign idea, our AutoDiagn is an independent framework
that can be deployed alongside existing big data cluster
management systems (e.g., Apache YARN), and ideally it

https://spark.apache.org/
https://flink.apache.org/


3

is suitable for root-cause analysis of any big data processing
system. However, for the scope of this paper and practi-
cal certainty, the implementation of AutoDiagn focuses on
debugging root causes of performance degradation (e.g.,
slow task execution time) in Hadoop due to faults such as
data locality, cluster hardware heterogeneity, and network
problems (e.g., disconnection). Although we have validated
the functionality of AutoDiagn in the context of Hadoop and
considering different classes of workload (e.g., WordCount,
Grep, TPC-H, TPC-DC, K-means clustering, PageRank), it is
generalizable to other big data processing systems executing
similar classes of workload.

3 AUTODIAGN ARCHITECTURE

Following the design idea laid out in §2, we introduce Auto-
Diagn, a novel big data diagnosing system. We first illustrate
the high-level system architecture and then describe the
details of each component. AutoDiagn is implemented in
Java and all source code is open-source on GitHub3.

3.1 Architecture overview
AutoDiagn provides a systematic solution that automati-
cally monitors the performance of big data systems while
troubleshooting the issues that cause performance reduc-
tion. Fig. 3 shows its two main components: AutoDiagn
Monitoring and AutoDiagn Diagnosing. AutoDiagn Monitoring
collects the defined metrics (logs) and feeds AutoDiagn Diag-
nosing with them in real-time. Once the abnormal symptoms
are detected by analyzing the collected metrics, a deeper
analysis is conducted to troubleshoot the cause of abnormal
symptoms.
AutoDiagn Monitoring. AutoDiagn Monitoring is a de-
centralized real-time stream processing system that collects
comprehensive system information from the big data system
(e.g., Hadoop Cluster). The Collected Metrics is a set of
pre-defined monitoring entities (e.g., CPU usage, memory
usage, task location, task status) used to detect the abnormal
symptoms. Moreover, the system information, required for
understanding the cause of detected abnormal symptoms,
is collected in this modular.
AutoDiagn Diagnosing. AutoDiagn Diagnosing is an event
based diagnosing system. First, the carefully crafted metrics
are injected into the Symptom Detection Engine which is a
real-time stream processing module to detect the abnormal
symptoms in a big data system. In this paper, we use
the outlier which is a common symptom for performance
reduction in a Hadoop cluster as a case study to demon-
strate the proposed framework. §4.1 illustrates the details
of technology that we developed for symptom detection.
Moreover, our system follows the principle of modular
programming; the new symptom detection method can be
easily plugged in. Diagnoser Plugins is a component for
trouble-shooting the reasons behind the detected symptom.
A set of Diagnosers is instantiated by the Diagnoser Manager
when their corresponding symptoms are detected. Then
the instantiated Diagnosers query a time series database to
obtain the required input and their outputs illustrate the
cause of the detected symptoms.

3. https://github.com/umitdemirbaga/AutoDiagn

3.2 AutoDiagn monitoring framework
AutoDiagn monitoring framework is a holistic solution for
continuous information collection in a big data cluster.
The framework needs to have a fast, flexible and dynamic
pipeline to transfer the collected data as well as a high per-
formance, large scale storage system. We now describe an
implementation of the framework for a big data computer
cluster, and the high-level system architecture is shown in
Fig. 4.
Information Collection. In each compute node, we develop
and deploy an Agent to collect real-time system information.
For the worker node, the Agent collects the usage of com-
puting resource via SIGAR APIs4, including CPU, memory,
network bandwidth, and disk read/write speeds. Moreover,
the Agent in the master node collects the usage of computing
resource as well as the job and tasks information. The Filter
is developed by using GSon Library5 to remove the less im-
portant information obtained from ResourceManager REST
API’s6, thereby reducing the size of data transmission. The
collected information is sent to RabbitMQ7 cluster which is
a lightweight and easy-to-deploy messaging system in each
time interval via Publisher.
Storage. The acquired information is time series data, we
therefore choose InfluxDB8 for data storage. InfluxDB is a
high performance, scalable and open source time series data
base which provides a set of flexible open APIs for real-time
analytics. The Consumer subscribes the related stream topics
from RabbitMQ and interacts with InfluxDB APIs to inject
the information to the data base.
Interacting with AutoDiagn Diagnosing. The information
required for symptom detection is directly forwarded and
processed in AutoDiagn diagnosing via a consumer. If a
symptom is detected, InfluxDB will be queried by AutoDi-
agn diagnosing for root-cause analysis. Finally, the analysis
results are sent back to the database to be stored.
User visualization. The user visualization allows the users
to have a visible way to monitor their big data system. We
utilize InfluxDB’s client libraries and develop a set of REST-
ful APIs to allow the users to query various information,
including resource utilization, job and task status, as well as
root cause of performance reduction.

3.3 AutoDiagn diagnosing framework
In this section, we discuss the core components of the
AutoDiagn Diagnosing framework (see Fig. 3), as well as the
interactions with each other and the AutoDiagn Monitoring
framework.
Symptom Detection Engine. The symptom detection en-
gine subscribes a set of metrics from the real-time streaming
system. §4.1 illustrates the technique that we developed
for outlier detection. This component follows microservices
architecture to which new symptom detection techniques
can be directly attached to our AutoDiagn, interacting with
other existing techniques to detect new symptoms.

4. https://github.com/hyperic/sigar
5. https://github.com/google/gson
6. https://hadoop.apache.org/docs/r3.2.1/hadoop-yarn
7. https://www.rabbitmq.com/
8. https://www.influxdata.com/

https://github.com/umitdemirbaga/AutoDiagn
https://github.com/hyperic/sigar
https://github.com/google/gson
https://hadoop.apache.org/docs/r3.2.1/hadoop-yarn
https://www.rabbitmq.com/
https://www.influxdata.com/
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Diagnoser Manager. The diagnoser manager is the core
entity responsible for selecting the right diagnosers to find
the reasons that cause the detected symptoms. Additionally,
the diagnoser manager is developed as a front-end com-
ponent, triggered by various detected symptoms (events)
via a RESTful API, exposing all diagnosing actions within
our framework. The API includes general actions such as
starting, stopping or loading a diagnoser dynamically, and
specific actions such as retrieving some metrics. Importantly,
the diagnoser manager is able to compose a set of diagnosers
to complete the diagnosing jobs that may require the coop-
eration of different diagnosers.

Diagnoser Plugins. The diagnoser plugin contains a set of
diagnosers; and a diagnoser is the implementation of the
specific logic to perform root-cause analysis of a symptom.
Each diagnoser refers to a set of metrics stored in a time
series database as the input of its analysis logic. Whenever
it is activated by the diagnoser manager, it will perform
an analysis, querying the respective metrics, executing the
analytic algorithm, and storing the results. §4.2 discusses the
algorithms to detect the outlier problems, for example, in a

Hadoop cluster. The diagnoser plugin is also designed as
a microservice architecture which has two advantages: i) a
new diagnoser can be conveniently plugged or unplugged
on-the-fly without affecting other components; ii) new root-
cause analysis tasks can be composed by a set of diagnosers
via RESTful APIs.

3.4 AutoDiagn diagnosing interfaces for Hadoop

AutoDiagn exposes a set of simple interfaces for system
monitoring, symptom detection and root-cause analysis.
Table 1 shows that two types of APIs are defined: high-
level APIs and low-level APIs. The high-level APIs consist
of Symptom Detection, Diagnoser and Decision Making.
The Symptom Detection APIs are a set of real-time stream
processing functions used to detect the defined symptoms
causing the performance reduction in the Hadoop system.
Each Diagnoser is a query or a set of queries, which aim
to find one of the causes of a symptom. For example,
QueryNonLocal() tries to find all non-local tasks within a
time interval, which is one of the reasons that causes an out-
lier. Finally, the Decision Making APIs are used to analyze
the results from each Diagnoser and make the conclusion.
These high-level APIs have to interact with the low-level
APIs (Information Collection) to obtain system information
including resource usage, and the execution information of
the big data system (e.g., ask and job status in a Hadoop
system). Based on this flexible design, users can define
and develop their own Symptom Detection, Diagnoser and
Decision Making APIs and plug them into AutoDiagn.

3.5 Example applications

We now discuss several examples for big data system root
cause applications using AutoDiagn API.

Outliers. Outliers are the tasks that take longer to finish
than other similar tasks, which may prevent the subse-
quent tasks from making progress. To detect these tasks,
the real-time stream query QueryOutlier() is enabled
in the Symptom Detection Engine. This function consumes
each task’s completion rate (i.e., progress) and the executed
time to identify the outlier tasks (detailed in §4.1). Next,
three APIs QueryNonlocal(), QueryLessResource()
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and QueryNodeHealth(), corresponding to three Diag-
nosers that are used to analyze the reasons causing the de-
tected symptom, are executed. QueryNonlocal() queries
whether the input data is allocated on the node on which
an outlier task is processed. In addition, QueryLessRe-
source() investigates whether outlier tasks are running
on the nodes that have less available resource. Moreover,
QueryNodeHealth() examines if an outlier task is the
task that is a restarted task due to the disconnected nodes
from the network. Finally, RootcauseOutlier() is used
to process the results from the three Diagnosers and make
the conclusion. All the APIs are shown in Table 1 and the
technical details are illustrated in §4.

Inefficient resource utilization. In our case this means that
some tasks are pending (or waiting) to be on worker nodes;
at the same time, some worker nodes are idle, e.g., low CPU
and memory usage. There are many reasons that cause this
issue, but here we consider two key causes: task heterogeneity
and resource heterogeneity. The type of tasks in a big data sys-
tem are various, including CPU intensive tasks, IO intensive
tasks and memory intensive tasks. However, the underlying
computing resources are typically equally distributed to
these tasks, thereby causing inefficient resource utilization.
The latter is caused by the heterogeneous underlying com-
puting resources due to the multiple concurrent processing
task environments and the queues are built on the saturated
nodes.

To detect the inefficient resource utilization in a big data
system, the real-time stream query QueryResourceU-
til() is used within a defined time interval. We com-
pute the mean and standard deviation of the usage re-
sources of the whole cluster. If the standard deviation
is far from the mean, we will further query whether
the tasks are queued on the nodes which have high
resource usage rates. If inefficient resource utilization
is detected, two Diagnosers, QueryOversubscribed()
and QueryDiskIOboundTasks(), which are the root-
cause analysis APIs shown in Table 1, are executed to

perform root-cause analysis. QueryOversubscribed()
checks the type of tasks queuing on the saturated nodes.
The QueryDiskIOboundTasks() checks whether the sat-
urated nodes have less available computing resource,
while processing the allocated tasks. The conclusion of the
cause of inefficient resource utilization is made in Root-
causeResInef().

3.6 Parallel execution
Following the key design idea, the diagnosers are triggered
by the corresponding detected symptom. However, we are
able to parallelize the execution of each symptom detector
and its diagnosers by partitioning the input data. For ex-
ample, if one symptom detector needs to process too many
data streams, we can use two of the same instances of the
symptom detector to process the data streams and aggregate
the results from two symptom detectors. The diagnoser can
follow the same strategy for parallel execution.

3.7 Reliability analysis
AutoDiagn follows the centralized design for data collec-
tion, which simplifies the implementation of the Symptom
Detection, Diagnosis Management and Decision Making. They
can easily obtain the required information from one place,
instead of interacting with the entire big data system. More-
over, the centralized design does not mean unreliability, due
to the high-availability of RabbitMQ. The RabbitMQ cluster
can overcome the node fail in the message queuing system
while ensuring scalability.

4 CASE STUDY

In the previous section, we have discussed that our frame-
work supports detection of multiple types of symptoms
(e.g., outliers, inefficient resource utilization). However, de-
tecting these symptoms is non-trivial; and each symptom
can be detected by using different algorithms with different
input metrics. In this section, we present a case study that
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TABLE 1
AutoDiagn diagnosing interface. See §3.4 for definitions and examples

Symptom Detection (High-level APIs) Description
QueryOutlier() Execute a Query that returns the list of outliers if any.
QueryResourceUtil() Execute a Query that returns the list of the worker nodes in which the computing resources are not uti-

lized effectively if any.
Diagnoser (High-level APIs) Description
QueryNonLocal() Execute a Query that return the list of non-local tasks if any.
QueryLessResource() Execute a Query that returns false if the cluster is not homogeneous in terms of having resource capacity (CPU/memory).
QueryNodeHealth() Execute a Query that returns the list of disconnected worker nodes in the cluster if any.
QueryOversubscribed() Execute a Query that returns the list of the oversubscribed tasks if any.
QueryDiskIOboundTasks() Execute a Query that returns the list of the disk- or IO-bound tasks if any.
Decision Making (High-level APIs) Description
RootcauseOutlier() Execute a Query that illustrate the main reason of the cause of the outlier.
RootcauseResInef() Execute a Query that illustrate the main reason of the cause of inefficient resource utilization.
Information Collection (Low-level APIs) Description
taskExecTime() Return the execution time since the task started in sec.
taskProgress() Return the progress of the running task as a percentage.
taskInput() Return the input data size of the running task in mb.
taskBlock() Return the block id this task process.
taskHost() Return the name of the node this task ran on.
taskCPUusage() Return the CPU usage of the task.
taskMemoryUsage() Return the memory usage of the task.
taskContainerCPU() Return the allocated CPU to the container this task ran on.
taskContainerMemory() Return the allocated memory to the container this task ran on.
blockHost() Return the names of the nodes that host the block.
pendingTasks() Return the number of the tasks waiting to be run.
nodeTotalCoreNum() Return the number of the CPU core number of the node.
nodeCPUUsage() Return the CPU utilization of the node.
nodeTotalMem() Return the total memory capacity of the node.
restartedTasks() Return the name of the restarted tasks due to nodes that got disconnected from the network.
nodeMemUsage() Return the memory utilization of the node.
nodeDiskReadSpeed() Return the disk read speed of the node.
nodeDiskWriteSpeed() Return the disk write speed of the node.
nodeUploadSpeed() Return the network upload speed of the node.
nodeDownloadSpeed() Return the network download speed of the node.

details the technology of detecting outliers and the root-
causes analysis for the detected outliers. The notations used
in this paper are summarized in Table 2.

TABLE 2
A summary of symbols used in the paper

Symbols Description
Jp Job progress
N Name of the task
Nl List of N
P Performance of the N
Pl List of P
O Progress of the N
Ol List of O
T Execution time of the N
Tl List of T
med The performance of median task
D Non-local tasks
Dl List of Non-local task
R Task running on the node with less resources
Rl List ofR
W Restarted tasks due to the nodes’ network failure
Wl List ofW
Sl List of outlier task
Sd Non-local outlier
Sdl List of Sd

Sr Outlier stemming from the resource variation
Srl List of Sr

Sw Outlier stemming from disconnected nodes
Swl List of Sw

F Factor value of 1.5 used to find the S

4.1 Symptom detection for outliers

Ananthanarayanan et al. [10] defined the outlier tasks’ run-
time to be 1.5 times higher than that of the median task
execution time; their method is based on the assumption
that all tasks are started at the same time and are the same
type (i.e., the same input data and the same processing
code), which is not suitable for real-time symptom detection,
because in a time interval the tasks may be submitted at
different times; the input data size of the tasks and the code
for tasks are not always the same. In this paper, we use
Performance (P) to measure the outlier as shown in Eq 1. O
represents the normalized value of the task progress in terms
of percent work complete, and T is the normalized value of
the task execution time.

P =
O
T

(1)

Eq 2 is used to normalize the O and T , where xmin and
xmax are the minimal and maximal values of the given
metrics (eg., task progress and execution time) in a time
interval. We set b = 1 and a = 0.1 to restrict the normalized
values within the range from 0.1 to 1 [12].

xnorm = a+
(x− xmin)(b− a)

xmax − xmin
(2)

Moreover, we define the outlier tasks which have 1.5
times less performance value than the median performance
value in each time interval. Fig. 5 shows a snapshot of a time
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Algorithm 1: Automated symptom detection for
outliers

Input: Jp - job progress in percentage,
F - factor,
N - name of the running task,
Nl - list of N ,
O - progress of the task,
Ol - list of O,
T - execution time of the task,
Tl - list of T .

Output: Sl - list of outliers S.
1 // Create a list Sl to store the S
2 Sl ← Sl[0]
3 // Initialize the med
4 med ← med[0]
5 while Jp < 100.0 do
6 //Clear the Sl and Pl
7 Sl ← Clear (Snew

l , Sl)
8 Pl ← Clear (Pnew

l , Pl)
9 for each N in Nl do

10 //Compute P
11 P = O

T
12 //Insert the P into the Pl

13 Pl.add(P)
14 end
15 //Get the med from the Pl
16 med ← Median value of Pl

17 for each value of Pl do
18 if (P * F ) < med then
19 //Insert theN into the Sl
20 Sl.add(N )
21 end
22 end
23 //Update the Sl in Diagnosis Generation component
24 Sl ← Update (Snew

l , Sl)
25 //Update the Nl, Ol, Tl, Jp
26 Nl ← Replace (Nnew

l , Nl)
27 Ol ← Replace (Onew

l , Ol)
28 Tl ← Replace (Tnew

l , Tl)
29 Jp ← Replace (Jnew

p , Jp)
30 end

interval (e.g., three seconds), and two mappers are identified
as outliers. More evaluations will be discussed in §5.

Algorithm 1 demonstrates the proposed ASD (auto-
mated symptom detection) algorithm in the AutoDiagn
system. It is fed by the streaming data provided by the
AutoDiagn Monitoring system during job execution. First,
the performance of each running task is calculated (see
Algorithm 1, Line 11) using Eq 1. Next, the median value
of the performance of all tasks is taken to be used to detect
outliers (see Algorithm 1, Line 16). Then, the tasks whose
performance is 1.5 times less than the performance of the
median task are selected as outliers (see Algorithm 1, Line
20). As a final step, these tasks detected as outliers are sent to
the Diagnosis Generation component for root-cause analysis
(see Algorithm 1, Line 24).

4.2 Root cause analysis for outliers

When the detected symptoms are passed to the Diagnoser
Manager, the corresponding Diagnosers are executed for
trouble-shooting. The following subsection illustrates the
technologies that we have developed for analyzing the
causes of outliers in a Hadoop cluster.

4.2.1 Root cause of outliers

In this paper, we follow the three main reasons that cause
outliers, discussed in [10], i.e., Data locality, Resource het-
erogeneity, and Network failures.
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Data locality. Hadoop Distributed File System (HDFS)
stores the data in a set of machines. If a task is scheduled to
a machine which does not store its input data, moving data
over the network may introduce some overheads to cause
the outliers issue.

Resource heterogeneity. The machines in a Hadoop cluster
may be homogeneous with the same hardware configura-
tion, but the run-time computing resources are very hetero-
geneous due to the multiple talents environment, multiple
concurrent processing task environment, machine failures,
machine overloaded etc. If a task is scheduled to a bad
machine (e.g., has less computing resource) it may cause
an outlier issue. Moreover, resource management systems
for a large-scale cluster like YARN split the tasks over the
nodes equally without considering the resource capacities of
the nodes in the cluster, but only takes into account sharing
the node’s resources among the tasks running on the node
equally by default [13]. That is more likely to raise an outlier
problem in the cluster.

Network failure. In Hadoop clusters, the network discon-
nection can cause the running tasks allocated on a discon-
nected node to be restarted on other nodes, which may lead
to the task becoming an outlier and, increase the completion
time. The following illustrates the three algorithms that
we developed to identify the outliers caused by the three
reasons.

4.2.2 Detecting data locality issues

We assume that a non-local task (D) (e.g., mapper) is ex-
ecuted on a node where its input data is not stored (In the
following, we use Sd to represent non-local outliers). To detect
these tasks, we develop Algorithm 2 to check whether a set
of outliers is caused by a data locality issue. The input of
our algorithm is a list of detected outliers during the time
interval from t to t + 1 and one of its outputs is a list of
outliers which also belongs to the non-local tasks. First, we
query our time series database to obtain all non-local tasks
within the given time interval (see Algorithm 2, Line 2).

Here, QueryNonLocal(), a root-cause analysis API, is
used to find the non-local ones among the running tasks
in that period of time. It compares the location where the
task is running (host node of the task) with the nodes
where the data block is replicated for fault tolerance via
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information collection APIs shown in Table 1, taskHost()
and blockHost(). If the task is not running on any of
these nodes (nodes hosting a copy of the block), this task
is marked as a non-local task. In the second step (Algorithm
2, Line 4), we obtain the common elements of list Dl and Sl.
These elements symbolize the non-local outliers stemming
from a data locality issue.

4.2.3 Detecting resource heterogeneity issues

Algorithm 2 is designed to identify the outliers caused by
the resource heterogeneity. The tasks running on the nodes
which have less computing resource (R) tend to be outliers
[14] (in the following, we use Sr to represent outliers running
on the nodes which have less computing resource). In Algorithm
2, the list of detected outliers during the time interval from
t to t + 1 is used as input and one of the outputs of the
algorithm is a list of outliers which also belongs to the tasks
running on the node with less computing resource. The time
series database is queried to obtain all the tasks running on
the node with less computing resource within the given time
interval (see Algorithm 2, Line 6).

Here, QueryLessResource(), a root-cause analysis
API, is used to check the heterogeneity of the nodes that host
only the running tasks based on the resource specifications
of them in that period of time. It detects the nodes with less
resource capacity in terms of CPU core numbers and the to-
tal amount of memory among the nodes hosting the running
tasks. The resource specifications of the nodes (i.e., CPU
core numbers, total amount of memory) are obtained from
each node via information collection APIs shown in Table 1,
nodeTotalCoreNum() and nodeTotalMem() APIs. As a
second step (Algorithm 2, Line 8), we obtain the common
elements of list Rl and Sl. These elements symbolize the
outliers stemming from a cluster heterogeneity issue.

4.2.4 Detecting network failure issues

Since Sl is obtained from Algorithm 1, a Diagnoser is exe-
cuted via QueryNodeHealth() to find all restarted tasks
due to the nodes disconnected by network failure within the
given time interval (see Algorithm 2, Line 10). The low-level
API restartedTasks() is called which distinguishes the
restarted tasks due to network failure from the speculation
of straggler tasks by analyzing the information of the tasks
that is provided by the monitoring agent. Thereafter, we
compute the list Swl that contains the outlier tasks caused
by the network failure (see Algorithm 2, Line 12).

4.2.5 Decision making

In this case study, we use a simple decision make method
that compares the lists Sdl, Srl and Swl and the probability
of the reasons causing the outliers by using the number
of the elements of a list divided the total number of out-
lier tasks. For instance, the probability of the performance
reduction caused by data locality is |Sdl|

|Sl| . More advanced
methods such as deep learning models can be used for pro-
cessing more complicated decision making tasks in future
work.

Algorithm 2: Root-cause analysis of outliers
Input: Sl - list of outliers in time interval from t to t + 1
Output: Sdl - list of non-local outliers Sd,

Srl - list of outliers stemming from resource variation Sr,
Swl - list of outliers stemming from disconnected nodes Sw.

1 // Find all D within the given time interval
2 Dl ← QueryNonLocal(t, t+1)
3 //Find the common elements in the Dl and Sl, and add them

into the Sdl
4 Sdl ← RetainAll (Dl, Sl)
5 // Find allRwithin the given time interval
6 Rl ← QueryLessResource(t, t+1)
7 //Find the common elements in the Rl and Sl, and add them

into the Sll
8 Srl ← RetainAll (Rl, Sl)
9 // Find allW within the given time interval

10 Wl ← QueryNodeHealth(t, t+1)
11 //Find the common elements in the Wl and Sl, and add them

into the Swl
12 Swl ← RetainAll (Wl, Sl)

5 EVALUATION

In this section, we present a comprehensive evaluation
showing the capacity and the accuracy rate of AutoDiagn,
as well as a analysis of its resource consumption and over-
heads.

5.1 Experimental setup

Environments. We set up the Hadoop YARN clusters over
31 AWS nodes with 1 master and 30 slaves with the Oper-
ating system of each node being Ubuntu Server 18.04 LTS
(HVM). The Hadoop version is 3.2.1 and the Hive version
is 3.1.1. To meet our experimental requirements, we built
two types of cluster. In Type I each node has the same
configuration (i.e., 4 cores and 16 GB memory). In Type II,
25 nodes have 4 cores and 16 GB memory and 6 nodes have
2 cores and 4 GB memory.

Benchmarks and workload. We used six well-known
Hadoop benchmarks in our evaluations namely: Word-
Count9, Grep10, TPC-H11, TPC-DS12, K-means clustering13,
and PageRank14. The input of each benchmark application
is 30GB.

Methodology. Our experiments aim to evaluate the effec-
tiveness of AutoDiagn. To this end, we manually inject the
above-mentioned three main reasons to cause the outliers,
which can be summarized as three types of execution en-
vironment. Env A: we perform all benchmark experiments
in the cluster Type I. Env B: we perform all benchmark
experiments in the cluster Type I, but skew the input size
stored on different nodes. Env C: we perform all benchmark
experiments in the cluster Type II (a heterogeneous cluster).
EnvH: we perform all benchmark experiments in the cluster
Type I, and disconnect some nodes’ network during execu-
tion. Each benchmarking is repeated 5 times and results are
reported as the average and standard deviation. In total,
there are 90 experiments conducted in our evaluation.

9. http://wiki.apache.org/hadoop/WordCount
10. http://wiki.apache.org/hadoop/Grep
11. http://www.tpc.org/tpch/
12. http://www.tpc.org/tpcds/
13. https://en.wikipedia.org/wiki/K-means clustering
14. https://en.wikipedia.org/wiki/PageRank

http://wiki.apache.org/hadoop/WordCount
http://wiki.apache.org/hadoop/Grep
http://www.tpc.org/tpch/
http://www.tpc.org/tpcds/
https://en.wikipedia.org/wiki/K-means_clustering
https://en.wikipedia.org/wiki/PageRank
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TABLE 3
The accuracy of symptom detection for non-local outliers in a

homogeneous cluster

Benchmark Total
tasks

D Outliers
(detected as Sd)

Accuracy
(%)

Error
(σ)

WordCount 234 32 29 90.63 3.9
Grep 236 37 33 89.19 4.8

TPC-H 102 13 12 92.31 6.72
TPC-DS 126 13 12 92.31 6.1
K-means 234 34 29 85.29 1.25

PageRank 235 28 25 89.29 6.2

TABLE 4
The accuracy of symptom detection for the outliers stemming from

resource variation in a heterogeneous cluster

Benchmark Total
tasks

R Outliers
(detected as Sr)

Accuracy
(%)

Error
(σ)

WordCount 234 37 33 89.19 2.77
Grep 236 26 24 92.31 4.77

TPC-H 102 9 8 88.89 5.47
TPC-DS 126 13 12 92.31 6.9
K-means 234 36 33 91.67 2.88

PageRank 235 30 28 93.33 5.35

5.2 Diagnosis detection evaluation

In this section, we evaluate the accuracy of our symptom
detection method. To this end, we execute our benchmarks
in Env B to increase number of Sd tasks (see §4.2.2). Next,
to increase the issue of resource heterogeneity (Sr referring
to §4.2.3), we run the benchmarks in Env C. Thereafter,
we run the benchmarks in Env H to emulate the network
failure (Sw referring to §4.2.4). Finally, we compare the
detected Outlier tasks with the ground truths that are the
data locality, resource heterogeneity, and network failure
issues observed by the AutoDiagn diagnosing system.

Table 3, Table 4, and Table 5 summarize all the results. All
benchmarks achieve high accuracy by using our proposal
symptom detection method. The highest accuracy for both
Sd and Sr are 92.3%, and for Sw is 94.7% and the overall
accuracy for outlier detection is 91.3%, where the Error
represents the variation of the accuracy depending on the
repeated experiments.

We compute the accuracy of our symptom detection
method by using the number of detected outlier tasks di-
vided by the actual number of the tasks that can cause the
outlier issue. Table 3, for example, D is the total number of
non-local tasks and Outliers (Sd) is the number of detected
outlier tasks that belong to non-local task. Therefore, the
accuracy is Sd

D . Table 4 and Table 5 follow the same approach
to compute the accuracy.

Outlier verification. To further verify the Sd, Sr, and Sw
are the main reasons causing the outliers, we conduct the
following comparison experiments: 1) comparing the exe-
cution time of local tasks and non-local tasks; 2) comparing
the execution time of the tasks running in Env A and Env
C; and 3) comparing the execution time of normal tasks and
restarted tasks due to network failure. Fig. 6(a) proves that
non-local tasks consume more time than local tasks due to
the overload introduced by data shuffling. Additionally, we

TABLE 5
The accuracy of symptom detection for the outliers stemming from

network failures

Benchmark Total
tasks

W Outliers
(detected as Sw)

Accuracy
(%)

Error
(σ)

WordCount 234 11 10 90.91 1.83
Grep 236 13 12 92.31 6.73

TPC-H 102 13 12 92.31 6.54
TPC-DS 126 15 14 93.33 5.43
K-means 234 17 16 94.12 4.33

PageRank 235 19 18 94.74 4.23

compare the throughput of the local tasks and non-local
tasks in terms of how much data can be processed in each
second. Fig. 7 reveals that the throughput of non-local tasks
is only 70% that of local tasks.

Moreover, Fig. 6(b) shows that the execution time of
the tasks running on Env A is less than that on Env C.
This is because the tasks are equally distributed to all
computing nodes and the less powerful nodes are saturated.
Furthermore, Fig. 9(a) shows that the CPU usage of less
powerful hosts reaches 100%, thereby building a task queue
in these hosts, increasing the overall execution time. How-
ever, Fig. 9(b) reveals that the powerful hosts have sufficient
computing resources for processing the allocated tasks.

Furthermore, Fig. 6(c) shows that the execution time of
the restarted tasks are longer than the normal tasks. As
Fig. 8 illustrates, we compute the execution time of the
restarted task by adding the execution time of the task in
the disconnected node and that in the rescheduled node.

5.3 Performance and overheads

Performance evaluation. We evaluate the performance of
AutoDiagn by measuring the end-to-end response time of
symptom detection and root-cause analysis. Since they are
not affected by the types of benchmark, we report the
average of the response time. Fig. 10(a) shows that the
real-time symptom detection can achieve a low response
time, which only has 96 milliseconds and 1059 milliseconds
with 100 tasks and 1000 tasks, respectively. Although the re-
sponse time increases linearly, the parallel execution method
discussed in §3.6 can be applied to reduce the latency. The
response time for root cause analysis is higher than that
of symptom detection. For 100 tasks and 1000 tasks, their
response times are 0.354 seconds and 5.974 seconds, respec-
tively. Unlike the symptom detection which is very sensitive
to latency because of the follow-up processes, triggering the
further root-cause analysis or alerting the system managers,
Root-cause analysis aims to provide a holistic diagnosing of
a big system and the analysis results may help to improve
the system performance in future. As a result, the real-time
root-cause analysis is not compulsory.

System overheads. To evaluate the system overhead intro-
duced by AutoDiagn, we measure the CPU and memory
usage of AutoDiagn Monitoring (agent) and AutoDiagn
Diagnosing. Table 6 shows that -AutoDiagn Monitoring only
consumes approximately 2.52% memory and 4.69% CPU;
while -AutoDiagn Diagnosis uses 2.08% memory and 3.49%
CPU.
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Fig. 6. Comparison of execution time of the tasks
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Fig 10(b) shows the network overhead of AutoDiagn.
The extra communication cost introduced by our tool is
small but it increases when the number of parallel tasks
increases. For example, when the number of parallel task is
100, there are about 45 messages per second sent from agents
to RabbitMQ cluster and the total size of these messages is
13.5 KB/s. The message rate and network overhead increase
to 615 per second and 223 KB/s, respectively, when the
number of parallel tasks is 1000.

Storage overheads. AutoDiagn needs to dump the system
information to a database which may consume extra storage
resource. In our evaluation experiments, it only cost 3.75
MB disk space in total. Obviously, increasing the types
of symptom detection and root cause analysis will also
consume more storage resources. We discuss the potential

TABLE 6
Resource overhead caused by AutoDiagn components

Components Mem (%) CPU (%)
AutoDiagn Monitoring 2.52 4.69
AutoDiagn Diagnosing 2.08 3.49

future work in §6.

6 DISCUSSION AND FUTURE WORK

Populating applications. In this paper, we propose a gen-
eral and flexible framework to uncover the performance
reduction issues in a big data system. In particular, we
develop and evaluate big data applications for outliers. New
applications (including symptom detection and root-cause
analysis) are required to populate our system for future
work.

Overhead cost reduction. Our system is designed in a
loosely-coupled manner, the processing components can
be easily scaled. However, the storage overhead increases
with the number of applications increasing. [15] proposed a
caching method to aggregate the information before sending
to destination nodes. We will explore this direction in future
work to reduce the storage overhead and network overhead.

Performance improvement. Mantri [10] utilized the outputs
of the root cause analysis to improve the resource allocation
in Hadoop clusters. Thus, one open research direction is to
build a system which can react to analysis results, thereby
improving the performance of the big data system.

7 RELATED WORK

Much recent work in big data systems focuses on improving
workflows [16], [17], [18], programming framework [19],
[20], [21], task scheduling [22], [23], [24].

Root-cause analysis. There is a large volume of published
studies describing the role of root-cause analysis. The au-
thors of [10], [25], [26] take the next step of understanding
the reasons for performance reduction. Mantri [10] charac-
terizes the prevalence of stragglers in Hadoop systems as
well as troubleshooting the cause of stragglers. Dean and
Barroso [25] analyze the issues causing tail latency in big
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Fig. 10. Performance evaluation and network overhead of AutoDiagn

data systems. Garraghan et al. [11], [27] proposed a new
method to identify long tail behavior in big data systems
and evaluated in google data trace. The authors in [28] use
offline log analysis methods to identify the root cause of
outliers in a large-scale cluster consisting of thousands of
nodes by tracking the resource utilization. Similarly, Zhou
et al. [29] use a simple but efficient rule based method to
identify the root cause of stragglers.

Along with these similar works, there are some re-
searchers using statistical and machine learning methods for
root-cause analysis. The authors of [30] introduce a Regres-
sion Neural Network (RNN) based algorithm to trouble-
shoot the causes of stragglers by processing Spark logs.
More algorithms such as the associated tree and fuzzy data
envelopment analysis [31] and Reinforcement Learning [32]
are applied for finding the reasons of stragglers in Hadoop
and Spark.

In [33], a Pearson coefficient of correlation is used for
root cause analysis to measure linear correlation between
system metrics, workload and latency. However, these
works lack a systematic solution for root cause analysis for
big data processing systems and the proposed methods are
not applicable for real-time systems.

Different to other work, the authors of [34] propose a
new algorithm that aims to reduce the proportion of strag-
gler tasks in machine learning systems that use gradient-
descent-like algorithms. This work offers an idea to develop
new Diagnosers for machine learning systems using our
framework.
Anomaly detection and debugging. The authors in [35] pro-
pose a rule-based approach to identify anomalous behaviors

in Hadoop ecosystems by analyzing the task logs. This
work only analyzes the task logs, which fails to capture the
performance reduction issues caused by inefficient utilizing
the underlying resources. Next, Khoussainova et al. [36]
build a historical log analysis system to study and track
the MapReduce jobs which cause performance reduction
based on their relevance, precision and generality principles.
However, this cannot be performed for real-time anomaly
detection. Du et al. [37] train a machine learning model from
the normal condition data by using Long Short-Term Mem-
ory (LSTM) and this trained model is used for detecting
in Hadoop and OpenStack environments. Our AutoDiagn
provides infrastructure into which the trained models can
be plugged to enrich the applications.
Real-time operational data analytic system. Agelastos et al.
[38] propose a monitoring system for HPC systems, which
can capture the cases of applications competing for shared
resources. However, this system does not consider root-
cause analysis of the performance reduction. The authors
of [5], [39] do not only provide the feature of real-time
monitoring, but are also able to identify the performance
issues and trouble-shoot the cause of the issues. In addition
to them, [40] uses a type of artificial neural network called
autoencoder for anomaly detection. They first monitor the
system in real-time and collect the normal data for training
the model used to discern between normal and abnormal
conditions in an online fashion. However, these systems are
developed for HPC clusters and are not suitable for big data
systems.

Table 7 presents a brief overview of various monitoring
tools for big data frameworks.
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TABLE 7
The features supported by existing tools and AutoDiagn

Feature DataDog
[2]

Sequence
IQ [3]

Sematext
[4]

TACC
[5]

Mantri
[10]

DCDB
[39]

Nagios
[41]

Ganglia
[42]

Chukwa
[43]

DMon
[44]

AutoDiagn

Real-time monitor-
ing

Yes Yes Yes Yes Yes Yes Yes Near
real-time

Yes Near real-
time

Yes

Root-cause analysis No No No No Yes Yes No No No Yes Yes
BigData frameworks
support

Good Poor Good No Poor No Poor Poor Poor Good and
Extensible

Good and
Extensible

Underlying resource
monitoring

Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Real-time monitor-
ing for big data tasks

Yes Yes Yes No Yes No No No Yes Yes Yes

Auto-scaling Yes Yes Yes Yes Yes Yes No No Yes Yes Yes
Alerts Yes No Yes No No No Yes No No No Yes
Visualization of big
data tasks

Yes No Yes No No No No Yes No No Yes

User customized
root-cause analysis

No No No No No No No No No No Yes

8 CONCLUSION

In this paper, we have presented AutoDiagn, a framework
for enabling diagnosing of large-scale distributed systems
to ascertain the root cause of outliers, with the core purpose
of unravelling the concretization of complicated models
for system management. After making a comprehensive
literature review and identifying the requirements for real-
world problems, we conceived its design. The combination
of user-defined functions powered by APIs and the agent-
based monitoring system along with the findings obtained
from an empirical analysis of the experiments we conducted
play a fundamental role in the development of the system.
AutoDiagn can be applied to most big data systems along
with the monitoring systems. We have also presented the
implementation and integration of the AutoDiagn system to
the SmartMonit [45], real-time big data monitoring system,
combined in our production environment. In our implemen-
tation on a large cluster, we find AutoDiagn very effective
and efficient.

Outliers are one of the main problems in big data sys-
tems that overwhelm the whole system and reduce perfor-
mance considerably. AutoDiagn embraces this problem to
reveal the bottlenecks alongside their root causes.
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