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Wireless capsule endoscopy is a modern non-invasive Internet of Medical Imaging Things that has been
increasingly used in gastrointestinal tract examination. With about one Gigabyte image data generated for
a patient in each examination, automatic lesion detection is highly desirable to improve the efficiency of
the diagnosis process and mitigate human errors. Despite many approaches for lesion detection have been
proposed, they mainly focus on large lesions and are not directly applicable to tiny lesions due to the limitations
of feature representation. As bleeding lesions are a common symptom in most serious gastrointestinal diseases,
detecting tiny bleeding lesions is extremely important for early diagnosis of those diseases, which is highly
relevant to the survival, treatment, and expenses of patients. In this paper, a method is proposed to extract
and fuse multi-scale deep features for detecting and locating both large and tiny lesions. A feature extracting
network is firstly used as our backbone network to extract the basic features from wireless capsule endoscopy
images, and then at each layer multiple regions could be identified as potential lesions. As a result, the
features maps of those potential lesions are obtained at each level and fused in a top-down manner to the fully
connected layer for producing final detection results. Our proposed method has been evaluated on a clinical
dataset that contains 20,000 wireless capsule endoscopy images with clinical annotation. Experimental results
demonstrate that our method can achieve 98.9% prediction accuracy and 93.5% 𝐹1 score, which has a significant
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performance improvement of up to 31.69% and 22.12% in terms of recall rate and 𝐹1 score, respectively, when
compared to the state-of-the-art approaches for both large and tiny bleeding lesions. Moreover, our model
also has the highest AP and the best medical diagnosis performance compared to state-of-the-art multi-scale
models.

CCS Concepts: • Computer systems organization → Sensors and actuators; • Applied computing →
Health care information systems; • Computing methodologies→ Neural networks.
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1 INTRODUCTION
With the rapid development of non-invasive Internet of Medical Imaging Things, Wireless

Capsule Endoscopy (WCE) has been increasingly used for examining Gastrointestinal (GI) tracts [3].
Compared to the traditional endoscopy approaches, WCE can provide painless GI tract examination
to patients, particularly desirable for those who are aged or pain intolerance. Despite the undeniable
success ofWCE, the vast volume of high resolution images collected from each examination imposes
a significant challenge for the doctors when conductingmanual assessment and diagnosis. In general,
it often takes 8 - 10 hours for each single WCE examination where more than 60,000 images are
produced, a basic collection rate of 2 frames per second. Bleeding lesions (a common symptom of
GI diseases) [15] are critical to the early detection of serious diseases, which is extremely important
to the survival, treatment, and expenses of a patient [5]. However, it is highly difficult and time-
consuming for clinicians to accurately identify bleeding lesions in these images by naked eyes, not
to mention those tiny bleeding lesions that are unevenly distributed, easily distorted by background
or system noise (as shown in Fig. 1).
Cloud computing serves as a feasible approach for automatic image processing where with

abundant computation resource and universal examination models, the uploaded images can be
processed in a fast fashion. However, concern lies within lesion detection and comes at two folds.
Firstly, data transmission and storage expenses are costly. According to a recent statistical study [13],
there are 2,232 tertiary hospitals in China with each performing approximately 50-80 cases of
gastroscopy examination every day, counting up to 100 terabytes of raw images waiting to be
processed per day. To transmit and store all these data in the central server is cost-intensive,
especially for only few images that contain lesions in a WCE examination. Secondly, protection of
patients’ information is a critical issue for medical image process. Data transmission and storage
on the cloud poses great threat to the patients’ privacy issue in this manner. To address these
issues, edge computing [28] can be leveraged for the design of highly secured lesion detection
system. Edge computing brings the computation close to where the data is created and is efficient
in reducing the bandwidth consumption, thus reduce the overall system latency. Also, the data can
be physically isolated and managed within the edge networks after collection, making it ideal for
privacy-aware medical image processing.

Nowadays, deep learning-based methods, e.g., convolutional neural networks (CNN), have been
proposed for GI tract examination of WCE images [16, 34, 35] due to the great success of deep
learning in computer vision applications, including object detection and classification. However,
detecting and localizing tiny bleeding lesions in the WCE-based GI tract examination has not
been well studied and remains a challenging topic. Most existing lesion region detection methods
have not made full use of the multi-scale features extracted from CNNs. Similarly, the typical
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(a) Relative dense bleeding region (b) Scattered tiny bleeding region (c) Isolated tiny bleeding region

Fig. 1. WCE images with tiny bleeding lesions

object detection methods, like Faster-RCNN [27], only utilize the top-level feature map. They limit
their capability in detecting tiny bleeding lesions. Multi-scale feature methods without multi-scale
feature fusion like Single Shot MultiBox Detector (SSD) [22] cannot combine semantic and context
information for detection. Multi-scale feature fusion methods, such as Feature Pyramid Networks
(FPN) [21], detect objects by fusing feature maps from the top down. However, existing multi-scale
feature fusion methods often introduce background noise while they fuse the whole feature maps.
Besides, for the methods based on FPN, the high-level feature maps cannot use context information
from the low-level feature maps in the feature pyramid.

Considering the aforementioned concerns of model design for small target detection, we aim to
develop a holistic edge analytic framework for detection and localization of bleeding lesions inWCE
images, assisting the doctors in making early diagnosis of serious gastric diseases. In this work, we
propose a deep multi-scale feature fusion network for sensing both large and tiny bleeding lesions
in WCE images of various sizes. In summary, the key contributions of this work are as follows:

• We propose a multi-scale feature extraction and fusion network for accurate detection and
localization of bleeding lesions.

• A multi-scale regional proposal network is designed to generate proposals from feature maps
at different layers. Feature fusion of our design only needs to perform on proposed candidates
rather than the whole feature maps.

• A top-down feature fusion network integrates shallow features with high-level semantic
features to obtain a feature map of the highest resolution while ensuring the positioning
sensitivity of detecting small objects.

• Our proposed method was evaluated by an approved clinical trial dataset. The experimental
results showed that, compared with the latest bleeding lesion detection algorithm, our
approach could achieve performance improvement of up to 31.69% and 22.12% in terms of
recall rate and 𝐹1 score, and has a prediction accuracy of 97.8%. Compared with the state-of-
the-art multi-scale feature fusion detection algorithms, our approach can achieve performance
improvement of up to 4.88% on average precision (AP).

The rest of the paper is organized as follows. In Section 2, we present a brief literature review
on bleeding detection, object detection, and small object detection. In Section 3, we provide the
technical details of our proposed method for detecting and locating bleeding lesions. In Section 4,
we conduct multiple experiments to evaluate the performance of our design and discuss the results.
Finally, we conclude and discuss the work in Section 5.
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2 RELATEDWORK
Our work is substantially related to both bleeding lesion detection in WCE images and object

detection. To allow a better understanding of the defining characteristics of small object detection,
we divide this section into three parts, namely, bleeding lesion detection, small object detection,
and multi-scale feature fusion for small object detection.

2.1 Bleeding Lesion Detection
The existing lesion bleeding detection approaches mostly utilize a pipeline consisting of feature

extraction and classification. For example, Cui et al. [4] proposed six color features in HSI color
space and used the Support Vector Machine (SVM) classifier for detecting bleeding sites. In [26],
Local features from different levels are combined to train a neural network cell-classifier for bleeding
classification. Several approaches were further proposed to extract features from different color
spaces such as RGB, HSV, YIQ with block histograms and to use various classifiers such as k-
Nearest Neighbor (KNN) or Artificial Neutral Network (ANN) [7, 9, 10, 31]. In [8], the regions of
interest (ROIs) in a particular composite color space Y.I/Q are selected and a novel method was
proposed to combine the local features of ROIs. In [34], the authors designed a CNN-based feature
extractor instead of the traditional feature extraction method for endoscopy image lesion detection.
Moreover, there are also studies on combining handcrafted features and CNN-based features for
gastrointestinal bleeding detection [17]. These results further demonstrate that the schemes based
on CNN outperform the traditional methods based on color and texture. For example, to classify
digestive organs in WCE images, [35] utilized DCNN to learn layer-wise hierarchy models from
real WCE images, and achieved better performance than traditional classification methods. In [16],
an eight-layer CNN was constructed for bleeding detection in WCE images, and it outperforms the
solutions using handcrafted features.

2.2 Small Object Detection
Object detection is a well-studied topic in computer vision and its evolution is summarized in

Fig. 2. Small object detection is a type of object detection methods, where targets are often of
small sizes. It has attracted increasing research attention due to detecting small objects is a very
challenging and difficult task in the real world [14, 19].

Deep learning is commonly used for small object detection. The existing solutions mainly focus
on two aspects, context information and proposal generation. Context plays an essential role in
small object detection. FPN [21] demonstrates the importance of context for small object detection.
It makes full use of context and high-level semantic information to detect objects at different scales
by constructing feature pyramids. Generating object proposals or bounding boxes in an image is a
prerequisite for accurate classification or segmentation. By using CNN instead of sliding windows
to generate proposals, the region proposal network proposed in Faster-RCNN [27] greatly improved
the computational accuracy and efficiency.

Besides, to make the proposals more suitable to detect small objects, the feature maps of different
resolutions are used in the network to detect small, medium, and large types of objects [18]. Multi-
scale features methods, such as a unified Multi-scale Deep Convolutional Neural Network for Fast
Object Detection (MS-CNN) [1], SSD [22] were proposed to improve performance in detecting small
objects. They often suffer from the low detection rate as no features fusion is performed during the
detection.
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Fig. 2. A timeline summary of research on object detection.

2.3 Multi-scale Feature Fusion Models
Nowadays, most small objection detection methods use multi-scale feature fusion and perform

well. In 2017, a well-known multi-scale feature fusion method, FPN [21], is proposed. Since then,
many variants, such as FFSSD [2], RefineDet [32], M2Det [33], and DeFusionNet [30] were proposed
to combine context and semantic information through feature fusion. Some of them improve the
performance of object detection. RefineDet is a method with a feature pyramid structure and shows
better efficiency and accuracy on VOC dataset. Some methods made a marked improvement on a
specific topic or goal. DeFusionNet is such a method for defocus blur detection.

Existing feature fusion technologies based on feature pyramid structure improve the performance
in detecting small targets. However, they still have difficulties dealing with WCE images as the
bleeding lesions are variable in size, irregular in shape, and random in distribution. This is mainly
due to the existing approaches often fuse the whole feature map to reduce the efficiency of the
model and introduce background noise. Furthermore, high-level feature maps used in most current
methods are based on FPN, such as DFPN [20] and Augfpn [11]. They cannot combine low-level
feature maps with context information, which show a low performance on localizing the object.

3 PROPOSED METHOD
The core of our bleeding detection model is to fuse the proposed multi-scale features generated

from the feature pyramid instead of the whole feature map. As illustrated in Fig. 3, the overall design
of our proposed model for bleeding detection and localization consists of a backbone network and
two branch networks. The backbone network extracts the basic features of a WCE image, while
the two branch networks select and fuse the regional features of feature maps. More specifically, a
typical feature extracting network, residual network (ResNet) [12], is first used as our backbone
network to extract the basic features of an input image. Then, the multi-scale regional proposal
branch network selects the candidate targets of bleeding regions from the feature maps of different
layers. After that, the features of candidate regions are fused through the top-down feature fusion
branch network. Finally, the feature map with the largest scale is sent to the subsequent network
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Fig. 3. Architecture overview of our proposed bleeding detection and localization method

to produce target bleeding regions. Since the branch networks and the backbone network are
independent of each other, they can be run in parallel to speed up the model training process in
edge nodes.

3.1 Backbone Network
To restrain network degradation and reduce parameters while improving accuracy, we employ

ResNet101 as our backbone network in this work. Many other feature extraction networks, such
as VGG16, VGG19, and ResNet50, are also available for the same purpose. VGG16 is a DCNN that
uses smaller convolution kernels to extract deep features, while ResNet is a deeper network than
VGG [12]. By using a residual network structure and introducing a building block and a bottleneck
structure, the deeper network can thus extract deep features and detect objects more accurately. To
provide an intuitive understanding of our choice, a simple comparison between VGG and ResNet is
provided in Table. 1.
Although the main function of the convolutional layer is extracting features, we hierarchically

combine the convolutional layers in ResNet to extract features more efficiently. As shown in Table. 1,
the ResNet model is divided into five layers, from Conv1 to Conv5_x. Different layer involves
different number of bottlenecks, e.g., Conv2_x contains 3 bottlenecks, while Conv4_x has 23. Each
bottleneck is a combination of convolutional layers, Batch Normalization (BN) layer, and rectified
linear units (ReLU) layer. The purpose of using BN and ReLU layer is to accelerate the convergence
of the training process, reduce overfitting, and improve the performance of the network model.
As a DCNN with 101 layers, the features extracted from ResNet101 will become more and more
abstract with the deepening of the network layers. Besides, the max-pooling method is adopted in
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Table 1. The simple comparison of VGG and ResNet from architecture.

VGG ResNetLayer name 16-layer 19-layer Output size 50-layer 101-layer Output size

Conv1
[
3 × 3, 64
3 × 3, 64

]
× 1

[
3 × 3, 64
3 × 3, 64

]
× 1 224×224

[
7 × 7, 64

]
× 1

[
7 × 7, 64

]
× 1 112×112

2×2 max pool,stride=2 3×3 max pool,stride=2

Conv2_x
[
3 × 3, 128
3 × 3, 128

]
× 1

[
3 × 3, 128
3 × 3, 128

]
× 1 112×112


1 × 1, 64
3 × 3, 64
1 × 1, 256

 × 3

1 × 1, 64
3 × 3, 64
1 × 1, 256

 × 3 56×56

2×2 max pool,stride=2 2×2 max pool,stride=2

Conv3_x

3 × 3, 256
3 × 3, 256
3 × 3, 256

 × 1


3 × 3, 256
3 × 3, 256
3 × 3, 256
3 × 3, 256

 × 1 56×56

1 × 1, 128
3 × 3, 128
1 × 1, 512

 × 4

1 × 1, 128
3 × 3, 128
1 × 1, 512

 × 4 28×28

2×2 max pool,stride=2 2×2 max pool,stride=2

Conv4_x

3 × 3, 512
3 × 3, 512
3 × 3, 512

 × 1


3 × 3, 512
3 × 3, 512
3 × 3, 512
3 × 3, 512

 × 1 28×28

1 × 1, 256
3 × 3, 256
1 × 1, 1024

 × 6

1 × 1, 256
3 × 3, 256
1 × 1, 1024

 × 23 14×14

2×2 max pool,stride=2 2×2 max pool,stride=2

Conv5_x

3 × 3, 512
3 × 3, 512
3 × 3, 512

 × 1


3 × 3, 512
3 × 3, 512
3 × 3, 512
3 × 3, 512

 × 1 14×14

1 × 1, 512
3 × 3, 512
1 × 1, 2048

 × 3

1 × 1, 512
3 × 3, 512
1 × 1, 2048

 × 3 7×7

2×2 max pool,stride=2 average pool
FC-4096
FC-4096
FC-1000

FC-4096
FC-4096
FC-1000

1×1 FC-1000 FC-1000 1×1

softmax softmax

the pooling layer to highlight the main texture features and minimize the interference of image
background information.

3.2 Multi-scale Region Proposal Branch Network
An RPN is a network that can directly identify candidate target regions from the feature map.

Compared with the traditional methods always use sliding window and searching algorithm, RPN
is more efficient and flexible. As shown in Fig. 4(a), to generate the region proposals, the small
convolutional network (kernel size set to 3*3) slides on the feature map like a sliding window with
one pixel sliding step. The central position of each sliding window is called an anchor. Then, the
anchor will be mapped back to the original image, so that the multiple candidate region proposals
are generated based on different scales and aspect ratios. Here, for positioning the bleeding area in
advance, the proposal is represented by the vector (x,y,h,w), respectively giving the coordinates of
the anchor, height and width of the proposal. The ReLU is used as the activation function. Similar
as the methods of S. Ren [27], the nine possible region proposals generated by three scales (i.e.,
128*128, 256*256, 512*512) and three aspect ratios (i.e., 1:1, 1:2, 2:1), which are always considered to
cover all possibilities, are used in our branch network. In this way, the selective search is no long
needed, and the RPN can greatly improve the proposed region generating speed.
Afterward, the candidate region is classified according to a certain score. That means, when

the score reaches or exceeds a threshold, the proposal is considered to have a target and retained.
Otherwise, the proposal contains no useful information. In our branch network, the Intersection-
over-Union (IoU) parameter, representing the overlapping rate of the proposed region and the
marked area, is used to make the evaluation. To be more specific, if the IoU value of a proposal is
higher than 0.7, which indicates that the region proposal contains the target of interest and needs
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(a) Region proposal generating procedure for feature map (b) Different anchor size

Fig. 4. Multi-scale region proposal branch network

to be retained. If a proposal has an IoU value less than 0.7, the proposal is discarded. As known, 0.7
is a common choice for IoU used in RPN with good performance.

One of the important issues for developing an RPN-based branch network to generate candidate
region proposals is to specify the size of the proposal center on the anchor (anchor size). Most
methods for generating proposals are targeted for one layer’s feature map and using a single-scale
template. This approach has been used in [27] for generating a feature map from Conv5_x to cover
all possibilities. However, as shown in Table. 1, different convolutional feature maps have different
size. The feature map size (output size) of Conv1 is 112*112, but the size of Conv5_x is 7*7 due to
the role of the pooling layer. Consistent with this, the mapping area of a one-pixel point in the
different feature maps represents different areas in the original image.
Therefore, we design a multi-scale region proposal branch network in which the anchor size

is negatively related to the feature map’s size to generate candidate region proposals. With the
deepening of the feature layers, the feature map will become smaller, but each pixel area in the
original image will be larger. This also makes the anchors become larger. For example, if nine
anchors of (14*14, 14*28, 28*14, 28*28, 28*56, 56*28, 56*56, 56*112, 112*56) are used in the feature
map of Conv2_x, the sizes of these nine anchors in the feature map of Conv3_x turn into (28*28,
28*56, 56*28, 56*56, 56*112, 112*56, 112*112, 112*224, 224*112). With nine anchors used in every
level of the feature pyramid, we have 45 anchors in total in our approach.

The other issue is the potential overlapping of the generated proposals. When an anchor slides
on the feature map, a large number of proposals are created, and each proposal is highly likely
overlapping its neighbors. Thus, a Non-Maximum Suppression (NMS) algorithm is adopted to
remove the invalid or duplicated proposals. Through themulti-scale region proposal branch network,
the target candidate region for the bleeding area of different feature map can be chosen, which
cannot only reduce the workload of feature fusion, but also highlight the target feature to improve
the detection accuracy.

3.3 Top-down Feature Fusion Branch Network
In general, shallow features extracted from low-level feature maps have more contextual infor-

mation, while deep features extracted from high-level feature maps always contain more semantic
information. Comparing the feature map of the Conv2_x and Conv5_x, as shown in Fig. 5, it is
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Fig. 5. Procedure of the top-down feature fusion approach used in Conv3, Conv4 and Conv5 layer

easy to observe that some of the contextual information is lost along with the growth of the layers.
The reason lies in the convolution of multiple layers, especially the pooling layer. To indicate the
features belonging to the target object or the background, the maximum pooling method is selected
in the pooling process. However, there is a catch that the features of the small objects are often
"lost" when they are passing through multiple pooling layers. With the growth of the convolutional
layers, the loss of such features becomes more serious. Thus, the branch network should be designed
to fuse the context information and semantic information of the different feature maps.

The most common method of fusing feature maps is to employ the feed-forward method from the
low-level to the high-level layers. By doing so, the shallow features are added to the deep features
and both can be represented in the final fusion feature map is output at high-level layers. However,
since the high-level feature map is coarse-grained and insensitive to position, this feed-forward
method is not suitable for our bleeding detection and localization network. It is notable that the
low-level feature map is fine-grained and the localization information of the target region can be
obtained more accurately from this layer. Therefore, a top-down feature fusion approach is used in
our branch network.
Because of the pooling layer, the size of the feature map is decreasing layer by layer, as shown

in Table. 1. Hence, to fuse the features of different convolutional layers, the size of the feature
map should be enlarged from the high-level layer to the low-level layer. As shown in Fig. 5, the
deconvolution layer is used in this top-down feature fusion approach to enlarge the size of the
feature map [24, 25] and to fuse the features layer by layer. Furthermore, for the features fusion of
Conv5 and Conv4 in Fig. 5, the feature map of Conv5 is firstly enlarged by the deconvolution layer.
Then the features both from Conv5 and Conv4 are uniformly processed though the convolutional
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(a) Full padding mode (b) Zero padding, non-unit strides mode

Fig. 6. Deconvolutional operation

layer and the following BN layer. After that, the features are superimposed together by an Eltw-Sum
module and get the first fused feature map (Fm_Conv5_Conv4). Here, the Eltw-Sum module is used
for the dot product of the pixel matrix. Afterward, a new round of fusion for Fm_Conv5_Conv4 and
Conv3 is started. Hereby, all of the featuremaps of different layers are fused from top to down. Finally,
the last feature map is a 1*1 convolutional layer, which can be used for dimensionality reduction
and feature reorganization. Through this feature fusion model, background noise interference can
be reduced, while context and semantic information can be profitably fused.

The common methods of size enlargement used in the deconvolutional operation are shown in
Fig. 6, in which, the input is the green part of the above and the output is the blue map below. For
example, the input is a 2*2 green map and output is a 4*4 blue map in Fig. 6(a), and the input is
a 3*3 map and output is a 5*5 map in the Fig. 6(b). Assuming the input size is 𝑥 , the convolution
kernel size is 𝑘 , the sliding step size is 𝑠 , and the deconvolution output result size is 𝑦. Then, for the
full padding mode in Fig. 6(a),

𝑦 = (𝑥 − 1) ∗ 𝑠 + 𝑘. (1)

For zero padding, non-unit strides mode in the Fig. 6(b),

𝑦 = ⌊ 2 ∗ 𝑥 + 1 − 𝑘

𝑠
⌋ . (2)

After all, this top-down converged network module should be combined with the multi-scale
region proposal branch network. Before the top-down feature fusion, the region proposals in
different layers are searched on the feature map by the multi-scale RPN network. By then, the
candidate target regions from different layers are subjected to feature fusion, ignoring non-target
areas. This cannot only greatly shorten the processing time of feature fusion steps, but also improve
the efficiency and accuracy of the whole model. This is because through fusing the candidate target
features from different layers, a more expressive and comprehensive feature map for recognizing
can be obtained. Thus, the accuracy of the detection for tiny bleeding lesions can be improved.
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3.4 Classification and Localization
After the operations of the above branch networks, we get the featuremap of themost fine-grained

level with the candidate bleeding regions. Then the feature map is sent to the Full Connection
Layer (FC-Layer) to convert high-dimensional features into one-dimensional features for achieving
classification. The next steps are to choose the proper bleeding regions by classification method,
correct the position by bounding box regression algorithm, and eliminate the redundant regions by
non-maximum suppression algorithm again.

Softmax for Classification. As a typical logistic regression classifier that widely used in
classification problems, the softmax classifier is a function whose output is the probability of a
category [23]. The form of the softmax function is usually given by the following formula:

𝐿 =
1
𝑁

∑
𝑖

−𝑙𝑜𝑔( 𝑒 𝑓𝑦𝑖∑
𝑗 𝑒

𝑓𝑗
) (3)

To let the 𝑖-th input feature with the label 𝑦𝑖 , where N is the number of training data, and 𝑓𝑗 denotes
the 𝑗-th element of the vector of class scores f. We use the softmax function to calculate the score
of each proposal. After that, we sort the scores of all the proposals and select the scores higher
than 0.8 as the final result.

Bounding box Regression for Localization. It is well known that, in the RPN-based branch
network, the localization information for each proposal is recorded by the vector (x,y,h,w). However,
the initial region of the proposal through the multi-scale region proposal network operation is
less accurate. The actual localization of the bleeding area in the WCE image needs to be further
adjusted. To complete this task, the bounding box regression used in [6] is adopted in our model to
train the network. The method performs well when the estimated coordinates of the proposal are
close to the real coordinates.

Non-Maximum Suppression. During the detection processes including region proposal net-
work, a large number of candidate regions are generated at the same target position. These candidate
regions always overlap with each other. Although the invalid and duplicate proposals have been
removed by the NMS algorithm in the multi-scale region proposal branch network, redundancy
still exists. In this case, non-maximum value suppression has been used to find the best target
region frame and eliminate the redundant bounding box. Non-maximum suppression algorithms
have been widely used in computer vision applications, such as edge detection, face detection, and
target detection.

4 EXPERIMENTAL RESULTS AND DISCUSSIONS
4.1 Dataset and Preprocessing

To evaluate our model, 20,000 clinical WCE images are collected, including 15,000 normal images
(negative samples) and 5,000 images containing hemorrhagic lesions (positive samples). These
samples are taken from multiple patients. This is because images involving lesions tend to account
for only a small proportion of the total images. In particular, for a single GI tract examination of
one patient, there are only a few dozen or fewer images that can be accurately marked as a sample
of hemorrhagic lesion. At the same time, the diversity of data sources can overcome the singleness
of train samples and improve the robustness of the model.

Due to the complex physiological environment of the GI tract, the WCE images always contain
noises or lack of clarity. To improve the sample quality, Wavelet Transform is used to denoise and
enhance the images. In addition, in order to balance the number of positive and negative samples,
90◦, 180◦, or 270◦ rotation, and horizontal inversion of positive samples are randomly performed
here. After amplification, 15,000 positive samples are obtained through random selection. Then,
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the 30,000 WCE images obtained after augmentation are split into three: training, validation, and
testing, and the partition ratio are 3:1:1.
All WCE samples are JPEG color images with a resolution of 480*480. Each positive sample is

annotated by professional with LabelImg, and generate XML file following the PASCAL VOC format.
The location of the bleeding region is completely recorded in the XML file using the coordinate of
the bleeding region’s upper left and lower right corner. Here, the origin is in the upper left corner of
the whole image. Besides, the experimental hardware environment includes NVIDIA TESLA-P100
GPU, Intel Xeon CPU e7-4850 V4, 32GB memory, and 3TB hard disk. Software environments include
Ubuntu14.04, Caffe deep learning framework, CUDA8.0, and cuDNN 6.0. It is worthy to note that
the computational power of the machine in the clinic environment is better than the one used in our
experiments. Furthermore, the stochastic gradient descent (SGD) method is adopted to accelerate
the convergence of the training process, which has a total of 80,000 iterations. At this point, the
learning rate is reduced once after every 20,000 iterations. The momentum value is set as 0.9, and
the weight attenuation value is 0.0001.

4.2 Evaluation Metrics
We used five common performance metrics, sensitivity (recall), specificity, precision, accuracy,

and F1 score to evaluate the performance of the models. Since multiple hemorrhagic lesions may
exist in each image, Average Precision (AP) is also adopted to assess the model’s efficiency in
detecting all bleeding lesions in an image.

𝐴𝑃 =
1
𝑁

∑
𝑟

𝑃𝑖𝑛𝑡𝑒𝑟𝑝 (𝑟 ). (4)

Where N represents the given rank number, and Pinterp(r) represents the region under the P-R
(Precision-Recall) curve at different r values.

4.3 Comparison with the State of the Art
To fully evaluate our bleeding detection model’s performance, we conducted extensive experi-

ments to compare with some well-knownmodels, including the typical bleeding detection networks,
classic object detection models, and multi-scale feature object detection models.

4.3.1 Typical Bleeding Detection Networks. We choose three typical algorithms used for
bleeding detection as the benchmarks, including DCNN-8 [16], VGG-16 [29], and ResNet-101 [12].
DCNN-8 and VGG-16 are image classification algorithms with 8-layer and 16-layer structures,
respectively. Their structure is not deep enough to extract the semantic information from images.
ResNet-101 is a popular classification algorithm with 101-layer and has been successfully applied
in many applications. Table. 2 shows the sensitivity, specificity, precision, accuracy, and 𝐹1 scores
of the four models for our experiments. It can be seen that our model outperforms the benchmark
algorithms in most terms. Compared with the latest bleeding detection model (DCNN-8), our
method’s sensitivity is improved by 31.69%, and the 𝐹1 score is increased by 22.12%. Besides, Table. 2
also shows that the overall performance of ResNet-101 with is better than VGG-16 and DCNN-8.
This implies that the capacity of containing more feature layers can be attributed to the detection
of tiny lesions.
Table. 2 also shows that the specificity and precision of VGG-16 and ResNet-101 are higher

than our model. The reason lies in that the VGG-16 and ResNet-101 do not make full use of each
feature layer in the network but only use the last layer. Accordingly, they tend to ignore images
that contain very few tiny bleeding regions, resulting in higher specificity and lower sensitivity.
Comparatively, our model tends to identify all suspected bleeding lesions in the WCE images.
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Table 2. Results statistics of bleeding detection work.

Method Sensitivity Specificity Precision Accuracy F1 score Localization
Our method 0.9890 0.8730 0.8862 0.9310 0.9348 Yes
DCNN-8 0.7510 0.7890 0.7807 0.7700 0.7655 No
VGG-16 0.7400 0.9550 0.9426 0.8457 0.8291 No

Resnet-101 0.8310 0.9460 0.9389 0.8885 0.8817 No

It sometimes misdiagnoses negative samples (that do not have a lesion) as positive, resulting in
higher sensitivity but lower specificity. Fig. 7 shows the results of our method correctly detect the
tiny bleeding regions from the images. In Fig. 8, we show some misdiagnosed samples. In medical
applications, the missing diagnosis could easily lead to catastrophe. Therefore, within the range
of acceptable specificity, the missed diagnosis rate should be reduced as much as possible, which
means the sensitivity should be as high as possible.

4.3.2 Classic Object detection Models. In this section, we choose Faster-RCNN [27] as our
benchmark. As an widely used RPN in the field of target detection, the Faster-RCNN can be
directly applied in our case. Table. 3 shows that our approach outperforms Faster-RCNN in all
aspects. Furthermore, as shown in Fig. 9, the P-R (precision-recall) curve of our approach also
outperforms Faster-RCNN. This indicates that the overall performance of our model is superior to
the Faster-RCNN in detecting small lesions.

The poor performance of Faster-RCNN is mainly caused by its target detection template is single
and fixed in size. In our experiments, only the images containing large hemorrhage lesions can
be correctly classified by Faster-RCNN, but for those images containing only small hemorrhagic
lesions are often classified as a negative sample. As shown in Fig. 10, our model detects 8 bleeding
regions, while the Faster-RCNN only detects 4. This also reflects the significant improvement in
AP value, a 22.27% performance difference between our approach and Faster-RCNN.

In the experiments, the large bleeding regions are often accompanied by small ones. As shown
in Fig. 11(a), the Faster-RCNN cannot identify the largest hemorrhagic lesions, and also miss some
small hemorrhagic lesions. In this case, our model detects the hemorrhagic lesions in different
scales as shown in Figure 11(b). This is because our model employs a multi-scale region proposal
branch network to enrich its capability of identifying different size lesions in the same image.

Table 3. Results statistics of classic object detection work.

Method Sensitivity Specificity Precision Accuracy F1 score AP
Our method 0.9890 0.8730 0.8862 0.9310 0.9348 0.7520
Faster RCNN 0.9530 0.8450 0.8601 0.8990 0.9042 0.6150

4.3.3 Multi-scale Feature Object Detection Models. We selected four representative multi-
scale feature methods as our performance benchmarks, which are SSD [22] (a fast and popular multi-
scale feature method), M2Det [33] (a one-stage, multi-scale feature fusion method), RefineDet [32] (a
high-performance multi-scale feature fusion method), and FPN [21] (the classic multi-scale feature
fusion method). Table. 4 shows the performance comparison between our proposed method and
the benchmarks. Our approach has the highest AP and the best overall performance in medical
diagnoses. Moreover, we achieve a comparative performance of the state-of-the-art algorithms in
terms of sensitivity, accuracy, and F1 score.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 7. The samples of successful detection of tiny bleeding lesions, Vol. 1, No. 1, Article . Publication date: August 2020.
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(a) (b) (c)

Fig. 8. Samples of misdiagnosis due to the high similarity of the labelled regions and actual bleeding lesions

Fig. 9. P-R curve comparing our model with Faster-RCNN

Among them, SSD is a one-stage multi-scale feature method without feature fusion. Without
RPN, it cannot combine context information and semantics information, performing poorly in our
experiments. M2Det is a one-stage multi-scale feature fusion method. Since it is difficult to get a
precise localization in one step, the AP is very low. RefineDet and FPN showed good performance
in our experiments since they fuse the whole feature map. However, they introduce background
noise during the fusion and ignore the context information available in low-level feature maps. As
a result, they often missed the lesions in different sizes.

Our method addresses these issues by fusing the proposal regions in different feature maps in a
top-down manner. As shown in Table. 4, our method’s AP is 4.88% better than the best benchmark.
As shown in Fig.12, our approach can detect all the lesions in a WCE image while the benchmark
algorithms failed to do so.

4.4 Ablation Study
4.4.1 Baseline. To investigate the influence of basic feature extraction network on the detection
performance of our model, two representative network models, VGG-16 [29] and ResNet-101 [12],
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(a) Detection result of RCNN (b) Detection result of our model

Fig. 10. Detection comparison of tiny bleeding lesions

(a) Detection result of Faster-RCNN (b) Detection result of our model

Fig. 11. Detection comparison of multi-scale bleeding lesions

are used for comparative experiments. The results is also given in Table. 5. The results show that
the ReNet-101 is superior to VGG-16 not only in overall performance (𝐹1 score), but also in terms
of sensitivity and accuracy. This indicates that the feature extraction of our backbone network can
greatly affect detection performance. Because the network model level of ResNet-101 is deeper
than that of VGG-16, the feature extraction ability for small lesions of ResNet-101 is superior to
that of VGG-16. Here, ResNet-101 is slightly less in specific and accuracy than VGG-16. The reason
is the same as the tendency to find more images containing suspected small bleeding lesions.
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Table 4. Results statistics of multi-scale feature object detection work.

Method Sensitivity Specificity Precision Accuracy F1 score AP
Our method 0.9890 0.8730 0.8862 0.9310 0.9348 0.7520

SSD 0.7440 0.8950 0.8770 0.8200 0.8050 0.6300
M2Det 0.8800 0.8950 0.8930 0.8870 0.8860 0.4940
FPN 0.9590 0.9340 0.9360 0.9470 0.9470 0.7170

Refinedet 0.9890 0.8250 0.8500 0.9070 0.9140 0.6270

(a) Case1 for small bleeding lesions (b) Case2 for a small bleeding lesion (c) Case3 for a small bleeding lesion

(d) Case for a medium bleeding lesion (e) Case for medium and small lesions (f) Case for large and small lesions

Fig. 12. Some detection results of multi-scale bleeding lesions

Table 5. Results statistics of backbone network based on VGG-16 and Resnet-101.

Backbone Network Sensitivity Specificity Precision Accuracy F1 score
VGG-16 0.7400 0.9550 0.9426 0.8457 0.8291

Resnet-101 0.8310 0.9460 0.9389 0.8885 0.8817
Difference 0.091(12.30%) -0.0090(0.94%) -0.0037(0.39%) 0.0428(5.06%) 0.0526(6.34%)

4.4.2 Convergence of Iterations. The convergence of our model’s iteration is shown in Fig. 13.
When the number of iterations exceeds 20,000, the model tends to stable convergence, the loss value
in the test process is less than 0.05, and the final accuracy rate is stable at 0.989. Besides, it can be
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(a) Accuracy vs iterations (b) Loss vs iterations

Fig. 13. Convergence of iterations

seen from the accuracy-iterations and loss-iterations curves that there are no loss oscillation, non-
convergence and gradient explosion in the model. In terms of the number of iterations, although
the number of initial iterations is set to be 80,000, the model can reach a stable convergence state
at 20,000. This clearly indicates that our model has a high robustness.

In real-world applications, the shooting frame rate of WCE is 2 frames per second. That is, it takes
0.5s to shoot a WCE image. In our experiments, when the number of candidate region proposals
is set to 300 for faster turnaround time, the average detection processing time is 0.07s per image.
When we set the proposals’ number to 2000 for performance, the average time is 0.29s per image.
Also, the approach reaches its best performance. The processing time includes pre-processing steps.
The size of a WCE image is not large, pre-processing steps like the wavelet transformation consume
little time and effort. Even under the best performance setting, the processing time of our approach
is just nearly half of the time of shooting an WCE image. This allows our approach to better fit into
real-world practices.

5 CONCLUSION AND FUTUREWORK
This paper presented a multi-scale feature extraction and fusion-based method for detecting

bleeding lesions in WCE images. Our proposed model consists of a backbone network, multi-scale
region proposal branch network, top-down feature fusion branch network, and FC-layer to classify
and localize the bleeding lesions. The experimental results on a clinical dataset with 20,000 WCE
images demonstrate that our proposed model can improve up to 31.69% and 22.12% in sensitivity
and overall performance, which outperforms existing bleeding detecting models. Our model can
also achieve the highest AP and get the best medical diagnosis performance than state-of-the-art
multi-scale models. Besides, comparing the backbone network and convergence of iterations also
thoroughly verifies that our model has favourable feature learning and generalization ability.
In our future research, we will focus on simplifying the architecture of the model without

losing the ability of feature fusion, and adapting to different target detection. On this basis, the
model can be applied to other diseases of the GI tract, such as early detection of gastric cancer
in WCE images, or early warning of biliary and pancreatic diseases in endoscopic retrograde
cholangiopancreatography (ERCP) images.
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